
ACTA PHYSICA DEBRECENIENSIS XLI, 129 (2007)

CRACKLING NOISE IN NON-DESTRUCTIVE MATERIAL

TESTING
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Abstract

Materials of high mechanical performance are often fabri-
cated by embedding strong fibers in a relatively weak matrix.
Under a constant or slowly increasing external load such rein-
forced composites undergo a damage process of gradual micro-
crack accumulation which then leads to localization and macro-
scopic fracture. The process of damaging can be followed ex-
perimentally by recording acoustic signals emitted by cracks.
This so-called crackling noise is a very important diagnostic
tool in non-destructive fracture testing and can even be used to
predict the imminent failure event. We show by means of ana-
lytical calculations and computer simulations that the presence
of two subsets of materials in the system with widely different
mechanical strength has a crucial effect on the characteristics
of crackling noise. We demonstrate that the fracture process of
such two-component systems has two universality classes char-
acterized by different distributions of the noise amplitudes.

I. Introduction

Damage and fracture of materials occurring under various types of external
loads is an interesting scientific problem with an important technological
impact. During the last two decades the application of statistical physics
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has revealed that heterogeneities of materials’ microstructure play a crucial
role in fracture processes [1]. To capture the effect of disorder, recently sev-
eral stochastic fracture models have been proposed such as the fiber bundle
model (FBM) and lattice models of fuses or springs [1, 2, 3, 4, 5, 6]. Based
on these models, analytic calculations and computer simulations revealed
that macroscopic fracture of disordered materials shows interesting analo-
gies with phase transitions and critical phenomena having several universal
features independent of specific material details [3, 4, 7, 5, 8]. It has been
found that under a slowly increasing external load macroscopic failure is
preceded by a bursting activity due to the cascading nature of local break-
ings [2, 3]. Since the bursts can be recorded experimentally by the acoustic
emission technique, these precursors addressed the possibility of forecasting
the imminent failure event [9, 10, 11]. The size distribution of bursts was
proven to be a power law with an exponent 5/2 which is universal for a
broad class of disorder distributions [2, 3].

The goal of this project is to analyze the properties of crackling noise
under realistic loading and material conditions with special emphasis on
novel high performance materials. The results of our research can be used to
understand crackling noise spectra measured by on-field monitoring systems
[13, 14].

II. Macroscopic response

We consider a set of N fibers which are loaded in parallel. Under an in-
creasing external load σo the fibers have a linearly elastic response with a
Young modulus E = 1 fixed for all the fibers. In order to capture the large
variation of disordered material properties, we assume that the bundle is
composed of two subsets of fibers with strongly different breaking charac-
teristics: A fraction 0 ≤ α ≤ 1 of fibers is strong in the sense that they have
an infinite load bearing capacity so that they never break. However, fibers
of the remaining 1−α fraction are weak and break when the load on them
σ exceeds a threshold value σi

th, i = 1, . . . ,Nw, where Nw = (1 − α)N
is the number of weak fibers. The strength disorder of weak fibers is
characterized by the probability density p(σth) and distribution function
P (σth) =

∫ σth

0
p(x)dx of the failure thresholds. After a weak fiber breaks

in the bundle, its load has to be overtaken by the remaining intact ones.
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For simplicity, we assume global load sharing (GLS) (also called equal load
sharing) which means that all the intact fibers share the same load σ,
hence, no stress concentration occurs around failed regions. Under these
conditions the constitutive equation of the model can be written as

σo = (1 − α) [1 − P (σ)] σ + ασ, (1)

where σo is the external load acting on the sample and σ denotes the
load of single fibers which is related to the strain ε of the system as σ =
Eε. The first term of Eq. (1) accounts for the load bearing capacity of
the surviving fraction of weak elements, and the second one represents the
stress carried by the unbreakable subset of the system. In the following
calculations it is instructive to consider two different strength distributions
for the weak fibers, namely, a uniform distribution between 0 and 1 and a
Weibull distribution will be used with the distribution functions P (σ) = σ
and P (σ) = 1 − exp [− (σ/λ)m], respectively.

D

s

Figure 1: Example of bursts of fiber breakings recorded under an increasing
external load σ. The size of bursts ∆ has strong fluctuations with an increasing
average when approaching macroscopic failure.

Varying the fraction of the two components α in the model, we showed
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analytically that the presence of unbreakable elements has a substantial
effect on the fracture process of the system both on the micro- and macro-
scales. We found a critical fraction αc where a transition occurs between
two qualitatively different regimes: below the critical point α < αc the
macroscopic constitutive curve σ0(σ) has a single maximum, while above
αc the macroscopic response becomes monotonous [13]. Very interestingly
the monotonicity drastically changes the microscopic process of fracture
[13, 14].

III. Structure of crackling noise

Under stress controlled loading, i.e. when increasing σo the breaking of a
single fiber can induce additional breakings which in turn may trigger an
entire avalanche of breaking events. On the microlevel the failure proceeds
in such breaking bursts which are analogous to microcracks giving rise to
acoustic signals in experiments. Figure 1 presents an example of the failure
process of a fiber bundle where the bursting activity can be observed. One
of the most important characteristics of the microscopic process of failure
is the size distribution of bursts, i.e. the hight distribution of peaks in Fig.
1. We showed analytically that below the critical fraction αc of the two
components the burst size distribution D(∆) is a power law with the usual
mean field exponent τ = 5/2. However, above αc the distribution D(∆)
can be cast in the form

D(∆)

N
≃

Γ
(

3

4

)

24
√

3πa′′σ31/4
∆−9/4, (2)

where a′′σ depends on the strength disorder P . Our derivation demonstrates
that increasing α the behavior of the system changes both on the macro-
and the micro-scales. We showed that while the quadratic maximum of
σo(σ) prevails, i.e. below the critical point αc, the asymptotic behavior
of the burst size distribution D(∆) is controlled by the vicinity of the
maximum resulting in a power law functional form D(∆) ∼ ∆−τ with
an universal exponent τ = 5/2. However, at αc the constitutive curve
becomes monotonically increasing dσo/dσ > 0 and the avalanche statistics
is dominated by the inflexion point of σo(σ), giving rise to a different value
of the exponent τ = 9/4. Varying the control parameter α, the exponent
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τ suddenly switches between the two values 5/2 and 9/4 when passing
the critical point αc. Note that in the derivation the only assumption we
made is that the constitutive curve of the system has a single maximum
and an inflexion point. It follows that the change of the exponent τ of the
avalanche size distribution can be observed for a large variety of disorder
distributions defining a novel universality class of breakdown phenomena.
This universality class is narrower than the one in which the power law
behavior of D(∆) emerges with the exponent τ = 5/2. For instance, the
Weibull distributions do present the above switching of exponents, however,
the uniform distribution does not [13].
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Figure 2: Non-normalized avalanche size distributions for uniform (a, c) and
Weibull distributions (b, d) varying α below and above αc. The straight lines
in (a) and (b) represent the power laws obtained analytically. Rescaling the two
axis according to the scaling formula Eq. (3), a very good quality data collapse is
obtained in (c) and (d).

For the numerical verification of the above analytic results we carried
out Monte Carlo simulations of the quasi-static fracture process of our FBM
considering Weibull and uniform distributions for the breaking thresholds.
Computer simulations were performed with N = 106 fibers averaging over

133



103 samples. The Weibull parameters were set to m = 2 and λ = 1 for
which the critical point is αc ≃ 0.3085. For uniformly distributed threshold
values it can be observed in Fig. 2(a) that below the critical point the
numerically obtained distributions D(∆) remain the same, even the cutoff
of the distributions does not change with α. It is interesting to note that in
this specific case the constitutive equation for σ ≤ σc(α) is the same as if
the system is composed of solely weak fibers with threshold values between
zero and the upper bound σmax

th = 1/ (1 − α). It follows that the entire
failure process of the bundle obtained at different α values remains the same
until there are enough weak fibers in the system Nw > N/2. Hence, for
the parameter regime α < αc the avalanche statistics does not change, we
obtain the typical power law distribution D(∆) ∼ ∆−τ with the exponent
τ = 5/2 (Fig. 2(a)). For α > αc the parabolic shape of σo(σ) prevails,
however, due to the insufficient number of breakable fibers Nw < N/2 the
system behaves as if the loading process was stopped before reaching the
maximum of σo(σ). Consequently, the cutoff of the distribution D(∆) in
Fig. 2(a) decreases with increasing α, however, the exponent τ has the same
value as below αc, in agreement with our predictions and also with Ref. [3].

We use the average size of the largest burst ∆max as the characteristic
burst size of the system. It can be seen in Fig. 3(a) that for the uniform
distribution below αc, the value of ∆max is constant, while it rapidly de-
creases when α surpasses αc. Figure 3(c) demonstrates that approaching
αc from above the characteristic burst size has a power law divergence
∆̄max ∼ (α − αc)

−ν , where for the value of the exponent ν = 1.56 ± 0.07
was obtained numerically. In the case of the Weibull distribution, below
the critical point α < αc the burst size distribution has a power law behav-
ior D(∆) ∼ ∆−τ , with the exponent τ = 5/2 as it is expected (Fig. 2(b)).
Increasing the value of α in this regime results in a slight increase of the cut-
off burst size but the power law part of the distribution does not change.
However, when α surpasses αc the exponent of the power law regime of
D(∆) suddenly switches to the lower value τ = 9/4, in a perfect agreement
with our analytic predictions (see Fig. 2(b)). We again find that the char-
acteristic burst size ∆max diverges as we approach αc from above with the
same value of the exponent ν as for the uniform case (see Fig. 3(d)). We
emphasize that the value of the exponent of the power law regime of D(∆)
remains constant τ = 9/4 when changing α above αc [13, 14].
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Figure 3: The average size of the largest burst ∆max as a function of α for uniform
(a, c) and Weibull (b, d) distributions. The vertical straight lines in the figures
indicate the corresponding critical point αc. (c) and (d) show that approaching αc

from above, ∆max has a power law divergence as a function of α − αc. The value
of the exponent is ν = 1.56 ± 0.07 for both cases.

Using ∆max as a scaling variable, we introduce the scaling ansatz

D(∆) = ∆̄−β
maxg(∆/∆

ξ
max) (3)

for the burst size distributions above the critical point α > αc. Here β
and ξ are scaling exponents, which have the relation β = τξ with τ =
5/2 and τ = 9/4 for the uniform and Weibull distributions, respectively.
Figures 2(c) and (d) present the rescaled burst size distributions plotting

D(∆)∆
β
max as a function of ∆/∆

ξ
max. The high quality data collapse is

obtained with the parameters β = 3.25, ξ = 1.25 and β = 1.12, ξ = 2.52,
for the uniform and Weibull distributions, which are consistent with the
two different values of the τ exponent [13, 14].

IV. Discussion

Our numerical and analytical calculations revealed that the presence
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of unbreakable elements gives rise to a substantial change of the fracture
process of disordered materials both on the micro- and macro-scales. As-
tonishingly we found a critical fraction of the breakable and unbreakable
components where the exponent of the burst size distribution switches from
the well known mean field exponent of FBM τ = 5/2 to a significantly lower
value τ = 9/4. The transition is conditioned to disorder distributions where
the macroscopic constitutive response of the system has a single maximum
and an inflexion point, implying a novel universality class of FBM [13].
Besides its theoretical importance, the problem has several implications for
experimental studies. New materials of high mechanical performance are
often fabricated by mixing components with widely different properties. For
instance, fiber reinforced composites are composed of strong fibers which
are embedded in a carrier matrix. In this case at the breaking of weak
elements, the strong ones act as the unbreakable component of our model
[14].
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[13] K. Kovács, R. C. Hidalgo, F. Kun, and I. Pagonabarraga, submitted
to Europhysics Letters (2007).
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