
ACTA PHYSICA DEBRECINA XLII, 5 (2008)BGL CONFERENCES: A BRIEF HISTORYL. L. JenkovszkyBogolyubov Institute for Theoretial Physis, Nat. A. S. of UkraineKiev-143, 03680 UKRAINE andRMKI (KFKI), POB 49, Budapest 114, H-1525, HUNGARYAbstratThe birth and the evolution of the BGL series of onferenesare brie�y reviewed. I. PreludeIt started in 1997. The idea of the onferene, that later gave start to theseries, ame during a onversation with late N.A.Chernikov in the trainDubna - Mosow (2 hours of journey). Nikolai Alexandrovih Chernikovwas a prominent theorist working at the Bogolyubov Laboratory of The-oretial Physis of the Joint Institute for Nulear Researh in Dubna. Hewas an outstanding expert in general relativity, geometry and quantum �eldtheory. With his wife Natalia, they maintained lose relations and sien-ti� ollaboration with the Lobahevskij Kazan State University. NikolaiIvanovih Lobahevsky, born in Nizhni Novgorod, dediated most of his lifeto the Kazan University, where he started his studies and his work, laterbeoming its retor. Both towns lie on the splendid Volga river, heart ofRussia, away from Europe's ross-roads. The harater of the people, theirmentality and their behavior bears muh in ommon with this unique envi-ronment.Speaking about Lobahevsky's life, full of drama, Chernikov said- You, Hungarians, have an equally great man in your history! His nameis János Bolyai, and his life was as tragi as that of our o-patriot. We



should remember of them together!So we deided to all for a onferene under the title �Non-Eulideangeometry in modern physis and mathematis� or, in short, BGL, after thenames of Bolyai, Gauss and Lobahevsky, where Russians and Hungarianswould join their e�orts to remember the heritage of their great anestors.The name of Friedrih Gauss is usually ited among the reators of thenew geometry, and we are looking forward for a wider German involvementin future BGL onferenes. The ordering in the abbreviation is purely al-phabeti. Although there are di�erent opinions about the priority of thedisovery of the non-Eulidean geometry, we avoided any preferene at thispoint. The title of the subsequent onferenes slightly varied, the last pro-posal being: �Non-Eulidean geometry and modern physis�, but the sym-boli abbreviation (BGL) remaining unhanged. The topis of the BGLwere settled as: history (from Eulides to the present times), mathematisand physis, the aents depending on the interests of the organizers.It should be stressed that, apart from its strit physis and geometriontent, the onferene has also a speial �human� or �ultural� aspet inbringing together traditions of the lassial siene and the spirit of the OldContinent, di�erent from the so-alled globalization. BGL is also a bridgebetween East and West in this hanging world. The number of the par-tiipants is stable, varying around 50. The �rst onferene gave start to aseries of biannial meetings at varying plaes of Europe.Let us reall brie�y the history of 5 previous BGL onferenes, ompris-ing now a period of more that 10 years - a �quasi jubilee�.II. Ungvár-Uzhgorod, Transarpatia (1997)The venue of the �rst BGL was hosen to be in Ungvár, Transarpatia (nowUzhgorod, Ukraine), where I was born and I have studied at the loal univer-sity. Transarpatia is bordering with several ountries, loated between theWestern (Hungarian and German) and Eastern (Slavi) ultural environ-ments and in�uene, symbolially linking the heritage of Bolyai, Gauss andLobahevsky and their followers. The loal Institute of Eletron Physis(IEP) of the Ukrainian Aademy of Sienes kindly provided hospitalityfor the �rst BGL onferene. A bust of N.I. Lobahevsky, by the knownUkrainian sulptor V. Fedihev (Kiev) was inaugurated at the opening, andwas donated to the IEP.6



The diretor of the IEP, member of the Ukrainian Aademy and for-eign member of the Hungarian Aademy of Sienes Otto Spenik with thesienti� seretary of the Institute Zoltán Taris onsolidated the loal orga-nizing ommittee providing exellent working onditions for the Confereneas well as exursions with onferene dinners at the villages Nagy Dobronyand Péterfalva. It was, perhaps, for the �rst time sine the end of the 2ndWorld War that physiists and mathematiians from the neighboring Tran-sarpatia and Transylvania, separated by less than 100 km (and a border!),ould meet and disuss the ommon ultural heritage. Russia was repre-sented by two great physiists � N.I. Chernikov and A.A. Tyapkin - bothfrom Dubna.Of ruial importane for the �rst and subsequent BGL onferenes wasthe support from the Hungarian Aademy of Sienes and its member Pro-fessor István Lovas, who remains a entral �gure in the organization of allsubsequent BGL meetings. The proeedings of the �rst BGL onferenewere published in [1℄.III. Nyíregyháza, Eastern Hungary (1999)The venue of the 2nd BGL meeting, thanks to the e�orts of Arpád Szabó,former diretor of the Hungarian lyeum in Ungvár (Uzhgorod), was theNyíregyháza Pedagogial Institute, where A. Szabó moved in the mean-time. The Institute provided all the neessary failities (onferene hall,lodging and meals at low pries), enabling wide partiipation at the onfer-ene - both from East (Romania, Ukraine, Bielorussia, Russia) and from theWest [A. de Alfaro (Torino), M. Tonin (Padova), H. Terazawa (Tokyo), L.Csernai (Bergen) and many others℄. For the �rst time Transylvania, home-land of János Bolyai, was represented by its leading experts on the subjet,inluding Samu Benk® and Tibor Toró (history of siene). Partiipant wasalso the outstanding, world-wide reognized expert of the Bolyai heritage,Elemér Kiss from Marosvásárhely, where János Bolyai spent most of his life.E. Kiss beame an expert on Bolyai's manusripts and wrote a book on thestudies of these manusripts (being di�ult to read!) where, apart from thenew geometry, Bolyai's ontribution to the number theory is also presented.The book, besides the two Hungarian editions, was translated and printedalso in English and is now a bibliographi rarity. Two great men, followersof Lobahevsky and Bolyai, namely N.A, Chernikov and E. Kiss, met during7



BGL-2 in Nyíregyháza - for the �rst and, alas!, the last time. After heavyand long straggle against their disease, both died of aner (in 2006).The seond BGL meeting in Nyíregyháza rea�rmed the universal andhumanisti spirit of the BGL onferenes. The soial program inluded anexursion to the famous Tokaj wine yards. The proeedings of the BGLonferene were published, due to the invaluable e�orts of Prof. I. Lovas,in two issues of the Ata Physia Hungaria [2℄.IV. Marosvásárhely � Targu Mures (Transylvania) (2002)2002 was the year of the widely elebrated 200-th anniversary of JánosBolyai. In partiular, the Hungarian Aademy of Sienes organized a largeBolyai-onferene in Budapest in August. We deided to join the elebra-tions by organizing BGL-3 in September 2002, after an �irregular�, 3-yearsinterval. János Bolyai was born in Kolozsvár (Klausenburg, Cluj Napoa),but he lived with his father and died in Marosvásárhely, leaving there morethan 20,000 pages of mathematial manusripts, that an now be found inthe Bolyai-Teleki library.Vie-Mayor of Marosvásárhely Sándor Csegzi, together with aademiianIstván Lovas from Budapest and Debreen were the prinipal organizers ofthe BGL-3 onferene. The Hungarian Sapientia University of Transylva-nia, together with the Town Counil as well as the Hungarian Aademyof Sienes supported the onferene. Most of the partiipants ame fromRomania, Hungary, Ukraine, Russia and Bielorussia, but there were alsopartiipants from far away ountries like Japan. The atmosphere of theonferene was dominated by the mystial presene of Bolyais � father andson. We visited memorial plaes of the family, inluding the emetery. Amore relaxed exursion was organized to neighboring villages, populated bySzékelys, �Hungarian ossaks�, whose uno�ial apital is Marosvásárhely.The Proeedings of BGL-3 are published in [3℄.V.Nizhni Novgorod (Russia) (2004)From Central Europe, BGL moved to North-East, to Russia. In 2004 theLobahevsky Nizhni Novgorod University was the host of the 4-th on-ferene (see: http://www.unn.ru/bgl4/). It was organized by Prof. F.8



Polotovskiy and his sta�, supported by the Retor of the University, prof.Strongin.We enjoyed the ordial Russian hospitality and pro�ted from the high-level presentations, espeially those in mathematial physis, the �eld inwhih Russia has always a large number of interesting results. The partii-pation of a onsiderable number of Hungarians at the onferene at Russia'sheartland, in spite of the barriers imposed by visas, high travel osts andprejudies from mass media, was a proof of the viability and ontinuity ofultural links between East and West and of the mutual respet for ommonvalues represented by the BGL heritage. During the site-seeing, the par-tiipants beame aquainted with the memorial plaes of N.I.Lobahevsky.In a boat trip along Volga, the legendary town of N. Novgorod with itsmajesti Kremlin has opened its splendor. The proeedings of the BGL-4onferene [4℄ ontain a olletion of high-level papers in various �elds ofmathematis and theoretial physis, as well on the history of siene.VI.Minsk (Bielorussia) (2006)Bielorussia, in spite of its relatively modest dimensions, has a ommunity ofphysiists and mathematiians, grouped in Minsk and elsewhere. ProfessorYury Kurohkin, who partiipated in most of the previous BGL onfer-enes, is a known expert in geometry and theoretial physis. With hisassistant, mathematiian Vitor Red'kov from the Institute of Physis ofthe Bielorussian Aademy of Sienes, they led the organizing ommittee ofthe 5-th BGL onferene, held in the fall of 2006, in a resort, outside theity of Minsk (http://dragon.bas-net.by/bgl5/). Similar to the previousonferene in N. Novgorod, the hosts provided reasonable low-ost aom-modation and food, and exellent, high-level sienti� presentations. Theprogram was dominated by ontributions form Bielorussia and neighboringountries. An enjoyable exursion to the ity of Minsk was organized. Abig volume of the Proeedings was published shortly after BGL-5 [5℄.VII.FutureThis year the Conferene returned to Central Europe, Debreen, heartlandof Hungary. During the disussion onluding BGL-6, we heard that: 9



1. The biennial series should be ontinued. Several options for the nextonferene site were mentioned, among them were Kolozsvár (Cluj-Napoa) and Trieste. The optimal title seems to be: �Non-Eulideangeometry in modern physis�.2. A wider German partiipation, inluding the organization of a futureBGL onferene in Germany, is highly welome.3. The sope of the onferene is right and it should be ontinued; physisand mathematis should be present in a balaned way, with some his-tory of siene, arts et. added. Ultimately, János Bolyai was a poly-histor, to use this �modern� term. He was an aomplished polyglot,speaking nine foreign languages, inluding Chinese and Tibetan. Heplayed violin and was a skilled fener. F. Gauss was learning Rus-sian (to read Pushkin or Lobahevsky?). Their life and heritage areinspiring! Referenes[1℄ Non-Eulidean geometry in modern physis and mathematis, Pro-eedings of the BGL onferene in Uzhgorod, Edited by L. Jenkovszky,Kiev, 2007.[2℄ Ata Phys. Hungaria, Proeedings of the BGL-2 onferene in Nyire-gyháza� Edited by I. Lovas ..... (2000).[3℄ Non-Eulidean geometry in modern physis and mathematis, Proeed-ings of the BGL-3 onferene in Marosvásárhely� Edited by S.Csegziand I.Lovas, Budapest � 2002.[4℄ Non-Eulidean geometry in modern physis and mathematis, Pro-eedings of the BGL-4 onferene in Nizhni Novgorod , Edited by L.Jenkovszky and G. Polotovskiy, N.Novgorod - Kiev � 2004.[5℄ Non-Eulidean geometry in modern physis, Proeedings of the BGL-5onferene in Minsk, Edited by Yu.Kurohkin and V.Red'kov, Minsk� 2004.10



ACTA PHYSICA DEBRECINA XLII, 11 (2008)A NOTE TO K-TORSE-FORMING VECTOR FIELDS ONCOMPACT MANIFOLDS WITH COMPLEX STRUCTUREM. Chodorová, J. Mike²Department of Algebra and geometry, Faulty of Siene, Palaky UniversityOlomou, Czeh RepubliAbstratCertain properties of torse-forming, onirular and onver-gent vetor �elds on manifols with a�ne onnetion are stud-ied. Connetions of manifols in whih suh vetor �elds existare found. Moreover, examples of the mentioned manifols inase they are ompat and metrizable are presented.I. IntrodutionConirular and torse-forming vetor �elds were introdued by K. Yano[16℄ in 1944 and their properties in Riemannian spaes have been stud-ied by various mathematiians. Their generalizations are Kählerian torse-forming vetor �elds (shortly K-torse-forming) whih were introdued byYamaguhi [14℄. Many authors, for example [2, 10℄, investigated Kähleriantorse-forming vetor �elds whih we all K-onirular vetor �elds.Speial types of these vetor �elds (ovariantly onstant, reurrent, on-vergent, onirular) have been studied earlier. Riemannian spaes, onwhih these �elds exist, have a spei� form of a metri, namely they arewarped produt spaes, see for example [6, 7, 8, 12, 13, 15℄.The vetor �elds have been studied mostly in Riemannian spaes. Theirde�nitions, as it is shown, depend �rst of all on an a�ne onnetion andbasially not on a metri, see [13℄.



In this paper we introdued loal and global onditions of an existene ofthe studied vetor �elds on manifolds An with torsion-free a�ne onnetionsand the onditions of setting the metri in An. Atually it is a ontinuationof our previous paper, see [11℄.II. K-torse-forming vetor �eldsFirst we note de�nitions and some properties of torse-forming vetor�elds, via them we de�ne reurrent, onvergent and onirular vetor �elds,see [8℄.De�nition 1. A vetor �eld ξ on a manifold An with an a�ne onnetion
∇ is alled torse-forming, if the ondition ∇Xξ = ρ · X + a(X) · ξ holdsfor any vetor �eld X from X (An), ρ is a funtion on An, a is a linearform on An.A torse-forming vetor �eld ξ is alled

• reurrent, if ρ ≡ 0,
• onirular, if the form a is gradient (or loally gradient), i.e. thereexists(loally) a funtion ϕ(x) suh that a = dϕ(x) = ∂iϕ(x) dxi,
• onvergent, if ξ is onirular and ρ(x) = const · eϕ(x).Let An be an n-dimensional manifold with a�ne onnetion ∇ (shortly� spae with a�ne onnetion ∇), on whih an a�nor struture F is de�ned(i.e. F is a tensor �eld of type (11) on An), we an de�ne more generalizedvetor �elds.De�nition 2. A vetor �eld ξ is alled K-torse-forming if

∇Xξ = ρ ·X + σ · FX + a(X) · ξ + b(X) · Fξ, ∀X ∈ TVn, (1)where ρ, σ are some funtion, and a, b are linear forms on An.12



In loal oordinates x it is
ξh
,i = ρ δh

i + σ F h
i + aiξ

h + biF
h
α ξ

α,where ξh, F h
i , ai, bi are omponents of ξ, F, a, b, and � , � denote the ovariantderivative.These vetor �elds are studied on Kählerian, eventually on Hermitian,spaes from many others aspets, see for example S. Yamaguhi [3, 14℄, K.R.Esenov [2℄, J. Mike², G.A. Starko [10℄, see [7℄.It is easy to prove an integral urve ℓ: x = x(t) of a K-torse-formingvetor �eld ξ is F -planar, beause its tangent vetor dx/dt = ξ satis�es afollowing ondition ([4, 7, 9℄)

∇ξξ = ̺1(t) ξ + ̺2(t)Fξ,where ̺1, ̺2 are funtions of a parameter t.An existene of K-torse-forming vetor �elds on spaes with a�ne on-netion has two aspets � loal and global. These aspets were studied fortorse-forming and onirular vetor �elds in [11℄.The fundamental question is an existene of spaes An, on whih men-tioned vetor �elds exist; for example, suh global vetor �elds live on om-pat spaes.III. Loal existene of K-torse-forming vetor �elds on AnIII.1At �rst we onstrut all a�ne onnetions on spaes An (loally) onwhih K-torse-forming vetor �elds exist.The �nding of all spaes An with a�ne onnetion ∇, on whih these�elds are de�ned, is easy from a loally aspet. It is known, that a hart
(x,U) exists on manifolds for non vanishing vetor �eld ξ and it holds:

ξh(x) = δh
1 , ∀x ∈ U. 13



We note ξh
,i ≡ ∂iξ

h + ξαΓh
αi, where ξh and Γh

ij are omponents of a vetor�eld ξ and of an a�ne onnetion ∇ on spaes An. We get the followingexpression Γh
ij of a�ne onnetion ∇ on spaes An on whih K-torse-form-ing vetor spaes are de�ned if we substitute this to the equations (1):

Γh
1i(x) = ρ(x)δh

i + σ(x)F h
i (x) + ai(x)δ

h
1 + bi(x)F

h
1 (x), (2)where ρ(x), σ(x), ai(x), bi(x) are some funtions de�ned on U , F h

i (x) areomponents of a struture F on U ; the other omponents Γh
ij(x) are arbi-trary funtions de�ned on U .In general ase the omponents (2) an de�ne a onnetion ∇ with tor-sion. If Γh

ij = Γh
ji then this onnetion ∇ is torsion-free.An analysis of these formulas it follows that a set of manifolds An onwhih mentioned vetor �elds live is very broad. It is possible to verify thatthe majority of manifolds An are not metrizable, i.e. there does not exist ametri g, for whih a onnetion on An is not a Levi-Civita onnetion of

g. The a�nor struture F is arbitrary. Evidently, in the event, if F is om-plex or almost omplex struture, in general ase spae An is not Kählerianor Hermitian spae. III.2It is well-known [7℄ a Kählerian spae is a Riemannian spae on whih thereare de�ned metri g and omplex struture F satisfying
F 2 = −Id, g(X,FY ) + g(FX,Y ) = 0, ∇F = 0,for all tangent vetors X,Y .In paper by J. Mike² and G.A. Starko [10℄ there was introdued a metriof a Kählerian spae and in this spae there exists a K-torse-forming (or K-onirular) vetor �eld. In the anonial oordinate system x this metrihas a following expression:

gab = ga+mb+m = ∂abG+∂a+mb+mG, gab+m = ga+mb = ∂ab+mG−∂a+mbG,14



where G = G(x1 + s(x2, x3, . . . , xm, xm+2, xm+3, . . . , xm+m)), G′, G′′ 6= 0,
G, s ∈ C3, are funtions of mentioned arguments, a, b = 1, . . . ,m, m = n/2,the struture F is anonial, i.e. F a+m

b = −F a
b+m = δa

b , F a
b = F a+m

b+m = 0,and ∂i = ∂/∂xi. In this oordinate system a K-torse-forming vetor �eld isexpressed: ξ = ∂1.IV. Global existene of K-torse-forming vetor �elds on ompat
AnIV.1We introdue an example of a spae with a�ne onnetion whih is madeon n-dimensional torus.Let An = S1×S1×· · ·×S1, and x1, x2, . . . , xn, be the orresponding an-gles on the irles. We have global vetor �elds X1 = ∂1,X2 = ∂2, . . . ,Xn =

∂n.We de�ne the a�ne onnetion ∇ through its ations on these vetor�elds, as follow:
∇Xi

X1 = ρ(x)Xi + σ(x)FXi + a(Xi)X1 + b(X)FX1,and for the others ∇Xi
Xj =

n∑

k=1

ωk
ij(x)Xk, j 6= 1,where ρ, σ, ωk

ij are funtions and a, b are linear forms on An, and F is ana�nor struture on An.Evidently, the spae An is ompat, and ξ ≡ X1 is a K-torse-formingvetor �eld.The struture F on even-dimensional An, for whih the following ondi-tions hold
FXa = Xa+m, FXa+m = −Xa, ∀a = 1, . . . ,m, 2m = n,is a globally omplex struture. It is known, the following expression F 2 =

−Id holds for this struture. 15



IV.2We introdue an example of a ompat spae with torsion-free a�neonnetion and ovariantly onstant omplex struture whih is made on
n-dimensional torus.Let An = S1 × S1 × · · · × S1, and x1, x2, . . . , xn, n = 2m, be orre-sponding angles in irles. Global vetor �elds are de�ned: X1 = ∂1,X2 =
∂2, . . . ,Xn = ∂n.We de�ne omplex struture F and a�ne onnetion ∇, by ations ofthese vetor �elds:

FXa = Xa+m, FXa+m = −Xa, ∀a = 1, . . . ,m, (3)
∇Xi

Xj =

n∑

k=1

ωk
ij(x)Xk, (4)where ωk

ij (= ωk
ji) are funtions on An.It has been assumed that the funtions ωk

ij satis�es
ωc

ab = ωc+m
ab+m = −ωc

a+m b+m, (5)
ωc+m

a+m b+m = ωc
a b+m = −ωc+m

a b , a, b, c = 1, 2, . . . ,m.Then we prove that the struture F is ovariantly onstant, i.e. ∇F = 0,see [5℄.Moreover, if
ωc

a1 = ωc+m
a 1+m = ωc+m

a+m 1 = −ωc
a+m1+m = ψaδ

c
1 + ψ1δ

c
a,

ωc+m
a+m 1+m = ωc

a 1+m = −ωc+m
a1 = ψa+mδ

c
1 − ψ1+mδ

c
a,where ψi are funtions on An, then the vetor �eld ξ = X1 is K-torse-for-ming.Lemma 1. There exists a ompat manifold An with torsion-free a�neonnetion and globally de�ned ovariantly onstant omplex struture andK-torse-forming vetor �eld.16



Furthermore we suppose that
ω1

11 = ω1+m
1 1+m = ω1+m

1+m 1 = −ω1
1+m 1+m = 1,and the other omponents of ω are zero. The formulas (4) and (3) de�ne atorsion-free a�ne onnetion ∇ and a ovariantly onstant a�ne struture

F on An, respetive. A vetor �eld ξ = X1 is K-torse-forming.Loally this onnetion ∇ is alulated in terms of a metri g = diag(g11,
g22, . . . , gnn), where
g11 = g1+m 1+m = exp(2x1), gaa = ga+m a+m = 1, a = 2, . . . ,m, 2m = n.Evidently, this metri loally generates a Kählerian spae with the struture
F . In other hand, the onstruted spae An is not globally metrizable.From this follows that ∇ξξ = ξ, and for the lenght |ξ| =

√
g(ξ, ξ), wehave ∇ξ|ξ| = |ξ|. Beause, An is ompat, this ase does not exist.This work has been partially supported by the Counil of Czeh Gov-ernment MSM 6198959214. Referenes[1℄ M. Coos, A note on symmetri onnetions, J. of Geometry andPhysis 56, 337 (2006).[2℄ K.R. Esenov, On properties of generalized equidistant Kählerian spaes,whih admit speial almost geodesi mappings of seond type, (Russian)Collet. Si. Works, Frunze (Kyrgyzstan), (1988) 81-84.[3℄ S. Fueki, S. Yamaguhi, Kählerian torse-forming vetor �elds and Käh-lerian submersions, SUT J. Math. 33, No. 2, 257 (1997).[4℄ I. Hinterleitner, Conformally-projetive harmoni di�eomorphisms ofequidistant manifolds, Publ. de la RSME 11, 296 (2007). 17



[5℄ J. Mike², On Sasaki spaes and equidistant Kaehler spaes, Sov. Math.,Dokl. 34 (1987), 428�431; transl. of Dokl. Akad. Nauk SSSR 291 (1986),33�36.[6℄ J. Mike², Geodesi mappings of an a�ne-onneted and Riemannianspaes� J. Math. Si., New York, 78, 3 (1996), 311-333.[7℄ J. Mike², Holomorphially projetive mappings and their generaliza-tions, J. Math. Si., New York, 89, 3 (1998), 1334-1353.[8℄ J. Mike², L. Rah �unek, On tensor �elds semionjugated with torse-forming vetor �elds, Ata Univ. Palaki. Olomu., Fa. Rerum Nat.,Math. 44, 151 (2005).[9℄ J. Mike², N.S. Sinyukov, On quasiplanar mappings of spaes of a�neonnetion, Sov. Math. 27, No.1, 63 (1983); translation from Izv.Vyssh. Uhebn. Zaved., Mat. No.1 (248), 55 (1983).[10℄ J. Mike², G.A. Starko, K-onirular vetor �elds and holomorphi-ally projetive mappings on Kählerian spaes, Suppl. Rend. Cir. Mat.Palermo, II. Ser. 46 (1997), 123�127.[11℄ J. Mike², M. �kodová, Conirular vetor �elds on ompat spaes,Publ. de la RSME 11, 302 (2007).[12℄ A.Z. Petrov, New Methods in Theory of General Relativity, ( Nauka,Mosow, 1966).[13℄ I.G. Shandra, Conirular vetor �elds on semi-riemannian spaes,J. Math. Si., New York 31, 53 (2003).[14℄ S. Yamaguhi, On in�nitesimal projetive transformations in non-Riemannian reurrent spaes, Tensor 18, 271 (1967).[15℄ K. Yano, Conirular Geometry, I-IV. Pro. Imp. Aad., Tokyo, 16(1940), 195-200, 354-360, 442-448, 505-511.[16℄ K. Yano, On torse-forming diretions in Riemannian spaes, Pro.Imp. Aad., Tokyo 20, 701 (1944).18



ACTA PHYSICA DEBRECINA XLII, 19 (2008)ON GEODESIC MAPPINGS OF AFFINE CONNECTIONMANIFOLDSJ. Mike²1, I. Hinterleitner2, V. Kiosak3

1 Fa. of Si., Palaky University, Olomou, Czeh Repuli
2 FSI Tehnial University, Brno, Czeh Republi

3 Shiller University, Jena, GermanyAbstratIn this paper we prove that all a�ne onnetion manifoldsare loally projetively equivalent to some spae with equia�neonnetion (equia�ne manifold). We found a system of linearequations whih determine all (pseudo-) Riemannian spaes ad-mitting geodesi mappings onto an a-priori de�ned spae witha�ne onnetion.I. Levi-Civita equations of geodesi mappingsAs well known, a geodesi mapping is a di�eomorphism whih preservesgeodesi urves, see for example [1℄-[20℄, et.Beltrami [1℄ in 1865 began to study geodesi mappings onto Eulideanspaes. Levi-Civita [7℄ obtained fundamental equations of geodesi map-pings between Riemannian spaes. H.Weyl [19℄ de�ned geodesi mappingsbetween a�ne onnetion manifolds. He showed that the Levi-Civita equa-tions are valid in this ase, too.These results were �rst formulated only loally. Many times it was foundthat the Levi-Civita equations hold also globally (� in whole�), see [8℄.Let An and Ān be n-dimensional a�ne onnetion manifolds with on-netions ∇ and ∇̄, respetively. We suppose that there exists a di�eomor-phism f : An → Ān. Beause it is very well known [3, 8, 12, 16, 19℄ that



an a�ne onnetion manifold is projetively equivalent to a manifold withsymmetri a�ne onnetion, we suppose that the onnetions ∇ and ∇̄ aresymmetri a�ne onnetions.If U ⊂ An is a oordinate neighborhood with oordinates x = (x1, . . . ,
xn), we suppose that the points M ∈ U and M̄ = f(M) ∈ f(U) haveidential oordinates x. These oordinates x are alled ommon oordinatesof the mapping f .A di�eomorphism f : An → Ān is a geodesi mapping if and only if thefollowing Levi-Civita equation holds:

Γ̄h
ij(x) = Γh

ij(x) + δh
i ψj(x) + δh

j ψi(x), (1)where Γh
ij and Γ̄h

ij are omponents of ∇ and ∇̄, respetively, ψi is ovetor,
δh
i is the Kroneker symbol.A di�eomorphism f from the manifold An onto the (pseudo-) Rieman-nian manifold V̄n is a geodesi mapping if and only if the following Levi-Civita equation holds:̄

gij,k = 2ψk ḡij + ψi ḡjk + ψj ḡik, (2)where ḡij(x) are omponents of the metri tensor ḡ of V̄n, � , � denotes theovariant derivative with respet to the onnetion ∇ on An.With the aid of these equations many problems of geodesi mappings ofRiemannian manifolds and a�ne onnetion manifolds were solved.Levi-Civita [7℄, see [3℄-[20℄, obtained these fundamental equations forgeodesi mappings between Riemannian manifolds. The above Levi-Civitaequations hold equally for Riemannian and for pseudo-Riemannian mani-folds.In the following we suppose that (see [13, 14, 16℄):Riemannian manifold ≡ Riemannian and pseudo-Riemannian manifold.
20



II. Geodesi mappings and equia�ne onnetion manifoldsAs we have already said, a�ne onnetion manifolds are projetivelyequivalent to some spaes with symmetri a�ne onnetion. Note that asymmetri a�ne onnetion ∇ is alled equia�ne if the Rii tensor of Anis symmetri [12, 16℄.It is known [12, 16℄ that the manifold An is equia�ne (this means Anhas an equia�ne onnetion), if and only if on a oordinate neighborhood
U there exists a funtion f(x) so that Γα

iα(x) = ∂f(x)
∂xi .We have the following theorem.Theorem 1. An a�ne onnetion manifold is loally projetively equivalentto an equia�ne manifold.Proof. Let An be a manifold with a�ne onnetion ∇. We an restritourselves to the ase that ∇ is symmetri. We suppose that a oordinateneighborhood U ∈ An is mapped geodesially on Ān under the assumptionof the validity of the Levi-Civita equations (1).We onstrut a ovetor ψi(x) in the following way:

ψi(x) = − 1

n+ 1
Γα

iα(x). (3)From (1) and (3) follows
Γ̄α

iα(x) = 0. (4)Formulae (3) and (4) hold only in the distinguished oordinate system x,beause Γ̄α
iα(x) is not a ovetor. Condition (4) is equivalent to the sym-metry of the Rii tensor of Ān and the equia�nity of Ān. This propertyis not dependent of oordinates.
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III. Mike²-Berezovski equations of geodesi mappings fromequia�ne manifolds onto Riemannian manifoldsSinyukov started from the following problem: �nd all Riemannian mani-folds V̄n whih admit geodesi mappings onto an a priori de�ned Riemannianmanifolds Vn, see [8, 16℄.This means we must �nd all metri tensors ḡ, whih are solutions ofthe Levi-Civita equations (1) and (2). These equations are non-linear withrespet to the omponents of the metri tensor ḡ and for their solution nostandard methods exist. Sinyukov (see [8, 16℄) for this problem obtained aset of linear equations of Cauhy type.Mike² and Berezovski started from the generalized problem: �nd allRiemannian manifolds V̄n whih admit geodesi mappings onto an a prioride�ned a�ne onnetion manifold An, see [8, 9℄.Theorem 2 (Mike², Berezovski [8, 9℄). The equia�ne manifold An ad-mits a geodesi mapping onto a Riemannian manifold V̄n, if and only if theomplete set of linear di�erential equations of Cauhy type in the ovariantderivatives in An

(a) aij
,k = λi δj

k + λj δi
k;

(b) nλi
, j = µ δi

j + aiαRαj − aαβRi
αβj;

(c) (n− 1)µ,i = 2(n+ 1)λαRαi + aαβ(2Rαi,β −Rαβ,i)

(5)has a solution with respet to the unknown symmetri regular tensor aij ,the vetor λi, and the funtion µ. The solutions of this system and (1) arerelated by the equality
aij = exp(2ψ) ḡij ; λi = − exp(2ψ) ḡiαψα, (6)where ψi is a gradient vetor of the funtion ψ, ḡij are omponents of thedual tensor of the metri tensor of V̄n.Here Rh

ijk and Rij = Rα
ijα are omponents of the Riemannian and Riitensors of An, the omma � , � denotes the ovariant derivative in An.The �rst formula (5) gives the neessary and su�ient ondition for theexistene of a geodesi mapping: An → V̄n. This mapping is nontrivial ifand only if λi 6≡ 0.22



In this ase, the set of equations (5) is linear and its solution is reduedto the investigation of the integrability onditions and their di�erential pro-longations, whih are a set of algebrai (homogeneous with respet to theunknown tensors aij, λi, and µ) equations with oe�ients from An (i.e.oe�ients formed from objets de�ned on An). Thus, in priniple, wean solve the following problem, if the given equia�ne manifold An admitsgeodesi mappings onto the Riemannian manifold V̄n and if the hoie ofthis mapping is arbitrary.This system has not more than only one solution for initial onditions inthe point x◦:
aij(x◦) =

◦
aij, λi(x◦) =

◦
λi µ(x◦) =

◦
µ.The general solution of Eqs. (5) depends on a �nite number of sub-stantial parameters r ≤ N0 ≡ (n+ 1)(n + 2)

2
. The number r is alled thedegree of mobility of An with respet to geodesi mappings onto Riemannianmanifolds. From here it follows that the set of manifolds V̄n onto whih Anadmits geodesi mappings, depends on a set of parameters of ardinalitynot exeeding r.The degree of mobility of An with respet to geodesi mappings onto V̄nwas investigated in [8, 9℄. In this work, it was shown that the maximumvalue r = (n+1)(n+2)

2 is ahieved only in projetive-Eulidean manifolds, andfor nonprojetive-Eulidean An (n > 2) it is true that r = n(n+2)
2 + 2.By a detailed analysis it an be shown that Theorem 2 holds for An

∈ C2, i.e. for all the omponents Γh
ij(x) ∈ C2 of the a�ne onnetion ∇.IV. Linear equations of geodesi mappings from a�neonnetion manifolds onto Riemannian manifoldsIn the paper [9℄ by Mike² and Berezovski (see [8℄) a system of equationsof Cauhy type for geodesi mappings from an a�ne onnetion manifold

An onto a Riemannian manifold V̄n was found. These equations are nonlinear. 23



From Theorem 1 and the equations (5) the existene of linear equationsfollows also for this general ase.Assume that An admits a geodesi mapping onto the equia�ne manifold
Ãn under the ondition

Γ̃h
ij(x) = Γh

ij(x) −
1

n+ 1
(δh

i Γα
jα(x) − δh

j Γα
iα(x)). (7)and Ãn admits a geodesi mapping onto the Riemannian manifold V̄n withthe metri ḡ.The �rst formula of (5) holds

aij
|k ≡ ∂ka

ij + aαjΓ̃
i
αk + aαiΓ̃

j
αk = λiδj

k + λjδi
k (8)where � | � is the ovariant derivative on Ãn.By insertion of (7) into (8) we �nd an equation for a geodesi mappingfrom An onto V̄n in the following form

aij
,k ≡ ∂ka

ij + aαjΓi
αk + aαiΓj

αk =
2

n+ 1
aij Γα

αk + δi
kΛ

j + δj
kΛ

i, (9)where
Λi = λi +

1

n+ 1
aiβΓα

βα.Equations (9) are linear with respet to the unknown funtions aij(x)and λi(x). These equations hold in the hosen oordinate system x. Theirsolutions are tensors aij(x) and λi(x), whih do not depend on the hoieof oordinates.For eah solution of the equations (9), with the aid of formulae (6), ametri ḡ of the Riemannian manifold V̄n an be found.Theorem 3. The manifold An admits a geodesi mapping onto a Rieman-nian manifold V̄n if and only if there exists a solution of (9) with respet tothe unknown funtions aij(x) (det ‖aij(x)‖ 6≡ 0) and λi(x). The metri ḡof V̄n satis�es the onditions (6).24



The geodesi mappings of projetive Eulidean manifolds are studied indetail in the monographs [4, 12, 16℄.By a detailed analysis of the integrability onditions of equations (9)and their �rst di�erential prolongations it an be shown that in oordinateneighborhoods, where An is not projetively Eulidean, the vetor λi anbe expressed in the form
λi = aαβ(x)Gi

αβ(x), (10)where Gi
αβ(x) is determined by objets of the a�ne onnetion of An.Then the equations (9) form a losed linear system of Cauhy type withrespet to the unknown funtions aij(x).Proof. Now we an prove formula (10).Asume that An maps geodesialy on a Riemannian manifold V̄n. Than ineah oordinate neighbourhood U ⊂ An the equations (9) have a solution.We restrit ourselves to the ase, that in the oordinate neighbourhood

U(x) An is not projetively �at, i.e. the Weyl tensor of projetive urvatureis non vanishing, W h
ijk(x) 6= 0.For the oordinate neighbourhood U(x) we further onstrut a series ofgeodesialy mapping manifolds

An → Ãn → V̄n,where Ãn is an equia�ne manifold.Equations (9), valid in An, have in Ãn the form (8). The integrabilityondition of (8) an be written in the form
aα(iR̃

j)
αkl = λ

(i
|lδ

j)
k − λ

(i
|kδ

j)
l . (11)where R̃h

ijk is the Riemannian tensor of Ãn.Beause in an equia�ne manifold Ãn the Weyl tensor of projetive ur-vature has the following form
W̃h

ijk = R̃h
ijk −

1

n− 1
(δh

k R̃ij − δh
j R̃ik), 25



where R̃ij is the Rii tensor of Ãn, and this tensor is an invariant ofgeodesi mappings, i.e. W̃ h
ijk = W h

ijk, formula (11) an be written in thefollowing form
aα(iW

j)
αkl = Λ

(i
l δ

j)
k − Λ

(i
k δ

j)
l ,where Λi

l is a tensor and W h
ijk is the Weyl tensor of projetive urvatureof An.The ovariant derivative of the last formule with respet to xm in Anis

aα(i
,mW

j)
αkl + aα(iW

j)
αkl,m = Λ

(i
l,mδ

j)
k − Λ

(i
k,mδ

j)
l .After insertion of (9) aquires the following prinipial form

λ(iW
j)
mkl + aαβT ij

αβklm = Λ
(i
lmδ

j)
k − Λ

(i
kmδ

j)
l + L

(i
k lδ

j)
m . (12)where T ij

αβklm is an objet determined by the onnetion ∇ of An and
Λh

lm, L
h
lm are objets.In [11℄ it was proved that for n > 2 whenW 6= 0 there exists a oordinatesystem x in whih W 1

223 6= 0. One by one we insert into (12):
i = 1, . . . , n, j = 1, m = k = 2, l = 3;
i = j = k = 1, l = 3, m = 2;
i = j = m = 1, l = 3, k = 2;
i = j = k = 1, l = m = 2and we an see that (10) holds.This work has been partially supported by the Counil of Czeh Gov-ernment MSM 6198959214.
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ACTA PHYSICA DEBRECINA XLII, 29 (2008)SOME QUESTIONS OF FINSLER- ANDDISTANCE-GEOMETRIESL. TamássyInstitute of Mathematis, H-4010, Debreen, P. O. Box 12, Hungary1. This is a Conferene on Non-Eulidean Geometry and its Applia-tions, alled also Bolyai-Gauss-Lobahevsky Conf. So I feel it pertinent topay respet in a few words to these sienti� luminaries, and at the sametime give a reason for speaking here on Finsler geometry. I would like tostart with a few fats of the history of mathematis.Proofs �rst appeared in mathematis after the penetration of the ideasof Greek philosophy, only about in the �fth entury B.C. With this the eversteepest development started in the history of mathematis. Only one and ahalf entury later Eulid was able to write his famous book, the Elements, inwhih he ould dedue every theorem from a few axioms. Among these thelast one was the well-known parallel axiom. Nevertheless this axiom raisedproblems. Many asked whether this is a real axiom, or else it an be proven.The problem turned out to be very hard. It refused any attak through twothousand years. Finally it was solved by Bolyai and Lobahevsky (Bolyaifound it �rst, and published later, Lobahevsky found it later, and pub-lished it �rst). The answer a�rmed the rank of the parallel axiom. Theproblem was very di�ult indeed, but the answer did not alter the geometryat all. Everything remained as before. It seemed that the solution requireda really big e�ort, but yielded a modest result. Nevertheless they provedtheir result by onstruting a new geometry, and this was of the utmost sig-ni�ane. The importane of this onstrution an be ompared to the turnfrom the geoentri world onept to the helioentri one. The possibility,the existene of another geometry was unoneivable for nearly all of themathematiians of the time. It beame properly reognized, it gained itsright to its proper plae only slowly. Gauss, who also was interested in theproblem, and who had nie partial results, was the �rst who understood



and aepted the idea of Lobahevsky and Bolyai. However, for some onlypartially aeptable reasons, he did not want to propagate the new geom-etry. Yet in spite of all di�ulties the new geometry spread out. Afterthe �rst highly di�ult steps new and new geometries appeared. In 1854Riemann presented the basi ideas of �Riemannian geometry". This hap-pened at his habilitation leture under the hairmanship of the old Gauss(next year Gauss died). That the new ideas spread but slowly is exellentlyshown by the fat that Riemann's ideas were published �rst only after hisdeath (1866) in the volume of his Colleted Works (1892), and Riemanngeometry beame developed in the XX-th entury only. Today we have anumber of geometries, most of them with suessful appliations in physis,among them also Finsler geometry. Thus Finsler geometry is the son, or atleast the grandson of Lobahevsky and Bolyai, and on this right I dare tospeak today on some problems of Finsler geometry.2. First a few introdutory words on Finsler and distane geometries.We have two types of metrial di�erential geometries: i/ those built on thear length of urves, ii/ those built on the distane of two points. Sine theseare di�erential geometries, in both ases everything must be di�erentiable(of lass C∞).We onsider �rst the geometries whih are built on the ar length. Let
γ(t) ⊂M , a ≤ t ≤ b, γ̇(t) 6= 0 be a urve of a manifold M . Then

s(t) :=

∫ b

a
‖γ̇(t)‖ dt (1)is a quite natural and generally used de�nition for the ar length. Clearlythe tangent spae TpM , p ∈M must be a normed vetor spae. What kindof norm ? We put three simple and very natural requirements on s, whihuniquely determine the type of the norm ‖ . ‖p, p ∈M . These requirementsare the following:A) s > 0B) s is independent of any orientation-preserving parameter transforma-tion.30



C) ‖ . ‖p satis�es the triangle inequality.It is lear thatA): s > 0 ⇐⇒ ‖y‖ > 0, y ∈ TpM , y 6= 0.B): Let t = t(τ), τ = τ(t), τ(a) = α, τ(b) = β be a parameter trans-formation. This preserves the orientation if dt
dτ > 0. Then s is independentof the parameter transformation t = t(τ) i�

∫ b

a
‖γ̇(t)‖ dt =

∫ β

α
‖γ′(τ)‖ dτ =

∫ b

a

∥∥∥∥γ̇(t)
dt

dτ

∥∥∥∥
dt

dτ
dt. (2)Sine γ̇(t) an be any vetor of TpM and dt

dτ may be any positive number,B) is equivalent to
‖λγ‖p = λ‖y‖p, y ∈ TpM, λ ∈ R+,where R+ denotes the positive reals.Finally C) says that

‖y1 + y2‖p < ‖y1‖p + ‖y2‖p, y1, y2 ∈ TpM, y1 6= µy2, µ ∈ R.Thus the requirements A), B), C) are equivalent to the following prop-erties of the norm:I) ‖y‖p > 0 if y 6= 0II) ‖λy‖p = λ ‖y‖p, λ ∈ R+III) ‖y1 + y2‖p < ‖y1‖p + ‖y2‖p, y1 6= µy2, y, y1, y2 ∈ TpM , µ ∈ R.I), II), III) haraterize the Banah norm. Thus a geometry built on thear length satis�es the very natural requirements A), B), C) i� the normapplied in (1) is a Banah norm, whih depends on the point p ∈M .It is a di�erene only in notation, if we introdue the funtion
F(p, y) := ‖y‖p. 31



Then we de�ne a Finsler spae Fn = (M,F) over a manifold M by givinga fundamental (or metri) funtion F(p, y) with the properties I), II), III),and we de�ne the ar length of a urve γ(t) ⊂M by s :=
∫ b
a F(γ(t), γ̇(t)) dt(see [1℄). Thus Finsler geometry is the most general geometry satisfyingthe very natural requirements A), B), C). If the Banah norm redues toa Eulidean norm, then we obtain a Riemann geometry. It is easy to seethat C) or III) is equivalent to the onvexity of the indiatrix (see (8)),and this onvexity is equivalent to the property that in the simplest ases(Eulidean or Minkowski geometry) geodesis are straight lines. This isanother geometri expression of the requirement C) or III). Finsler geometryand its numerous simple speial ases o�er many possibilities for physialappliations. This is so, beause Finsler geometry has muh more freeparameters or funtions, than Riemannian geometry.The other type of metrial di�erential geometries are distane spaes

Dn = (M,̺) (see [2℄). A distane spae over M is given by a distanefuntion ̺ : M ×M → R+ ordering to any ordered pair (p, q) of points anon-negative real. This funtion an be symmetri: α) ̺(p, q) = ̺(q, p),and it an satisfy the triangle inequality: β) ̺(p, q) + ̺(q, r) ≥ ̺(p, r). Ifboth α) and β) are satis�ed, then Dn is alled metri. If α) may fail, then
Dn is alled quasi-metri. In what follows we onsider quasi-metri distanespaes. Metri distane spaes are ontained as a speial ase.3. What is the relation between distane spaes Dn = (M,̺) and Finslerspaes Fn = (M,F) over the same manifold M ? Any Finsler metridetermines a distane funtion ̺F by

̺F (p, q) := inf
Γ
s(γ(p, q)), (3)where Γ means the olletion of the urves from p to q, and s(γ(p, q))means their ar length. Then ̺F is non-negative and satis�es the triangleinequality. Thus

F =⇒ ̺F and Fn = (M,F) =⇒ Dn = (M,̺F ).Is this relation invertible ? Does also F determine ̺F ? Yes, namely
lim

t→0+

d

dt
̺F (p0, g(t)) = F(p0, y0), (4)32



where g(t), 0 ≤ t < ε is a geodesi of Fn emanating from p0 = g(0), and
y0 is its (one sided) tangent at p0 : y0 = ġ(0). (4) is a famous result of H.Busemann and W. Mayer [3℄ (see also [1℄, p. 158). It an be proved easily.If ε is small, then g(t) is a �short geodesi", whih minimizes the ar lengthbetween g(0) = p0 and g(t). Hene, by (3)

̺F (p0, g(t)) = s(p0, g(t)) =

∫ t

0
F(g(τ), g′(τ))dτ. (4')By (one sided) di�erentiation we obtain (4). This shows that

F =⇒ ̺F =⇒ F =⇒ ̺F . . . ,i.e. the relation between {F} and {̺F } is 1 : 1. We remark that d
dt̺

F (p0, g(t))equals the diretional derivative of ̺F :
lim

t→0+

d

dt
̺F (p0, g(t)) =

d

dt

∣∣∣
p0,y0

̺F (p0, q), q ∈M.Now, this relation does not ontain the geodesi g(t), so starting with adistane funtion ̺ of a distane spae Dn = (M,̺)

F(p0, y0) :=
d

dt

∣∣∣
p0,y0

̺(p0, q) (5)de�nes a funtion F(p, y). One an show that this F satis�es A), B) C).Hene this F is a fundamental funtion of a Finsler spae Fn = (M,F).Thus we obtain
̺ =⇒ F =⇒ ̺F . (6)But is this ̺F of (6) equal to the starting ̺? We show that in general itis not. This an be shown by an example, where ̺ =⇒ F =⇒ ̺F 6= ̺.First let M be 1-dimensional: M = R1 with anonial oordinates x. Letus de�ne

̺(x0, x)) := ln(|x− x0| + 1). (7)One an hek that this ̺ is non-negative, symmetri, and satis�es the trian-gle inequality. So it is a distane funtion of a metri spae D1 = (R1(x), ̺).By (5) it determines a Finsler metri F(p, y), whih turns out to be abso-lutely homogeneous, and independent of x0. Therefore the onstruted33



F 1 = (R1, F ) is a Minkowski spae with symmetri indiatrix, and beauseof n = 1 it is a Eulidean spae. Hene
̺F (x1, x2) = |x1 − x2|.By the integral mean theorem

̺(x1, x2) =

∫ x2

x1

̺′(x1, x) dx = (x2 − x1)̺
′(x1, x)

∣∣
x0

x1 < x2, x0 ∈ (x1, x2),

̺′(x1, x) =
d

dx
̺(x1, x).The derivative of ̺ (given by (5)) is stritly dereasing on x>x1, and

̺′(x0, x)|x0
= 1. Thus ̺′(x1, x0) < 1 and hene

̺(x1, x2) = (x2 − x1)̺
′(x1, x)|x0

< |x1 − x2| = ̺F (x1, x2),showing that ̺ 6= ̺F .This example an be extended toM = Rn (n > 1). In this ase we de�nethe funtion z = ̺(0, x), (x, z) ∈ Rn+1 by the rotation of z = ln(|x| + 1)(see (7)) around the z axis, and we de�ne ̺(x0, x) := ̺(0, x − x0). Alsoother examples over M 6= Rn an be onstruted.These show that there are many distane spaes Dn = (M,̺) suh that
̺ determines by (5) the same Finsler spae and the same ̺F , but only forone of these is ̺F = ̺ in (6).For whih distane spaes Dn = (M,̺) does ̺ =⇒ F =⇒ ̺F = ̺hold? The answer needs a little more preparation. In [4℄ we gave neessaryand su�ient onditions for this. The basi idea is the following. In an
Fn = (M,F) along a short geodesi g(t), 0 ≦ t ≦ T by (4') we obtain

̺F (p, g(t)) = ̺F (p, g(t1)) + ̺F (g(t1), g(t)),where p ∈ g(τ), 0 ≤ τ < t1 < t < T . From this
[
d

dt
̺F (p, g(t))

]

t1

=

[
d

dt
̺F (g(t1), g(t))

]

t+
134



for every p ∈ g(τ), 0 ≤ τ < t1. This means that the funtions ̺F (p, g(t)),whih measure the distane from the di�erent p ∈ g(τ) to g(t) have the samederivative at t1, and their graphs have parallel tangents at t1. A urve of
Dn with similar property is alled �parallelity urve". In the proof we showthat the existene of suh a parallelity urve between any pair of points ofa distane spae Dn is neessary and su�ient for ̺ = ̺F .4. We show still another interesting global result of Finsler geometry.For the sake of simpliity we restrit ourselves to a two-dimensional abso-lutely homogeneous Finsler spae F 2=(M,F). The indiatrix I(p0) of an
Fn=(M,F) is a hypersurfae of the tangent spae de�ned by

I(p0) := {y ∈ Tp0
M | F(p0, y) = 1}. (8)

I(p0) is a generalization of the unit sphere Sn−1 of the Eulidean spae En.If ϕ : M → M is a motion of Fn, then the linear mapping dϕ takes I(p)into I(ϕ(p)). This means that I(p) and I(ϕ(p)) must be a�ne equivalent.Now suppose thata) p1 and p2 are suh points of F 2 that I(p1) and I(p2) are not a�neequivalent to any other I(p) of F 2b) let F 2 be geodesially omplete, i.e. there exists a geodesi betweenany pair of points of F 2) let the injetivity radii ι(p1) and ι(p2) be suh that ι(p1) + ι(p2) ≤
̺(p1, p2). In onsequene of this there exist geodesi irles Sp1

(r1)with radius r1 ≤ ι(p1), entered at p1, and Sp2
(r2) with radius r2 <

ι(p2), entered at p2d) there exists in F 2 a 1-parameter ontinous group of motions ϕt 6= id.We laim that under these onditions there exists a di�eomorphism Ψ :
F 2 → ϕ ⊂ E3 where ϕ is a revolution surfae, and moreover Ψ is anisometry for the meridians and parallels of ϕ [5℄.We sketh the proof. Sine F 2 is geodesi omplete there exists a geodesi gbetween p1 and p2. Let q0 ∈ g be suh that ̺(p1, q0) ≤ ι(p1) and ̺(p2, q0) ≤35



ι(p2). Then there exist two geodesi irles Sp1
(k1), k1 = ̺(p1, q)), and

Sp2
(k2), k2 = ̺(p2, q)), through q0. p1 and p2 are �x points of ϕt, for I(p1)and I(p2) are not a�ne equivalent to any other I(p). Hene q0 an moveonly on Sp1

(k1) by any motion ϕt. Furthermore it is easy to see that q0annot be a �x point of ϕt, for in this ase ϕt would be the identity. Thus q0an be taken into any point of Sp1
(k1) by an appropriate ϕt. Neverthelessthe same is true also for Sp2

(k2). Therefore Sp1
(k1) = Sp2

(k2). Finally welaim that M = Bp1
(k1) ∪ Bp2

(k2), where Bp1
(k1) is the losed disk of Mbounded by Sp1

(k1), and similarly Bp2
(k2). Namely if q (6= p1) is an arbi-trary point of M , then there exists a geodesi g∗ through q, and emanatingfrom p1. g∗ intersets Sp1

(k1) and Sp2
(k2) perpendiularly at a point q∗ andruns further in Sp2

(k2) to p2, and then further to a ommon point q∗∗ of
Sp1

(k1) and Sp2
(k2). Therefore q must lie on g∗ between p1 and p2, and thusin Bp1

(k1)∪Bp2
(k2). Sine both Bp1

(k1) and Bp2
(k2) are di�eormorphi toa hemisphere of S2 ⊂ E3, Bp1

(k1) ∪ Bp2
(k2) = M is di�eomorphi to theunit sphere S2 or to a revolution surfae ϕ of E3.We an show a little more. Let ψ be a di�eomorphism from F 2 to arevolution surfae ϕ of E3. We an hoose ϕ in suh a way that the imagesof the geodesi irles Sp1

(r), r ≤ k1 and Sp2
(r), r ≤ k2 are parallels of ϕ,and the images of the geodesis gα, α ∈ A from p1 to p2 are meridians of

ϕ. The radii of these parallels an be so that the Eulidean ar length ofthe parallels is equal to the Finsler ar length of the orresponding geodesiirle. Let S and S̃ be two geodesi irles from the family {Sp1
(r), r ≤

k1; Sp2
(r), r < k2}. S and S̃ ut out a segment sα from eah gα. TheFinsler ar length of sα is independent of α, for any two di�erent sα aretaken into eah other by a motion ϕt. Therefore ϕ an be hosen suh thatthe Finsler ar length of the geodesis gα equals the Eulidean ar lengthof the orresponding meridian of ϕ. Thus ψ : F 2 → ϕ ⊂ E3 satis�es theannouned properties.There are several similar results. L. Green [6℄, M. Berger and J. L.Kazdan [7℄ and C. T. Yang [8℄ showed that if in a Riemannian spae V n =

(M,g) the ut lous of any point p ∈M onsists of a single other point (thesemanifolds are alled �Wiedersehen" manifolds) then this V n is isometrito the Eulidean sphere Sn (see also J. L. Kazdan [9℄℄). In our ase theut lous of p1 is p2. So this property is ful�lled for one pair of points36



only, but we have another severe ondition, the existene of the motions
ϕt. In fat our result, whih onerns a Finsler spae is weaker. F 2 is onlydi�eomorphi to ϕ, and isometry holds only on the parallels and on themeridians of ϕ.In ase of an n-dimensional Finsler spae Fn the points p1 and p2 ofthe assumption a) must be replaed by n points p1, p2, . . . , pn in generalposition, having similar properties as p1, p2, or in d) ϕt must be replaedby an n−1 parameter ontinuous group of motions ϕt1...tn−1

. In these asesthe proof is a little longer.There are many interesting results on isometries of Finsler spaes, suhas in [10℄ by S. Deng and Z Hou, or in [11℄ by L. Kozma and P. Radu. Imention here extra a result of S. Deng [12℄. He showed that if the onnetedsets Vi ⊂M of a Finsler spae Fn = (M,F) onsist of the zeros of a Killingvetor �eld ξ, then Vi are totally geodesi submanifolds of Fn. This anbe related to the a�ne equivalene of the indiatries onsidered in ourtalk. If in a Finsler spae Fn = (M,F) no indiatrix I(p), p ∈ M is a�neequivalent to an I(p1), then p1 must be a zero of any Killing vetor �eld
ξ. Thus if pβ ∈ M , β ∈ A are suh points as p1, and {pβ} = V is asubmanifold, then this V is totally geodesi in Fn. Also the other resultsof Deng hold on suh submanifolds V = {pβ}.Referenes[1℄ D. Bao, S. S. Chern and Z. Shen, An Introdution to Riemann-FinslerGeometry, (Springer, New York, 2000).[2℄ L. M. Blumenthal, Theory and Appliation of Distane Geometry,(Clarendon Press, Oxford, 1953).[3℄ H. Busemann and W. Mayer, On the foundation of alulus of varia-tion, Trans. AMS. 49, 173 (1948).[4℄ L. Tamássy, Relation between metri spaes and Finsler spaes, Di�.Geom. Appl. pp. 18 (to apear in 2008). 37



[5℄ L. Tamássy, Finsler geometry in the tangent bundle, Advaned Studiesin Pure Math. (Japan) 48, Finsler Geometry, Sapporo 2005, 168�194.[6℄ L. W. Green, Auf Wiedersehens�ähen, Ann. of Math. 78, 289 (1963).[7℄ M. Berger and J. L. Kazdan, A Strum-Liouville inequality with ap-pliation to an isoperimetri inequality for volume in terms of inje-tivity radius, and to wiedersenehen manifolds, General inequalities 2.Birkhäuser , 367 (1980).[8℄ C. T. Yang, Odd-dimensional wiedersehen manifolds are spheres, J.Di�. Geom. 15, 91 (1980).[9℄ J. L. Kazdan, An isoperimetri inequality and wiedersehen manifolds,Seminar on Di�. Geom. Ed. by S. T. Yau, Annals of Math. Studies ,102 (1982).[10℄ S. Deng and Z. Hou, The group of isometries of a Finsler spae, Pai�J. Math. 207, 149 (2002).[11℄ L. Kozma and P. I. Radu, Weinstein's theorem for Finsler manifolds,J. Math. Kyoto Univ. 42, 377 (2006).[12℄ S. Deng, Fixed paints of isometries of a Finsler spae, Publ. Math.Debreen 72, 469 (2008).
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ACTA PHYSICA DEBRECINA XLII, 39 (2008)METRIZATION OF LINEAR CONNECTIONS, HOLONOMYGROUPS AND HOLONOMY ALGEBRASA. VanºurováFa. Si., Dept. Algebra and Geometry, Palaký University,Tomkova 40, 779 00 Olomou, Czeh Republi,alena.vanzurova�upol.zAbstratMetrization problem means: given a manifold endowed witha (symmetri) linear onnetion, deide whether the onnetionarises from some metri tensor as its Levi-Civita onnetion.Compatibility onditions for a metri are given by a system ofordinary di�erential equations, and the lassial approah is toanalyze the system of integrability onditions. Let us presentmore geometri solution proedure using parallel transport, em-phasize the role of holonomy groups and holonomy algebras.The problem is of some interest in itself (e.g. [6℄; S.B. Edgar, J.Math. Phys. 33, 3716 (1992); [7℄, [8℄, [9℄); we propose one ap-pliation: for a partiular type of seond order system of ODEs,oe�ients give rise to a onnetion; provided it is metrizable,omponents of the ompatible metri play the role of variationalmultipliers for the Inverse Problem and yield (one of) the La-grangian(s).
Supported by grant MSM 6198959214 of the Ministery of Eduation.



I. Metrization as a kind of inverse problemLet (M,g) be a pseudo-Riemannian manifold∗. A (pseudo-)Riemannianmetri g on M determines uniquely a anonial linear (= a�ne) onnetion
∇ on M , alled the Levi-Civita onnetion of (M,g), the haraterizingproperties of whih are T ≡ 0 (Γi

jk = Γi
kj) and ∇g = 0. The inverse prob-lem alled Metrization Problem (MP) is: Given a manifold (M,∇) with alinear symmetri onnetion, is there a metri on M the Levi-Civita on-netion of whih is just ∇? It belongs probably to the oldest and in a waydi�ult problems of lassial di�erential geometry. A similar problem anbe posed for a linear onnetion in an arbitrary vetor bundle, partiularlyin the tangent bundle of a manifold, or in Finsler spaes ([1℄, L. Tamassy,Balkan J. of Geom. and Appl. 1 (1996) et). Related problems are: If thereare more suh metris, how muh may they di�er from eah other? (The an-swer is losely related to the onept of the de Rham -Wu deomposition.)Given (M,g), �nd all metris with the same Levi-Civita onnetion. Allmultiples rg, r ∈ R, have this property, and if there are no others we speakabout uniqueness of the metri. But if the manifold admits the de Rham -Wu deomposition there might be the so-alled alternative metris, [8℄. MPis related to the theory of geodesi mappings†. An equivalent formulationof MP is: given (M,∇), �nd all possible geodesi mappings f :M→M̄ of

(M,∇) onto (pseudo-)Riemannian manifolds (M̄ , ḡ). Hene tensor methodsdeveloped‡ in the theory of geodesi mappings may be used. Our problemis also related to the Calulus of Variations. The so-alled Inverse Problem(IP) of the alulus of variations (still open) is: if a system ẍi = f i(t, xk, ẋk)of SODEs§ is given, deide whether it represents Euler-Lagrange equationsof some Lagrangian, i.e. �nd¶ Lagrangian funtions L(t, xk, ẋk) and a multi-plier matrix gij(t, x
k, ẋk) suh that gij(ẍ

i−f i) ≡ d
dt

(
∂L
∂ẋi

)
− ∂L

∂xi . Complete so-
∗M is an n-dimensional manifold of a �su�iently high" lass of di�erentiability, and

g is a non-degenerate metri, that is, a symmetri type (0, 2) tensor �eld on M with loalomponens gij satisfying det(gij) 6= 0, not neessarily positive de�nite.
†Reall that if we are given two manifolds with linear onnetion (M,∇) and (M̄, ∇̄),respetively, a (smooth or Cr-di�erentiable, r ≥ 1) bijetion f : M → M̄ is alled ageodesi mapping if any (anonially parametrized) geodesi γ of (M,∇) is mapped ontoan unparametrized (= arbitrarily parametrized) geodesi γ̄ of (M̄, ∇̄).
‡N.S. Sinyukov, Geodesi Mappings of Riemannian Spaes, Mosow, 1979.
§seond order di�erential equations; i, k = 1, . . . , n.
¶su�iently di�erentiable40



lution is known only for n = 2 (J. Douglass, 1941). Hene MP an be viewedas a partiular ase‖ of IP, where f i = −Γi
jk(x)ẋ

j ẋk, when the multipliersare time- and veloities-independent; then kineti energy L = 1
2gij(x)ẋ

iẋj(omming from MP) is one of the Lagrangians solving IP (there might moregeneral ones). Also the metri uniqueness problem was related to the ge-neral inverse problem of Lagrangian dynamis∗∗. During the time, variousmethods used for solving MP (eventually under some onstraints) were sug-gested and developed by various authors, from most straightforward ones,[2℄, based on analysis of integrability onditions for ODEs, to more sophis-tiated ones, [6℄, [4℄, [5℄, [11℄ and the referenes therein, based either ontensor methods, or employing parallel transport indued by onnetion, ortheir ombinations, et. Low-dimensional ases have been disussed sepa-rately e.g. in [7℄, [10℄ (n = 2), [9℄ (n = 3). Positive de�nite metris for asymmetri onnetion with regular urvature were onstruted in [4℄. Exis-tene of positive de�nite metris for an analyti onnetion on an analytimanifold is deided in [5℄ by means of an algorithm based on propertiesof de Rham deomposition and the fat that in the analyti ase, the Lie�holonomy" algebra is spanned by the urvature tensor and its ovariantderivatives (Ambrose-Singer Theorem); in the a�rmative ase, all ompat-ible Riemannian metris are e�etively onstruted, [11℄.II. Classial approah - di�erential equationsThe (pseudo-)Riemannian onnetion of (M,g) is uniquely determinedby zero torsion and the ondition ∇g = 0, telling in an elegant way thatthe parallel transport indued by the onnetion should preserve the salarprudut. If (M,∇) is given, ∇g = 0 represents the system of ODEs forunknowns gij

∂gij

∂xk
− gsjΓ

s
ik − gisΓ

s
jk = 0 (1)whih should be disussed under the assumption det(gij) 6= 0. In simpleases, the system (1) an be solved diretly. Note that a solution of (1) mightnot be a metri, if non-degeneray ondition det gij 6= 0 is not satis�ed; the

‖In fat, provided det gij 6= 0, the system ẍi + Γi
jk(x)ẋjẋk = 0 is equivalent to thesystem gmi(ẍ

i + Γi
jk(x)ẋjẋk) = 0, i, m = 1, . . . , n.

∗∗G. Marmo, C. Rubano, G. Thompson, Class. Quantum Grav.7, 2155 (1990). 41



solution depends on n. The integrability onditions for (1) (neessary formetrizability) read, in oordinate-free form,
g(∇rR(X,Y ;Z1; . . . ;Zr)(Z),W ) + g(Z,∇rR(X,Y ;Z1; . . . ;Zr)(W )) = 0for all X,Y,Z,W,Z1, . . . , Zr ∈ X (M), 0 ≤ r < ∞, whih is in fat anin�nite homogeneous system of linear equations in gij with oe�ients beingfuntions in Γ′s and their partial derivatives. For a metrizable onnetion,the above linear onditions must stabilize for some positive integer r = N ,i.e. from the (N+1)th stage, the onditions must be algebrai onsequenesof the previous ones. We get no onditions for a �at onnetion (R = 0),whih is always metrizable (the system has 1

2n(n+1)-parametrial solution).For n = 2, R 6= 0 (regular), the answer is relatively easy: Loal nees-sary and su�ient ondition for a nowhere-�at symmetri onnetion ∇ on
M2 be metrizable are: the Rii tensor Ri of ∇ should be non-degenerate(detRij 6= 0), symmetri (Rij = Rji) and reurrent, ∇Ri = ω ⊗ Riwhere ω is some one-form. If ω is exat, ω = df for some funtion f , thenompatible metris exist globally, one of the representants being g = e−f Ri,the other di�er upto a salar multiple (i.e. g is �unique"). If M2 is simplyonneted, a ompatible g exists globally.If both kinds of points, �at (R(x) = 0) and non-�at (R(x) 6= 0) arepresent, we may expet ompliations. For any n ≥ 2, there exist non-metrizable n-dimensional a�ne spaes. A lassial algorithm, whih bringsa presriptive solution (not in a losed form), was known already sine 1920',[2℄. The result an be formulated as follows (a free paraphrase):Theorem 4. A manifold (M,∇) with a linear onnetion ∇ and the ur-vature tensor R is metrizable if and only if the homogeneous equations

gsjR
s
ikℓ + gisR

s
jkℓ = 0 (2)are �algebraially onsistent" (more preisely, the system has at least one-dimensional solution spae of non-degenerate metris), and any solution of(2) satis�es

gsjR
s
ikℓ;m + gisR

s
jkℓ;m = 0, i, j, k, ℓ,m ∈ {1, . . . , n}. (3)The proof is instrutive, yields a method for �nding ompatible metrisusing several steps from the proof (and an be implemented to a om-puter). Suppose that (2) is solvable, and that any solution of (2) satis�es42



(3). Choose a basis 〈G(1), . . . , G(p)〉 of the solution spae. Any solution g anbe now written in the form g =
∑p

α=1 ϕ
(α)G(α) with oe�ients ϕ(α) whihare at most funtions of oordinates (xi) onM . Due to (3), ovariant deriva-tives G(α)

sj;m satisfy (2), too, hene G(α)
ij;k =

∑p
β=1 µ

(αβ)
k G

(β)
ij . Sine seondovariant derivatives satisfy the Rii indentity we get G(α)
ij;kℓ − G

(α)
ij;ℓk = 0,and onsequently

∂µ
(αβ)
k

∂xℓ
− ∂µ

(αβ)
ℓ

∂xk
+

p∑

γ=1

(
µ

(αγ)
k µ

(γβ)
ℓ − µ

(αγ)
ℓ µ

(γβ)
k

)
= 0. (4)If ∇g = 0 should hold, ϕ's must satisfy

∂ϕ(α)

∂xk
+

p∑

β=1

ϕ(β)µ
(αβ)
k = 0, α = 1, . . . , p. (5)But aording to (4), the system (5) is ompletely integrable, hene thereexist funtions ϕ(1), . . . , ϕ(p) whih determine a ompatible (pseudo-)Rie-mannian metri. Let us demonstrate the method presented above on asimple example.Example 1. The system ẍ+ẋ2 ·x/(x2 + 1) = 0, ÿ+ẏ2 ·y/(y2 + 1) = 0 givesrise to a symmetri linear onnetion ∇ on R2 with non-zero omponents

Γ1
11 = x/(x2 + 1), Γ2

22 = y/(y2 + 1); R ≡ 0 (the onnetion is �at henemetrizable). The solution spae is a span of independent (global analyti)type (0, 2) symmetri tensor �elds G(1) = dx⊗ dx, G(2) = dy ⊗ dy, G(3) =
dx ⊗ dy + dy ⊗ dx. Their ovariant derivatives must be ombinations ofthe generators, G(1)

ij;1 = − 2x
x2+1

G
(1)
ij , G(1)

ij;2 = G
(2)
ij;1 = 0, G(2)

ij;1 = − 2y
y2+1

G
(2)
ij ,

G
(3)
ij;1 = − x

x2+1
G

(3)
ij , G(3)

ij;2 = − y
y2+1

G
(3)
ij ; we have µ(11)

1 = − 2x
x2+1

, µ(22)
1 =

− 2y
y2+1

, µ(33)
1 = − x

x2+1
, µ(33)

2 = − y
y2+1

, zero otherwise. All ompatiblemetris are g = ϕ(1)G(1) + ϕ(2)G(2) + ϕ(3)G(3) where funtions ϕ′s solve(5); ϕ(1) = − x
x2+1

et. All ompatible metris g are of the form g =

ϕ(1)G(1) + ϕ(2)G(2) + ϕ(3)G(3). We get
(gij) =

(
2b2(x

2 + 1) b1
√
x2 + 1

√
y2 + 1

b1
√
x2 + 1

√
y2 + 1 2b3(y

2 + 1)

) 43



with parameters b1, b2, b3 ∈ R. In tensor notation, g = 2b2(x
2 + 1)x. ⊗ x. +

b1
√
x2 + 1

√
y2 + 1x. ⊗ y. + b1

√
x2 + 1

√
y2 + 1y. ⊗ x. + 2b3(y

2 + 1)y. ⊗ y. , orlassially, ds2 = 2b2(x
2+1)dx2+2b1

√
x2 + 1

√
y2 + 1dxdy+2b3(y

2+1)dy2.For admissible Riemannian metris, bi should be hosen so that g be positivede�nite. III. Geometri approah - Parallel TransportThe �lassial" method mentioned above works, but gives little insight intoa geometri meaning of the integrability onditions and their onsequenesfor the given onnetion. To make things more transparent and geometrilet us realize what follows. The holonomy of (M,∇) at x ∈ M around apieewise-di�erentiable loop µ (i.e. losed urve with x as starting point aswell as endpoint; the lass C1 is su�ient, [3, I, p. 85, Th. 7.2.℄; loops aretaken with usual omposition, [3℄) is an automorphism τµ of the tangentspae TxM whih is given by parallel propagation of vetors along the givenloop. Due to properties of the parallel transport along urves (τµ−1 = τ−1
µ ,

τµ ◦ τη = τηµ), all holonomies at x together with omposition form theso-alled (full linear) holonomy group Hol∇x of (M,∇) at x, whih is a Lietransformation group; using loal oordinates about x, it identi�es with asubgroup of GL(n,R). Its omponent of unit is the restrited holonomygroup Hol0x; it is obtained by a similar onstrution if we take loops homo-topi to zero only; h(x) = Hol∇x denotes a ommon Lie algebra. Aordingto the Ambrose-Singer Theorem, [3℄, if the onnetion is smooth (C∞), theso-alled in�nitesimal holonomy algebra h′(x) ⊂ h(x) is a span of the lin-ear maps ∇kR(X,Y ;Z1, . . . , Zk), X,Y,Z1,. . . ,Zk from TxM , 0 ≤ k < ∞.The above inlusion might be sharp, but in partiular ases, the Lie alge-bras oinide. For a real analyti onnetion on a real analyti manifold,
h′(x) = h(x) holds, hene h(x) an be alulated from the urvature tensorand its ovariant derivatives, and Hol0x an be retrieved. If the underlyingmanifold M is onneted, holonomy groups of the onnetion in di�erentpoints are isomorphi, Hol∇x ≃ Hol∇y , x, y ∈ M , so let us write Hol∇. If Mis onneted, simply onneted then Hol∇ is a onneted Lie subgroup ofthe automorphism transformation group GL(TxM) of the �bre; hene it isuniquely determined by its Lie algebra h = Hol∇.If the onnetion is metrizable then the parallel transport preserves salar44



produt, holonomies are isometries in eah tangent spae; the holonomygroup preserves the metri tensor, and identi�es with a subgroup of O(p, q),
p+q = n, aording to the signature of g; Hol0 identi�es with a subgroup ofthe speial orthogonal group SO(p, q). The idea of making use of holomomygroups for solution of metrization problem for linear onnetions was dis-ussed e.g. in [6℄, [1℄. The holonomy group �deides" whether a onnetion ismetrizable or not: obviously, a onnetion an only be a pseudo-Riemannianonnetion of a metri g, if the (restrited) holonomy group is a subgroup ofthe (speial) generalized orthogonal group orresponding to the signature.Another formulation: (Mn,∇) is metrizable if and only if the bundle of allframes is reduible to the orthogonal group O(p, q). In a way, the onditionis also su�ient; if Hol0x is a subgroup of the speial orthogonal group ofthe �bre at one point then the ompatible metri an be found:Theorem 5. ([1, Th. 3.1., p. 282℄, a free paraphrase) Let (M,∇) be ana�ne manifold with M onneted. Let there be a point x0 ∈ M suh thatthe (restrited) holonomy group is ontained in the (speial) generalized or-thogonal group of Tx0

. Then ∇ is metrizable.Proof. Fixing a hart around x0 ∈ M , we may assume that the tangentspae Tx0
M is isomorphi to (Rn, 〈, 〉) where 〈 , 〉 denotes the standard salarprodut of the orresponding signature. Sine M is onneted, any point

x ∈M an be onneted with x0 by a urve inM , and the holonomy groups
Hol∇x , Hol∇x0

are isomorphi via parallel transport. We an use parallelpropagation to pull the salar produt bak.IV. Riemannian metrisFor Riemannian metris the following tells that no ambiguity arises inthe regular ase:Theorem 6. [4, p. 133℄ LetM be a onneted manifold with dimM ≥ 3. Let
R be the urvature of (M,g), where g is a Riemannian metri onM , and letthe subset D of all regular points of R be dense in M . Then g is determinedon D by its urvature tensor R uniquely upto saling by onstants.If (M,g) is a (pseudo-)Riemannian manifold with urvature R then atany point x ∈ M , we have a linear map Rx : Λ2(TxM) → End (TxM) suh45



that if w =
∑

i ciXi ∧ Yi ∈ Λ2(TxM) then Rx(w)(Z) =
∑

i ciR(Xi, Yi)Zfor Z ∈ TxM . Let us generalize properties of the Riemannian urvature Ras follows. Let G be a positive de�nite symmetri bilinear form in TxM .A linear map ̺ : Λ2(TxM) → End (TxM) will be alled a urvature stru-ture with respet to G if the following holds: (i) G(̺(X ∧ Y )(Z),W ) +
G(Z, ̺(X ∧ Y )W ) = 0; (ii) G(̺(X ∧ Y )Z,W ) = G(̺(Z ∧W )X,Y ) for any
X,Y,Z,W ∈ TxM . In (TxM,g), ̺ = Rx is a natural example. A linearmap ̺ : Λ2(TxM) → End (TxM) will be alled regular if ̺(w) 6= 0 whenever
w 6= 0, and singular otherwise. Partiularly, the subset of all regular pointsof the Riemannian urvature R of (M,g) is open in M .Lemma 1. Let G be a positive de�nite symmetri bilinear form on TxM ,and ̺ its urvature struture. Then for any G-orthogonal pair X,Y ∈ TxM ,
X 6= 0, there is a bivetor w ∈ Λ2(TxM) suh that ̺(w)X = Y . If thereexists a regular urvature struture ̺ with respet to G then H̺ is one-dimensional.Theorem 7. Let (M,∇) be an a�ne manifold with a torsion-free linearonnetion ∇, let the urvature R be regular on M , and let H0(M) =⋃

x∈M HRx be the bundle orresponding to the urvature tensor. Then ∇is a Riemannian onnetion of a positive-de�nite metri g if and only if thefollowing onditions hold:(1) H0(M) is the line bundle (i.e. all �bres are one-dimensional),(2) the bundle H0(M) is metri in the Riemannian sense (that is, there isa positive de�nite symmetri biliear form (on TxM) in eah H0(x)),(3) any Riemannian metri hM → H0(M) is reurrent, ∇h = ω ⊗ h, andthe 1-form ω is exat on M , i.e. ω = df for a funtion f .Proof. If h : M → H0(M) is a Riemannian metri suh that ∇h =
−2df ⊗ h then we easily hek that g = e2fh is a metri ompatible with
∇ sine ∇g = 0 holds. To prove that the onditions are neessary is a bitmore ompliated, [4℄.As already mentioned, in general we an not alulate the holonomygroup from the urvature tensor (and its ovariant derivatives), it might beeven di�ult to �nd the holonomy group at all, as well as a quadrati forminvariant under it. The real analyti ase on a onneted simply onnetedmanifold is more favourable, [5℄. To translate invariane of a symmetri46



bilinear (quadrati) form relative to holonomy group into the language ofholonomy Lie algebra we use the Lemma telling how the assumptions onHol∇ an be reformulated as assumptions on h:Lemma 2. Let (M,∇) be a simply onneted smooth manifold with ∇ tor-sion-free, x ∈M a �xed point. Given a symmetri bilinear form G on TxMthen the following holds: G is invariant by Hol∇ if and only if
G(AX,Y ) +G(X,AY ) = 0 for all A ∈ h(x), X,Y ∈ TxM. (6)Proof. We hek here that elements of the holonomy algebra satisfy (6).The other impliation also holds but the proof is not so trivial. If A ∈

h(x) onsider the orresponding one-parameter subgroup sA : R → Hol∇,
t 7→ sA(t) uniquely determined by the initial data sA(0) = 1, (sA)′(0) :=
( d

dt)t=0 s
A(t) = A. LetG be invariant under the holonomy group, G(τX, τY )= G(X,Y ) for any τ ∈ Hol∇. Then we get G(sA(t)X, sA(t)Y ) = G(X,Y )for X,Y ∈ TxM . Di�erentiating with respet to t, making use of the for-mula for salar produt, and onsidering t→ 0 we get (6),
G((sA)′(0)(X), sA(0)(Y )) +G(sA(0)(X), (sA)′(0)(Y )) = 0.The above gives us a quite natural motivation for introduing the vetorsubspae H(x) = {Gx ∈ S2(T ∗

xM) |Gx(AX,Y ) + Gx(X,AY ) = 0, A ∈
h(x) for X,Y ∈ TxM}, x ∈M .Theorem 8. Let (M,∇) be onneted and let there exist Gx0

∈ H(x0)(i.e. Gx0
is invariant under Hol∇). Then ∇ is the Levi-Civita onnetionof a metri on M whih has the same signature as Gx0

.If ∇ is Riemannian (omes from a positive de�nite metri) then for ev-ery x ∈ M , H(x) inludes a positive de�nite form; under additional as-sumptions, the onverse also holds: ([5, Prop. 1℄, [6℄) Given a onnetedsimply onneted (M,∇) and x ∈ M , let there be a positive de�nite form
Gx0

∈ H(x). Then ∇ is Riemannian.It might be di�ult to hek whether there is a positive de�nite form in
H(x); no diret deision algorithm based on linear algebra only is available.An e�etive algorithm (deiding Riemannian metrizability in real analyti47



ase) using geometri properties of the Levi-Civita onetion and the deRham deomposition of the tangent spae TxM of a Riemannian manifold
(M,g) was developed [5℄, [11℄, together with an e�etive presription howto onstrut all ompatible Riemannian metris. Note that for inde�nitemetris, the situation is more ompliated.Referenes[1℄ M. Anastasiei, Publ. Math. Debreen 62, 277 (2003).[2℄ L.P. Eisenhart, O. Veblen, Pro. London Math. So. 8, 19 (1922).[3℄ S. Kobayashi, K. Nomizu, Foundations of Di�erential Geometry I, II(Wiley-Inters. Publ., New York, 1991).[4℄ O. Kowalski, Math. Z. 125, 129 (1972).[5℄ O. Kowalski, Note di Matematia 8, 1 (1988).[6℄ B.G. Shmidt, Commun. Math. Phys. 29, 55 (1973).[7℄ G. Thompson, Chinese J. Phys. 19, 529 (1991).[8℄ G. Thompson, Class. Quantum Grav. 10, 2035 (1993).[9℄ G. Thompson, J. Geom. Phys. 19, 1 (1996).[10℄ A. Vanºurová, Pro. Conf. Aplimat Part II , 325 (2007).[11℄ A. Vanºurová, Arh. Math. Brno (To appear) , (2008).
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ACTA PHYSICA DEBRECINA XLII, 49 (2008)GROUPS OF BASIC AUTOMORPHISMS OF FOLIATIONSWITH TRANSVERSE RIGID GEOMETRIESN. I. ZhukovaDepartment of Mehanis and Mathematis, Nizhny Novgorod State University,603950, Nizhny Novgorod, Gagarina ave., 23, korp. 6, RussiaAbstratWe introdued the notion of rigid geometry. Foliations (M,F )with transverse rigid geometries were investigated. An invariant
g0 of (M,F ), where g0 is a Lie algebra, was onstruted. Weproved that g0 = 0 is a su�ient ondition for the unique ex-istene of a Lie group struture in the full basi automorphismgroup of this foliation. Some estimates of the dimension of thisgroup depending on the transverse geometry were founded. Ex-amples, illustrating the main results, are onstruted.I. IntrodutionOne of the basi objets assoiated with a geometri struture on asmooth manifold is its automorphism group. Among the entral problems,there is the question whether the automorphism group an be endowed witha (�nite-dimensional) Lie group struture [1℄.In the theory of foliations with transverse geometries, automorphisms areunderstood as di�eomorphisms mapping leaves onto leaves and preservingtransverse geometries. The group of all automorphisms of a foliation (M,F )with transverse geometry is denoted by A(M,F ). Let AL(M,F ) be thenormal subgroup of A(M,F ) formed by automorphisms mapping eah leafonto itself. The quotient group A(M,F )/AL(M,F ) is alled the full basiautomorphism group and is denoted by AB(M,F ).



In the investigation of foliations (M,F ) with transverse geometry it isnaturally to ask the above problem about the existene of a Lie groupstruture for the full group AB(M,F ) of basi automorphisms of (M,F ).Leslie [2℄ was �rst who solved a similar problem for smooth foliationson ompat manifolds. For foliations with omplete transversal projetablea�ne onnetion this problem was studied by Belko [3℄.The leaf spaeM/F of the foliation is a di�eologial spae, and the group
AB(M,F ) an be onsidered as a subgroup of the di�eologial Lie group
Diff(M/F ). For Lie foliations with dense leaves on a ompat manifold, thedi�eologial Lie groups Diff(M/F ) are omputed by Hetor and Maias-Virgos [4℄.In this work we introdue a notion of a rigid struture. Cartan geomet-ries [1℄ and rigid geometri strutures in the sense of Gromov [5℄ are rigidstrutures in our sense. A manifold equipped with a rigid struture is alleda rigid geometry.We investigate foliations admitting rigid geometries as transverse stru	tu-res and all them by foliations with transverse rigid geometries (TRG).Cartan foliations [6, 7℄, foliations admitting a transverse systems of di�e-rential equations in the sense of Wolak [8℄ and G-foliations, where G is aLie group of �nite type, are foliations with TRG. In partiular, Rieman-nian [9℄, pseudo-Riemannian, Lorenz, projetive and onformal foliationsbelong to the lass of foliations under investigation. The ategory of folia-tions with TRG is denoted by FTRG. The group AB(M,F ) is an invariantof (M,F ) in the ategory FTRG.We always assume that the foliations underonsideration are omplete and transverse rigid geometries are e�etive.We onstruted a foliated bundle for a foliation (M,F ) with TRG andredued problems on the automorphism groups and the basi automorphismgroups of (M,F ) to the analogous problems for e-foliations (Theorems 3and 6).For any foliation (M,F ) with TRG we de�ned the struture Lie algebra
g0(M,F ) and showed that g0(M,F ) is an invariant of this foliation in theategory FTRG (Proposition 3). One of the main results of this work is thetheorem asserting that if g0(M,F ) is zero, then there exists a unique Lie50



group struture on AB(M,F ). We obtained some estimates of the dimen-sions of these Lie groups depending on the transverse geometries (Theo-rem 7). We gave di�erent interpretations of holonomy groups of foliationswith TRG (Theorem 5) and found some other su�ient onditions for theexistene of a Lie group struture on AB(M,F ) (Theorem 8).Reall that a foliation is said to be proper if eah its leaf is an embeddedsubmanifold of the foliated manifold. In partiular, the struture Lie algebraof any proper foliation with TRG is zero, and AB(M,F ) is a Lie group(Corollary 1).Examples of omputations of the basi automorphism group of a foliationwith TRG were onstruted. Examples 1 and 2 also show that the group
AB(M,F ) depends on the transverse rigid geometry of the foliation (M,F ).II. Rigid geometriesParallelizable manifolds Reall that a manifold admitted an e-strutureis alled parallelizable. In other words, a parallelizable manifold is a pair
(P,ω), where P is a smooth manifold and ω is a smooth non-degenerate
Rm-valued 1-form ω on P, i. e., ωu : TuP → Rm is an isomorphism of thevetor spaes for eah u ∈ P. Here m = dimP.Rigid strutures Denote by P (N,H) a prinipal H-bundle with the pro-jetion p : P → N . Suppose that the ation of H on P is a right ation and
Ra is the di�eomorphism of P , orresponding to an element a ∈ H.Two prinipal bundles P (N,H) and P̃ (Ñ , H̃) are alled isomorphi if
H = H̃ and there exists a di�eomorphism Γ: P → P̃ suh that Γ ◦ Ra =
Ra ◦ Γ, ∀a ∈ H.De�nition 1. Let P (N,H) be a prinipal H-bundle and (P,ω) be a par-allelizable manifold satisfying the following ondition:(S) there is an inlusion h ⊂ Rm of the vetor spae of the Lie algebra
h of the Lie group H into vetor spae Rm suh that ω(A∗) = A, ∀A ∈ h,where A∗ is the fundamental vetor �eld on P orresponding to A.Then ξ = (P (N,H), ω) is alled a rigid struture on the manifold N. Apair (N, ξ) is alled a rigid geometry. 51



De�nition 2. Let ξ = (P (N,H), ω) and ξ̃ = (P̃ (Ñ , H̃), ω̃) be two rigidstrutures. An isomorphism Γ: P → P̃ of the prinipal bundles P (N,H)and P̃ (Ñ , H̃) satisfying the equality Γ∗ω̃ = ω is alled an isomorphism ofthe rigid strutures ξ and ξ̃. Any isomorphism Γ of rigid strutures ξ and
ξ̃ de�nes a map γ : N → Ñ suh that p ◦ Γ = γ ◦ p, and γ is a di�eomor-phism from N to Ñ . The projetion γ is alled an isomorphism of the rigidgeometries (N, ξ) and (Ñ , ξ̃).Indued rigid geometries Let ξ = (P (N,H), ω) be a rigid strutureon a manifold N with the projetion p : P → N. Let V be an arbitraryopen subset of the manifold N, let PV := p−1(V ) and ωV := ω|PV

. Then
ξV := (PV (V,H), ωV ) is also a rigid struture.De�nition 3. The pair (V, ξV ) de�ned above is alled an indued rigidgeometry on the open subset V of N.E�etiveness of rigid geometries Let A(ξ) be the group of all auto-morphisms of a rigid struture ξ = (P (N,H), ω). It is a Lie group as alosed subgroup of the group A(P,ω) of all automorphism of a parallelizablemanifold (P,ω). Denote by A(N, ξ) the group of all automorphisms of thegeometry (N, ξ), i. e., A(N, ξ) := {γ ∈ Diff(N) | ∃Γ ∈ A(ξ) : p ◦Γ = γ ◦p}.Consider the natural group epimorphism χ : A(ξ) → A(N, ξ) : Γ 7→ γ, where
γ is the projetion of Γ with respet to p : P → N.De�nition 4. Let ξ = (P (N,H), ω) be a rigid struture on a manifold Nwith the projetion p : P → N. The group Gauge(ξ) := {Γ ∈ A(ξ) | p ◦ Γ =
p} is alled a group of gauge transformations of the rigid struture ξ.Remark that Gauge(ξ) is a losed normal Lie subgroup of the Lie group
A(ξ), beause it is the kernel of the group epimorphism χ : A(ξ) → A(N, ξ).De�nition 5. A rigid struture ξ = (P (N,H), ω) is alled e�etive if for anarbitrary open subset V in N the indued rigid struture
ξV = (PV (V,H), ωV ) has the trivial group of gauge transformations, i. e.,
Gauge(ξV ) = {idPV

}. A rigid geometry (N, ξ) is said to be e�etive if ξ isan e�etive struture.Pseudogroup of loal automorphisms Let (N, ξ) be a rigid geometry.For arbitrary open subsets V, V ′ ⊂ N an isomorphism V → V ′ of the52



indued rigid geometries (V, ξV ) and (V ′, ξV ′) is alled a loal automorphismof (N, ξ). The familyH of all loal automorphisms of a rigid geometry (N, ξ)forms a pseudogroup of loal automorphisms. Denote it by H = H(N, ξ).Reall that a pseudogroup H of loal di�eomorphisms of manifold N isalled quasi-analyti if the existene of an open subset V ⊂ N and anelement γ ∈ H suh that γ|V = idV implies that γ|D(γ) = idD(γ) in theentire (onneted) domain D(γ) on whih γ is de�ned.Proposition 1. The pseudogroup H = H(N, ξ) of all loal automorphismsof an e�etive rigid geometry (N, ξ) is quasi-analyti.III. Foliations with transverse rigid geometries. Foliated bundlesFoliations with transverse rigid geometries (TRG) A foliation (M,F )of odimension q on an n-manifoldM has a transverse rigid geometry (N, ξ),where N is a q-manifold, if (M,F ) is de�ned by a oyle η = {Ui, fi, {γij}}modeled on (N, ξ), i. e.,1) {Ui} is an open overing of M ;2) fi : Ui → N are submersions with onneted �bres;3) γij ◦ fj = fi on Ui ∩ Uj,with γij is a loal automorphism of (N, ξ). The topologial spae N is notassumed to be onneted.Without loss of generality, we will suppose that N = ∪i∈Jfi(Ui) and thefamily {(Ui, fi)} is maximal as it is generally used in manifold theory.De�nition 6. The rigid geometry (N, ξ) mentioned above is alled a trans-verse geometry of the foliation (M,F ). The oyle η modelled on (N, ξ) issaid to be an (N, ξ)-oyle.Assumptions In this work we will assume that eah rigid geometry ise�etive and all the foliations under onsideration are modeled on e�etiverigid geometries.Notations We denote by X(N) the Lie algebra of smooth vetor �elds ona manifold N. If Q is a smooth distribution on M, then XQ(M) := {X ∈53



X(M) | Xu ∈ Qu, ∀u ∈M}. If Q is an integrable distribution and de�nes afoliation F, where Q = TF, we also use notation XF (M) for XQ(M).Foliated bundles We onstruted a foliated bundle for a foliation with TRGand studied its properties.Theorem 1. Let (M,F ) be a foliation with a transverse rigid geometry
(N, ξ), where ξ = (P (N,H), ω). Then there exist a prinipal H-bundle
π : R → M, an H-invariant foliation (R,F) whose leaves are projetedby π onto the leaves of (M,F ) and an Rm-valued 1-form ω̃ on R, where
m = dimP, that satisfy the following onditions:(i) the map ω̃u : Tu(R) → Rm, ∀u ∈ R, is surjetive; moreover, ker ω̃u =
TuF ;(ii) there is an inlusion h ⊂ Rm of the vetor spae of the Lie algebra hof the Lie group H into Rm suh that ω̃(A∗) = A, ∀A ∈ h, where A∗ is thefundamental vetor �eld on R orresponding to A;(iii) the foliation (R,F) is an e-foliation;(iv) the restrition πL on an arbitrary leaf L of the foliation (R,F) is aregular overing map onto a leaf of (M,F ), and the subgroup H(L) := {a ∈
H | Ra(L) = L} of the Lie group H is the group of dek transformations.De�nition 7. A prinipal H-bundleR(M,H) with anH-invariant foliation
(R,F) satisfying the statement of Theorem 1 is alled a foliated bundle forthe foliation (M,F ) with transverse rigid geometry (N, ξ) and (R,F) isalled a lifted foliation.If H is disonneted, R may be also disonneted. In this ase all theonneted omponents of R are mutually di�eomorphi, and we will on-sider one of them. Thus, we assume that the spae of the foliated bundle
R is onneted.IV. Completeness and a struture Lie algebraof a foliation with TRGCompleteness of foliations with TRG Let (M,F ) be an arbitrarysmooth foliation on a manifoldM and TF be the distribution onM formed54



by the vetor spaes tangent to the leaves of the foliation F. The vetor quo-tient bundle TM/TF is alled the transverse vetor bundle of the foliation
(M,F ). Let us identify TM/TF with an arbitrary smooth distribution Mon M that is transverse to the foliation (M,F ), i. e., TM = TF ⊕ M.Let (M,F ) be a foliation with TRG and (R,F) be the lifted foliation.It is natural to identify the transverse vetor bundle TR/TF with a distri-bution M := π∗M on R, i. e., with a distribution de�ned by the equality
Mu := {Xu ∈ TuR | π∗Xu ∈ Mx}, where x = π(u) and u ∈ R.De�nition 8. A foliation (M,F ) with transverse rigid geometry is said tobe M-omplete if any vetor �eld X ∈ X

M
(R) suh that ω̃(X) = const isomplete. A foliation (M,F ) with TRG of arbitrary odimension q is saidto be omplete if there exists a smooth q-dimensional transverse distribution

M on M suh that (M,F ) is M-omplete.In other words, (M,F ) is an M-omplete foliation i� the lifted e-foliation
(R,F) is omplete with respet to the distribution M in the sense of Con-lon [10℄. Remark that omplete e-foliation in the sense of Conlon is alsoomplete in the sense of Molino [9℄.Proposition 2. If (M,F ) is an M-omplete foliation with TRG, then Mis an Ehresmann onnetion for this foliation in sense of Blumenthal andHebda [11℄.It is well known [10, 9℄ that for a omplete e-foliation (R,F) all leavesare mutually di�eomorphi.Struture Lie algebra We applied the relevant results of Molino [9℄ onomplete e-foliations and obtained the following theorem.Theorem 2. Let (M,F ) be a omplete foliation with TRG and (R,F) beits lifted e-foliation. Then:(i) the losure of the leaves of the foliation F are �bers of a ertain loallytrivial �bration πb : R →W ;(ii) the foliation (L,F|L) indued on the losure L is a Lie foliationwith dense leaves with the struture Lie algebra g0, that is the same forany L ∈ F . 55



De�nition 9. The struture Lie algebra g0 of the Lie foliation (L,F|L) isalled a struture Lie algebra of the omplete foliation (M,F ) and is denotedby g0 = g0(M,F ).If (M,F ) is a Riemannian foliation on a ompat manifold, this notionoinides with the notion of a struture Lie algebra in sense of Molino [9℄.V. Category of foliations with TRGCategory of foliations Denote by Fol the ategory of foliations, objetsof whih are foliations, morphisms of two arbitrary foliations (M,F ) and
(M ′, F ′) are smooth maps M →M ′ mapping leaves of the foliation (M,F )into leaves of the foliation (M ′, F ′); a omposition of morphisms oinideswith the omposition of maps.Category of foliations with TRG Let (M,F ) and (M ′, F ′) are foliationswith transverse rigid geometries (N, ξ) and (N ′, ξ′) de�ned by an (N, ξ)-oyle η = {Ui, fi, {γij}} and an (N ′, ξ′)-oyle η′ = {U ′

r, f
′
r, {γ′rs}}, re-spetively. Let f : M →M ′ be a morphism whih is a loal isomorphism inthe ategory Fol. Hene for any x ∈M and y := f(x) there exist neighbor-hoods Uk ∋ x and U ′

k ∋ y from η and η′ respetively and a di�eomorphism
λ : Vk → V ′

s , where Vk := fk(Uk) and V ′
s := f ′s(U

′
s), satisfying the relations

f(Uk) = U ′
s and λ ◦ fk = f ′s ◦ f |Uk

. We will say that f preserves transverserigid struture if the di�eomorphism λ : Vk → V ′
s is an isomorphism of theindued rigid geometries (Vk, ξVk

) and (V ′
s , ξ

′
V ′

s
).This notion is well de�ned, i. e., it does not depend of the hoie ofneighborhoods Uk and U ′

k from the oyles η and η′.By a TRG-morphism of two foliations (M,F ) and (M ′, F ′) with trans-verse rigid geometries we mean a morphism f : M → M ′ in the ategory
Fol whih preserves transverse rigid struture. The ategory FTRG objetsof whih are foliations with TRG, morphisms are TRG-morphisms, is alledthe ategory of foliations with transverse rigid geometries.The following statement shows that the struture Lie algebra g0(M,F )of a foliation (M,F ) with TRG is an invariant in the ategory FTRG.Proposition 3. Let (M,F ) and (M ′, F ′) be two foliations with TRG iso-56



morphi in the ategory FTRG. Then their struture Lie algebras g0(M,F )and g0(M
′, F ′) are isomorphi.Automorphism groups of foliations with TRG Let (M,F ) be a foli-ation with a �xed transverse rigid struture (N, ξ). Denote by A(M,F ) thegroup of all automorphisms of (M,F ) in the ategory FTRG. We say alsothat A(M,F ) is the full group of automorphisms.Theorem 3. Let (M,F ) be a foliation with TRG. Let (R,F) be the liftedfoliation and AH(R,F) = {f ∈ A(R,F) | f ◦Ra = Ra◦f, ∀a ∈ H}. Thenthe map µ : AH(R,F) → A(M,F ) : f̂ 7→ f, where f is the projetion of

f̂ ∈ AH(R,F) with respet to π : R →M, is a natural group isomorphism.VI. Di�erent interpretations of holonomy groupsEquivalent approahes to the notion of holonomy groups Denoteby Γ(L, x) the germ holonomy group of a leaf L of a smooth foliation (M,F )whih is generally used in foliation theory.Blumenthal and Hebda [11℄ introdued a notion of a holonomy group ofthe leaf L of the foliation (M,F ) with the Ehresmann onnetion M. Thisgroup is alled an M-holonomy group and is denoted by HM(L, x), x ∈ L[12℄. The following assertion is a diret onsequene of Theorem 7 provedby the author in [12℄.Theorem 4. Let (M,F ) be a foliation with an Ehresmann onnetion M.The natural group epimorphism δ : HM(L, x) → Γ(L, x) is an isomorphismif and only if the holonomy pseudogroup of the foliation (M,F ) is quasi-analyti.We applied Theorems 1 and 4 and proved the following statement aboutdi�erent interpretations of holonomy groups of omplete foliations withtransverse rigid geometries.Theorem 5. Let (M,F ) be an M-omplete foliation with TRG de�ned byan (N, ξ)-oyle {Ui, fi, {γij}}. Let L = L(x), x ∈ M, be an arbitrary leafof this foliation and L = L(u), u ∈ π−1(x), be the orresponding leaf of thelifted foliation (R,F). Then the germ holonomy group Γ(L, x) of the leaf Lis isomorphi to eah of the following �ve groups: 57



(i) the M-holonomy group HM(L, x);(ii) the group Hv formed by germs of loal di�eomorphisms belonging tothe isotropy subpseudogroup of the holonomy pseudogroup H of loal auto-morphisms of the transverse rigid geometry (N, ξ) at point v = fi(x), where
x ∈ Ui;(iii) the group of dek transformations of the regular overing map
π|L : L → L;(iv) the subgroup H(L) = {a ∈ H | Ra(L) = L} of the Lie group H;(v) the holonomy group Φ(u) of the integrable onnetion T (F|π−1(L)) inthe prinipal H-bundle with the projetion π|π−1(L) : π

−1(L) → L.VII. The groups of basi automorphisms of foliations with TRGLet A(M,F ) be the full automorphism group of a foliation (M,F ) withTRG. We denote by µ : AH(R,F) → A(M,F ) the group isomorphism de-�ned in Theorem 3.De�nition 10. The quotient group AB(M,F ) := A(M,F )/AL(M,F ) isalled the basi automorphism group of the foliation (M,F ) with TRG.Emphasize that the basi automorphism group AB(M,F ) of a foliation
(M,F ) with TRG is an invariant of this foliation in the ategory FTRG.Theorem 6. Let (M,F ) be a foliation with TRG and (R,F ) be the liftedfoliation. Denote by AH

B (R,F ) the quotient group AH(R,F)/AH
L (R,F).There exists a natural group isomorphism χ : AH

B (R,F) → AB(M,F ) sat-isfying the equality s ◦ µ = χ ◦ r, where r : AH(R,F) → AH
B (R,F) and

s : A(M,F ) → AB(M,F ) are the assoiated group epimorphisms onto thequotient groups.IX. Conditions guarantee that AB(M,F ) is a Lie groupThe ase g0(M,F ) = 0 A leaf L of a foliation (M,F ) is alled losed if
L is a losed subset in the topology of the manifold M. Further we use theterm �a losed leaf� only in this sense.58



Theorem 7. Let (M,F ) be a omplete foliation with a transverse rigidgeometry (N, ξ), where ξ = (P (N,H), ω). Suppose that the struture Liealgebra g0(M,F ) is zero. Then:(i) the full basi automorphism group AB(M,F ) admits a Lie groupstruture with the following estimate of its dimension:
dimAB(M,F ) ≤ dimP ; (1)(ii) if there exists an isolated losed leaf L of the foliation (M,F ), then
dimAB(M,F ) ≤ dimH; (2)(iii) there exists a unique topology and a unique smooth struture on thefull group AB(M,F ) of basi automorphisms of the foliation (M,F ), making

AB(M,F ) into a Lie group.Theorem 7 does not exlude the triviality of the full group AB(M,F ).Remark 1. The main result of the work [3℄ by Belko is the theoremasserting that if there exists a losed leaf of a foliation (M,F ) with ompletetransversally projetable a�ne onnetion, then the group AB(M,F ) is aLie group. This statement is not orret. It's proof essentially uses thefat that existene of a losed leaf of this foliation implies that the liftedfoliation is simple. It is not true, in general. Let us onsider a foliation
(M,F ) from Example 3 (in Setion X), when r = 1/π, as a�ne foliation. Ithas a ompat leaf, but g0(M,F ) = R1 6≡ 0, hene the lifted foliation is notsimple. Thus the foliation (M,F ) is a Lie foliation with non-zero strutureLie algebra g0(M,F ). Hene the group AB(M,F ) is not a Lie group.Disrete holonomy groups of leaves Let (M,F ) be a foliation withTRG. Let π : R →M be the projetion of the foliated bundle over (M,F ).De�nition 11. We say that the holonomy group of a leaf L ∋ x of thefoliation (M,F ) is disrete if there exists a point u ∈ π−1(x) suh that thegroup H(L) := {a ∈ H | Ra(L) = L, L = L(u) ∈ F} is a disrete subgroupof the Lie group H.Let u′ ∈ π−1(x) and u 6∈ L′ = L′(u′). In this ase the subgroup H(L′)is onjugate to the subgroup H(L) in the Lie group H. Hene H(L) is a59



disrete subgroup of H if and only if H(L′) is a disrete subgroup of H.Thus, aording to Theorem 5 the notion of disrete holonomy group of leaf
L is well de�ned.Reall that a leaf L of a foliation (M,F ) is said to be proper if L is anembedded submanifold in M. A foliation (M,F ) is alled proper if eah itsleaf is proper.Let (M,F ) be a omplete foliation with TRG. We proved that the ex-istene a proper leaf L with a disrete holonomy group implies that thestruture Lie algebra g0(M,F ) is zero. In view of this fat and Theorem 7we got the following statement.Theorem 8. Let (M,F ) be a omplete foliation with transverse rigid ge-ometry (N, ξ), where ξ = (P (N,H), ω). If at least one of the followingonditions holds:(i) there exists a proper leaf L with disrete holonomy group;(ii) there is a losed leaf L with disrete holonomy group;(iii) there exists a proper leaf L with �nite holonomy group;(iv) there is a losed leaf L with �nite holonomy group,then the basi automorphism group AB(M,F ) admits a Lie group strutureof dimension at most dimP, and this struture is unique.It is well known that any foliation has leaves without holonomy. Henethe following statement is a onsequene of Theorem 8.Corollary 1. For any proper omplete foliation (M,F ) with TRG the basiautomorphism group AB(M,F ) admits a unique Lie group struture.X. ExamplesSuspended foliations The suspension of a homomorphism was suggestedby Hae�iger. This method of onstrution examples is widely used in foli-ation theory.Let ρ : π1(B, b0) → Diff(T ) be a homomorphism of the fundamental60



group of a manifold B ∋ b0 into the group of di�eomorphisms of a q-dimensional manifold T, and let p : B̂ → B be the universal overing map-ping. Then we have a right ation of the group Π := π1(B, b0) on B̂ bydek transformations. The equality
(x, t) · g := (x · g, ρ(g−1)(t)), ∀(x, t) ∈ B̂ × T, ∀g ∈ Π,de�nes a free right properly disontinuous smooth ation of the group Πon the produt of manifolds B̂ × T ; therefore the quotient manifold M :=

B̂ ×Π T is de�ned. Let κ : B̂ × T → M be the natural projetion. Then
F := {κ(B̂ × {t}) | t ∈ T} is a foliation of odimension q on M ; in thisase, it is said that the foliation (M,F ) is obtained by suspension of thehomomorphism ρ. For this foliation we will use the notation (M,F ) :=
Sus(T,B, ρ). The image Ψ := imρ is the global holonomy group of (M,F ).Transversally similar and transversally homotheti foliations Let
G be the similarity group of the Eulidean spae Eq, q ≥ 1, and R+ bethe multipliative group of positive real numbers. Then G = CO(q) ⋌ Rqis the semidiret produt of the onformal group CO(q) = R+ · O(q) andthe group Rq. Let H = CO(q) and p : G → G/H = Eq be the anonialprinipal H-bundle. Let g be the Lie algebra of the Lie group G, and ωbe the Maurer-Cartan g-valued 1-form on G. Then ξ = (G(Eq,H), ω) is ane�etive rigid geometry. Foliations with this transverse geometry (Eq, ξ) arealled transversally similarity foliations [7℄.Denote by E the neutral element of the group O(q). If G = (R+ ·E)⋌Rq,
H = R+ ·E, and ω is the Maurer-Cartan g-valued 1-form on the Lie group
G, then foliations with the transverse e�etive rigid geometry (Eq, ξ), where
ξ = (G(Eq,R+ · E), ω), are alled transversally homotheti foliations [7℄.Example 1. Let B be a smooth p-dimensional manifold whose fundamen-tal group π1(B, b) ontains an element α of in�nite order. For an arbitrarynatural number q ≥ 1, denote by Eq a q-dimensional Eulidean spae. De-�ne a homomorphism ρ : Π := π1(B, b) → Diff(Eq) by setting ρ(α) = ψ,where ψ is the homotheti transformation of the Eulidean spae Eq withthe oe�ient λ 6≡ 1, i. e. ψ(x) = λx, ∀x ∈ Eq, and ρ(β) = idEq forany element β ∈ π1(B, b) suh that β 6≡ αk with some integer k. Then
(M,F ) = Sus(Eq, B, ρ) is a proper transversally similar foliation with aunique losed leaf di�eomorphi to B. 61



Aording to Corollary 1, the full basi automorphism group AB(M,F )of this foliation (M,F ) admits a unique Lie group struture. The groupA(ξ)is equal to the group of left translations of the Lie group G = CO(q) ⋌ Rq,hene we an identify A(Eq, ξ) ∼= A(ξ) with G. In this ase it is not di�ultto show that the full group of basi automorphisms AB(M,F ) is isomorphito the quotient group N(Ψ)/Ψ, where N(Ψ) is the normalizer of Ψ in the Liegroup G. In our ase Ψ = 〈ψ〉 and N(Ψ) = R+ ·O(q), therefore AB(M,F ) ∼=
U(1)×O(q), where U(1) ∼= (R+ ·E)/Ψ is the ompat 1-dimensional abeliangroup.If q = 1, then O(q) = Z2 and AB(M,F ) ∼= U(1) × Z2.Example 2. Consider the foliation (M,F ) onstruted in Example 1 asa transversally homotheti foliation, i. e., with a di�erent transverse rigidgeometry. In this ase the Lie group AB(M,F ) is isomorphi to the quotientLie group N(Ψ)/Ψ, where N(Ψ) is the normalizer of Ψ in the Lie group
(R+ · E) ⋌ Rq. Sine N(Ψ) = R+ ·E, so AB(M,F ) ∼= U(1).Remark 2. In both examples 1 and 2 the foliation (M,F ) has a uniquelosed leaf and, in Theorem 7, the equality is ahieved in the estimate (ii)of the dimension of AB(M,F ).Example 3. Let ψ be the rotation of the plane E2 about the point 0 ∈ E2through the angle δ = 2πr. Consider an Eulidean metri g on E2. Denoteby Iso(E2, g) the full isometry group of (E2, g). Let ρ : π1(S

1, b) ∼= Z →
Iso(E2, g) be de�ned by the equality ρ(1) := ψ, 1 ∈ Z. Then we havea suspended Riemannian foliation (M,F ) := Sus(E2, S1, ρ). This foliationhas a unique losed (ompat) leaf.There exists a group isomorphism between AB(M,F ) and the quotientgroup N(Ψ)/Ψ, where Ψ = 〈ψ〉 and N(Ψ) is the normalizer of Ψ in theLie group Iso(E2, g) identi�ed with O(2) ⋌ R2. Sine N(Ψ) = O(2), so
AB(M,F ) = O(2)/Ψ. Hene AB(M,F ) admits a Lie group struture if andonly if Ψ is a losed subgroup of O(2) or, equivalent, when δ = 2πr for somerational number r. If δ = 2πr, where r is a nonzero rational number, then
AB(M,F ) ∼= O(2).This work was supported by the Russian Foundation for Basi Researh,projet no. 06-01-00331-a.62
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ACTA PHYSICA DEBRECINA XLII, 64 (2008)CORRELATIONS BEETWEN THE QUANTUMFLUCTUATIONS AND THE PHASE OF THEGRAVITATIONAL WAVESE. Balogh1, I. Bartos2, I. Lovas3 and Sz. Márka2

1 János Bolyai Gymnasium, Salgótarján, Hungary
2 Columbia University, Department of Physis, New York, NY10027, USA

3 Debreen University, Department of Theoretial Physis, Debreen, H4010,HungaryAbstratThe existene of gravitational waves is proved by astronom-ial observations. The belief that the gravitational waves arequantized is almost hundred years old. Nevertheless up till nowthere are neither theoretial, nor observational proof of this be-lief. In this note we suggest to measure the �utuations of thegravitational waves. If the �utuations are orrelated with thephase of the gravitational wave, in other words, if the gravita-tional wave is squeezed, then it is quantized.I. IntrodutionThe Einstein-equations of the general relativity an be redued to waveequations in linear approximation. It was taken as granted that the solu-tions of these equations desribe gravitational waves, whih exist in nature.Moreover it was assumed already before the middle of the last entury thatthese waves are quantized, i.e. they are assoiated with gravitons havingenergy of hν and spin of 2h/(2π), where the Plank-onstant is denoted by
h and the frequeny by ν. The existene of the gravitational waves, how-ever, was proved only in the seond part of the XX-th entury by Hulse and



Taylor [1℄. They observed the pulsar radiation of a neutron star whih ismoving around another neutron star. It was possible to observe that theperiastron is shifted in a similar way as in the ase of the Merury mov-ing around the Sun, furthermore it was seen that the energy of the systemis dereasing ontinuously. Both phenomena were perfetly desribed bythe Einstein-equations if the possibility of gravitational wave emission wastaken into aount.Reently a binary system of huge blak holes has been observed in theJ 287 quasar [2℄. A very spetaular outburst is produed by the smallerblak hole when it ollides with the aretion dis of the bigger blak hole.A great number of outbursts were observed and interpreted orretly. Ifthe emission of the gravitational waves were negleted from the analysisthe beautiful agreement was destroyed. Thus one may onlude that themotion of the binary system with mass 17 billion Sun mass an be desribedperfetly well by the Einstein-equations, and the gravitational waves reallyexist in nature. Sine now we are onvined about the existene of thegravitational waves it is justi�ed to hope that they an be observed sooneror later on the surfae of the Earth, as well.The question of the quantized harater of the gravitational waves isa more ompliated issue. Up till now the quantization of the theory ofgravitation is an unresolved problem in spite of the tremendous amount ofe�orts. Consequently the theoretial proof of the quantized harater ofthe gravitational waves is missing. The experimental proof of the quantizedharater is missing either.In this note we try to �nd a possibility to observe the quantized har-ater of the gravitational waves. We assume that the basi features of thequantization of the gravitation are similar to that of the eletromagnetism.Therefore we look for genuine, observable signatures of the quantization inthe realm of eletromagnetism. The energy quantum hν belongs to thisategory, however it an not be used in the ase of the gravitation beauseof the extremely low values of the frequeny ν. It was proved by Glauber [3℄in the framework of the quantum eletrodynamis that the phenomenon ofthe squeezing is a genuine signature of the quantized nature. The existeneof the squeezing was proved by experiments, that is, de�nite orrelation hasbeen found between the phase of the wave and the quantum �utuations.65



Here we assume that something similar is true in the ase of the gravita-tional waves, as well. It was pointed out by Grishhuk [4℄ that the quantumnoise is orrelated with the phase of the gravitational wave if it is gener-ated by the non-linear gravitational bakground. He foused the attentionto those gravitational waves whih were generated in the time of the BigBang. Here we want to emphasize that those existing and working GWdetetors whih will be able to detet the arrival of the gravitational waveswill be able to detet also the quantum �utuations. If some orrelation anbe observed between the phase of the wave and the quantum �utuationsthen this an be onsidered as a proof for the quantized harater of thegravitational waves [5℄. If no orrelation an be found then we are not ableto draw any kind of onlusion.II. Analysis of the signal arriving from the interferometer typegravitational wave detetorWe assume that the light signal L(t) arriving from the interferometertype gravitational wave detetor at time t an be desribed by the followingsum:
L(t) = C(t, ν) +Q(t, ν, ϕ) +B(t); (1)where the frequeny of the wave is denoted by ν, the ontribution of the�lassial wave� by C(t, ν), the ontribution of the �quantum �utuation� by

Q(t, ν, ϕ) and the ontribution of the external random bakground by B(t).In the �rst step of the analysis we neglet Q(t, ν, ϕ), and we determine fromthe observed data the quantities ν, C(t, ν), and B(t). By the way, this isthe original task of the gravitational wave detetor! As a seond step ofthe analysis we alulate from the observed data the ontribution of thequantum �utuations Q(t, ν, ϕ)Q, using the values of ν, C(t, ν), and B(t),obtained in the �rst step of the analysis.III. The Energy Flux of the Gravitational WavesWe onsider a gravitational plane wave far away from its soure havingfrequeny ν and amplitude a. The energy �ux F of suh a wave, i.e. the66



energy per unit area, per sampling (with sampling frequeny νs) an beexpressed in the following form:
F =

πc3ν2a2

Gνs
. (2)The energy arriving into the detetor per sampling is given by:

E = FA, (3)where A is the ross setional area of the detetor.The expetation value of the number of the gravitons arriving into thedetetor per sampling is given by:
〈N〉 =

E

hν
=
πAc3ν2a2

hGνs
. (4)The �utuation of the graviton number may be approximated by the fol-lowing expression [ 6 ℄ :

〈∆N2〉 = 〈N〉
[
e−2S cos2

(ϕ
2
− θ
)

+ e2S sin2
(ϕ

2
− θ
)]
. (5)Here θ is the phase of the wave at time t: θ = νt+ θ0.The squeezing parameters are denoted by S and ϕ. The lak of squeezingis haraterised by S = 0. In this ase the number of gravitons is desribedby the Poisson-distribution:

〈∆N2〉 = 〈N〉. (6)If the measured values of the signal are stored together with a time stampby a Field Programmable Gate Array (FPGA) [7℄, then the evaluation ofthe measurement an be done o� line. The evaluation an be performed asan iterative proedure when the stored values an be used repeatedly. Itis worth while to point out that by using an FPGA the omparison of thesignals of parallel detetors an be done also o� line. If the noise/signal ratiois not too large then the frequeny ν, the squeezing parameters S and ϕ, andthe value of the random noise an be obtained from the measurements. Ifthe value of the squeezing parameter S turns out to be signi�antly di�erent67



from zero then, it is proved that the gravitational waves are quantized! Thesuess of suh an experiment depends �rst of all on the distane of thesoure of the gravitational waves. It must be onfessed that if the signalontains more then one frequeny with non-negligible amplitudes then theanalysis will be rather tedious.AknowledgementValuable disussions with Dr. Zoltán Árvay and Dr. Dezs® Novák Jr.are gratefully aknowledged. Referenes[1℄ R.A. Hulse and J.H. Taylor, Astrophys. J. 195, L51 (1975).[2℄ M. Valtonen, et al., Nature (letters) 452, (2008).[3℄ R.J. Glauber, Phys. Rev. 131, 2766 (1963).[4℄ L. Grishhuk and Y.V. Sidorov, Phys. Rev. D 42, 3414 (1990).[5℄ I. Lovas, APH N.S., Heavy Ion Phys 9, 1 (1999).[6℄ M. Artoni and J.L. Birman, Phys. Rev. B 44, 3736 (1991).[7℄ Gy. Hegyesi, J. Imrek, G. Kalinka, J. Molnár, D. Novák Jr., J. Végh,L. Balkay, M. Emri, G. Molnár, L. Trón, I. Bagaméry, T. Bükki, S.Rózsa, Zs. Szabó and A. Kerek, IEEE 5, 2957 (2004).
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ACTA PHYSICA DEBRECINA XLII, 69 (2008)SOME GEOMETRICAL ANALOGUES BETWEEN THEDESCRIPTION OF THE STATES SPACE INNON-CLASSICAL PHYSICS AND THE EVENTS SPACE INCLASSICAL PHYSICS ††O. N. Golubjeva1, A. D. Sukhanov2

1 Russian Peoples Friendship University, Mosow, Russia
2 Joint Institute for Nulear Researh, Dubna, RussiaAbstratA ertain resemblane between properties of the states spaein non-lassial Physis and the events spae in lassial Physisis reognized.It is noted that in the absene of thermal in�uene or, or-respondingly, of gravitation there are the simplest Riemannianstrutures with a diagonal metri and zero urvature in bothases. Either the square of the half of the Plank's onstant orthe square of the eletrodynamis onstant are the invariants,limiting the minimal values of orresponding quantities. Theseminimal limitations are initially intrinsi to the objet environ-ment only in the form of "old" vauum. It is proposed theonepts of "self-ation" and "equilibrium shell".In view of gravitation in the objet environment or the hangeof "old" vauum to "warm" one lead to ardinal new prop-erties. First of all, the non-trivial Riemannian strutures appearso that the metris beomes non-diagonal. Seond, in both asesthe urvature of spae beomes not equal to zero.

††The researh was supported by the Russian Fond for Basi Researh (projet RFBR07-06-00239)



One may onsider all these irumstanes as �rst steps tojoin both spaes of matter existene.CONTENTS1. Introdution2. Flutuation states submanifold of oordinate and momentum3. Shroedinger unertainty relation4. A model "quantum osillator"5. Some interesting geometrial harateristis6. ConsequenesReferenes I. IntrodutionThe main aim of our investigation is to exhaust the maximal physial in-formation from the analysis of geometrial properties of the non-lassialstates spae. Under the term non-lassial we understand all situationswhen an objet is under a stohasti in�uene - both quantum ("old"vauum in Quantum Mehanis - QM) and thermal one (thermostat in Sta-tistial Thermodynamis � ST).In the most general ase an objet is a�eted by both types of the in�u-ene simultaneously. As a result the harateristis of the objet �utuates.They are said to be quantum-thermal �utuations. Our study is based onthe Cauhy-Bunjakovsky-Shwarz unequality (hereafter noted CBSU) usedin the states spae.II. Flutuation states submanifold of oordinate and momentumFrom the Hilbert manifold of arbitrary states | > for a miro-objet let usselet a submanifold of �utuations states. For this goal let us introdue�rst of all the operators of oordinate and momentum �utuations ∆q̂ and
∆p̂ respetively in suh a manner:

∆q̂ = q̂ − 〈|q̂ |〉; (1)70



∆p̂ = p̂− 〈|p̂ |〉. (2)One an get the submanifold, that is of interest to us, as a result of theoperators ∆q̂ and ∆p̂ ating upon an arbitrary state | >:
|∆q〉 ≡ ∆q̂ | 〉; (3)
|∆p〉 ≡ ∆p̂ | 〉. (4)We all it the submanifold of �utuation states of the oordinate and themomentum. As it is well known, in an arbitrary Hilbert spae a bilinearhermitian form is de�ned. Usually it is treated as a salar produt of statevetors < Φ|Ψ >.In the seleted submanifold of �utuations states it is:

Rpq ≡ 〈∆p|∆q〉 = 〈|∆p̂∆q̂ |〉 (5)or equivalently
Rp q ≡ 1

2
〈|∆p̂∆q̂ + ∆q̂∆p̂ |〉 +

1

2
〈|∆p̂∆q̂ − ∆q̂∆p̂ |〉. (6)As at the same time the salar produt is a omplex quantity, it is onvenientto write this expression in a di�erent way

Rpq = σp q + i cp q, (7)where its imaginary part
cp q ≡ 1

2
|〈|{p̂, q̂ }|〉| =

~

2
(8)haraterizes a sympleti struture on the seleted states submanifold |∆p >,

|∆q > in the Hilbert spae.However, the subjet of our subsequent interest will be mainly the realterm
σp q ≡ 1

2
〈|{∆p̂,∆q̂ }|〉. (9)In the quasi-lassial limit the operators ∆p̂ and ∆q̂ an be hanged by

c-numbers. In this ase the quantity σpq is in lose onnetion with the71



standard de�nition of a orrelator in the probability theory. This fat allowsus to all σpq a orrelator of quantum or (in more general ase) quantum-thermal �utuations of oordinate and momentum, or, a quantum orrela-tor.If the quantity σpq inludes the two idential operators ∆q̂ or ∆p̂ ittakes the form either σqq = 〈∆q|∆q 〉 = 〈|(∆q̂ )2|〉 or σpp = 〈∆p|∆p 〉 =
〈|(∆p̂ )2|〉 where σqq and σpp are dispersions of oordinate and momentum.All the three quantities σpq, σpp, and σqq together desribe the Riemannianstruture on the submanifold of states under study.Now let us make some remark following Caianiello and Noe [1℄. Inthe frame of ST they supposed that one an interpret the orrelator ofthermal �utuations of a onjugated maroparameter pair a and b as a"salar produt" of onventional "vetors" δa and δb in the Riemannianspae of the thermal �utuations

σT
a b = (∆a∆b) ≡ δa · δb. (10)Then dispersions of random quantities a and b are
σT

a a = (∆a)2 ≡ (δa)2, (11)
σT

b b = (∆b)2 ≡ (δb)2and have a sense of norms of the "vetors". We one more emphasise thatall the three quantities σT
a b, σ

T
a a, and σT

b b desribe the Riemannian spae ofthermal �utuations.This fat allows us to use this idea in our ase. For this goal we introduethe two-dimensional Riemannian spae and on this ground we assume thatthe three quantities, i.e. the quantum orrelator σpq and the dispersions
σqq,σpp an be interpreted as a onventional "salar produt" and norms ofpeuliar vetors δq and δp in this spae:

σp q ≡ (δp δq), σp p ≡ (δp)2, σq q ≡ (δq)2. (12)Some additional reason for identifying the quantum orrelator with a "salarprodut" of onventional "vetors" is the similar behavior of the quantumorrelator in the high temperature limit and that of the thermal orrelator.72



In this ase the quantum orrelator σpq is in lose onnetion with thethermal orrelator
σp,q → σT

p q = (∆p∆q). (13)III. Shroedinger unertainty relationLet us onsider some peuliarities of the states submanifold |∆p >, |∆q >.Our starting point is the CBSU. We note that in many kinds of manifoldsit plays a role of some limiter for the orresponding geometrial strutures.Thus for the given submanifold we have the CBSU in the form whihphysiists all the Shroedinger unertainty relation (SUR):
(δp)2(δq)2 > |Rp q|2 = σ2

p q + c2p q. (14)Let us remember that Rpq is the transition amplitude from the state |∆q〉to the state |∆p〉. Thus we see that the squared transition amplitude annot be more then "vetor" norms produt (δp)2(δq)2.Note, that the transition amplitude has two terms. The seond of it cpqre�ets a type of orrelation between momentum and oordinate related tothe non-ommutativity of the orresponding operators. At the same timethe �rst of it σpq in the general ase orresponds to another orrelation typesomewhat analogous to orrelation one in the lassial probability theory.Below we restrit ourselves to the analysis of states for whih SUR trans-forms into the strit equality
(δp)2(δq)2 = σ2

p q + c2p q. (15)In Physis suh SUR is usually said to be saturated.IV. A model of �quantum osillator�In the given model the saturated SUR has importane in the two ases:- in the basi state (its wave funtion is real, cpq = 0). This state belongsto the family of oherent states (CS);- in other states with omplex wave funtions that satisfy the important73



ondition cpq 6≡ 0. We all suh states orrelated-oherent states (CCS).Note, that to pass from CS to CCS for the quantum osillator it is neessaryto use (u, v)- Bogoliubov transformations generating the Lie group SU(1.1).Among many kinds of CCS there are states that are espeially interest-ing for physiists beause they are more lose to the real Nature. Theseare thermal CCS (TCCS) that were �rst introdued by Umezawa [2℄ in theframe of his thermo�eld dynamis (TFD). Complex wave funtions desrib-ing TCCS for quantum osillator in a thermostat suppose both quantumand thermal stohasti in�uene of environment simultaneously [3℄. Thesefuntions must have a temperature-dependent amplitude and phase.To study the �utuations of Riemannian spae of momentum and oor-dinate for quantum osillator in TCCS in more detail we use SUR below inthe saturated form (15). Earlier in the paper [3℄ we obtained a formula forthe wave funtion for the quantum osillator in the thermostat:
ψ(q) = [2π(∆q)2]−1/4 exp

{
− q2

4(∆q)2
(1 − iα)

}
, (16)where

α =

[
sinh

~ω

2kBT

]−1

.From it one an alulate dispersions of momentum and oordinate at anytemperature:
(δp)2 =

~mω

2
coth

~ω

2kBT
, (17)

(δq)2 =
~

2mω
coth

~ω

2kBT
. (18)We emphasise that these quantities depending on the wave funtion am-plitude are funtions of the temperature. From the formula for the wavefuntion we an obtain also the quantum orrelator

σpq =
~

2

[
sinh

~ω

2kBT

]−1

. (19)It depends on the wave funtion phase and, what is the most important, itis a funtion of the temperature, too.74



In the frame of our Riemannian spae we an assume that the expression
σp q√

σpp
√
σqq

(20)is a quantity somewhat analogous to the funtion cosϕ for the usual salarprodut in the Eulidian spae. We note that using all these formulas andreall (12) as
(δq)2 ≡ σqq; (δp)2 ≡ σpp (21)one an easily obtain the onventional cosϕ.For the "angle" between "vetors" in the Riemannian spae this quantityis equal to

[
cosh

~ω

2kBT

]−1

. (22)As a result we obtain that "lengths of vetors" rise while the "angle"between them dereases with inreasing temperature. So the onventional
cosϕ hanges in the region from 0 to 1 as it is neessary. Thus if no or-relation exists between �utuations (σpq = 0) the "vetors" δp and δq are"orthogonal"(at T = 0). In the general ase ( when the orrelator σpq 6≡ 0) the "vetors" have an arbitrary mutual orientation. It maximally approx-imates ollinearity when their salar produt gets the maximal value.V. Some interesting geometrial harateristisFor onveniene of further alulations we make a slight hange of variables:

(δp)2 = mω(δp̃)2; (23)
(δq)2 =

1

mω
(δq̃)2. (24)At the same time the salar produt does not hange

σpq = σ̃pq. (25)75



Taking new variables δp̃ and δq̃ as basi vetors in the Riemannian spaewe get the SUR for the quantum osillator in TCCS
(δp̃ )2(δq̃ )2 ≡ ~2

4
coth2 ~ω

2kBT
= (26)

= (σ2
pq +

~2

4
) ≡ ~2

4

[
sinh

~ω

2kBT

]−2

+
~2

4
.So we have introdued a �utuation spae of momentum and oordinatewith the basi vetors δp and δq dependent on the temperature. For its anal-ysis we have two possibilities, based on the saturated SUR for the quantumosillator in a thermostat.The �rst solution is as follows. Let us rearrange the term σ2

pq to the leftside of SUR. Now we an onsider the ombination
(δp̃ )2(δq̃ )2 − σ2

p q (27)as an entire quantity. From geometrial point of view it is a non-degeneratedeterminant of some two-dimensional metri tensor gik:
Det gik =

∥∥∥∥
(δp̃ )2 σpq

σpq (δq̃ )2

∥∥∥∥. (28)Taking into aount the atual values of quantities (δq̃)2, (δp̃)2, and σpq onean rewrite this determinant in the form
Det gik =

~2

4

∥∥∥∥∥∥

coth ~ω
2kBT

[
sinh ~ω

2kBT

]−1

[
sinh ~ω

2kBT

]−1
coth ~ω

2kBT

∥∥∥∥∥∥
. (29)We an see the following. Although all its omponents are temperaturedependent, Det gik = (~/2)2 is obviously independent on the quantity T .In the limit T → 0: g11 → 1 and g22 → 1, g12 → 0 and g21 → 0. Thisfat orresponds to the orthogonality ondition of the "vetors" δp and δq.In the limit (1/T ) → 0 Det gik does not hange. So we an laim thedeterminant is invariant under Bogoliubov (u, v) - transformations. Onemay expet that a salar urvature of orresponding spae is not equal tozero at T 6≡ 0 but at T → 0 it redues to zero.76



We an also assume that the equality of values (cpq)
2 and Det gikis not by hane. We suppose it re�ets a peuliar interferene betweenRiemannian and sympleti strutures on the submanifold of �utuationstates of oordinate and momentum. At the same time it an serve as aninitial riterion of belonging one or another state to the ÑÑS family.The seond possibility of analysis is onneted with the interpretationof the right side of SUR itself. It is ommon pratie to onsider the term

δpδq as an entire mathematial quantity, named unertainty produt (UP)hereafter noted
(UP) ≡ δp δq. (30)Earlier we supposed a new theory - Quantum Generalization of equilibriumStatistial Thermodynamis (QGST)[4℄. In the ase of the quantum osil-lator in a thermostat we found the physial sense of δpδq. For this goalwe introdued a new maro-parameter - the e�etive ation as an adiabatiinvariant

J =
E
ω
, (31)where aording to Plank

E =
~ω

2
coth

~ω

2kBT
(32)is the energy of the quantum osillator in a thermostat. Aording to SUR

(UP) = J =
E
ω
. (33)In the limit T → 0 the quantity J has the meaningful property: it ome upto its minimal value

(J)min ≡ J0 =
E0

ω
=

~

2
, (34)where ε0 is the energy of the osillator basi state. So J0 has a fundamentalsense of the internal or self ation that the objet has initially due to thequantum stohasti in�uene of the "old" vauum.Considering this fat we obtain from SUR

J2 = J2
T + J2

0 . (35)77



Here
JT =

~

2

[
sinh

~ω

2kBT

]−1 (36)an be interpreted as an e�et indued by the thermal stohasti in�ueneof the environment.Analogially we an rewrite SUR in another form
E2 = E2

T + E2
0 , (37)where

ET =
~ω

2

[
sinh

~ω

2kBT

]−1 (38)is the energy indued by a thermal stohasti in�uene of the environment.Now let us ompare the two formulas (35) and (37) with the formula forfull relativisti energy in the Speial Relativity Theory (SRT)
E2 = p2 +m2 = E2

p + E2
0 (39)(we put the light veloity c = 1). Here the quantity E0 ≡ m is the selfenergy, initially belonged to an objet and assoiated with its mass, but

Ep ≡ p is an energy indued by motion of the objet and assoiated with itsmomentum.Considering this resemblane we laim that (E , Ep) and (E , ET ) are twotime-like vetors in the orresponding 2-dimensional pseudo-Eulidean spaes.Aordingly E2
0 = m2 and E2

0 = (~ω/2)2 are their squared lengths, i.e. in-variants.Now one an realize a new interpretation for the sense of the saturatedSUR.We know that the formula (39) is usually onsidered as a de�nition of amass-shell in the pseudo-Eulidean momentum spae. This fat orrespondsto the harateristis of real partiles. But for virtual partiles we have theunequality in this formula. It means they exit from the mass- shell.From this point of view one an laim that the equality in SUR answersthe hoie of some real states for whih the vetor (E , ET ) is on a ertain"frequeny shell". Suh states are the thermal ÑÑS desribing a thermal78



equilibrium. All di�erent states have the sense of virtual states for whihthe same vetor is out of the "frequeny- shell" or "equilibrium - shell".Probably, they orrespond to non-equilibrium.As some remark we remind that the group Lie SU (1,1) of the Bogoli-ubov (u, v)-transformations is loal isomorphi to the Lorentz-group in 2-dimensional spae-time. At the same time there exists an analogy betweenthe pairs of parameters: on the one hand
γ =

1√
1 − β2

; β =
v

c
, (40)and on the other hand

γ T = coth
~ω

2kBT
; (41)

βT =

[
coth

~ω

2kBT

]−1

. (42)It is not di�ult to see that the limit behavior of the orresponding qualitiesis similar:at T → 0 βT → 0 ( at v → 0 β → 0) andat T → ∞ βT → 1 ( at v → c β → 1).VI. ConsequenesSummarizing all the results obtained above we an reognize a ertain re-semblane between properties of the states spae in non-lassial Physisand the events spae in lassial Physis. We ollet them in Table 1.One an see that in the absene of thermal in�uene (at kB = 0 as inQM) or, orrespondingly of gravitation (at G = 0 as in SRT) there are thesimplest Riemannian strutures with a diagonal metri and zero urvature.At the same time the role of invariants, limiting the minimal values oforresponding quantities that are possible in Nature, plays either the self-79



Table 1.ation squared - (~/2)2 or the eletrodynamis onstant squared - (1/c)2.These minimal limitations are initially intrinsi to the objet environmentin the form of "old" vauum.The presene in the objet environment of a matter that is subjet togravitation (at G 6≡ 0 as in General Relativity Theory - GRT) or the hangeof "old" vauum to "warm" one (at kB 6≡ 0 as in QST) leads to ardinalnew properties. First of all, the non-trivial Riemannian strutures appear sothat the metris beome non-diagonal. Seond, in both ases the urvatureof spae beomes not equal to zero. One an respet these geometrialproperties as an indiator of some external e�ets haraterized either bythe onstant G or by the onstant kB . All these irumstanes may beonsidered as �rst steps to join both spaes of matter existene.The last question that arises here is onneted with the notion of sym-pleti struture. In non-lassial Physis the modulus of orrespondingquantity is an invariant too that is temperature independ and equal to
(~/2)2. On this ground we have a reason to say some hypothesis. We ansuppose that there is a sympleti struture in the events spae. Its invari-ant harateristi must be a quantity that is equal to (1/c)2. We have theopinion that in the future it will be desirable to modify the desription of80



the events spae. On this way the presene of sympleti struture ouldfollow from the fundamental spae-time theory.Referenes[1℄ E.R. Caianiello, C. Noe, A Metri Model of Therodynamis: Uner-tainties Relations, Gazzetta Chimia Italiana , 244 (1984).[2℄ H. Umezawa, Advaned Field Theory. Miro-, Maro- , and ThermalPhysis, ( N.Y., AIP, 1993 ).[3℄ A. D. Sukhanov, Shroedinger Unertainties Relation for Quantum Os-illator in a Thermostat., Theor. Math. Phys. 148, 2, 1123 (2006).[4℄ A.D. Sukhanov, A Quantum Generalization of Equilibrium Statisti-al Thermodynamis: E�etive Maro-parameters, Theor. Math. Phys154, 1, 153 (2008).
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2 Russian Peoples Friendship University, Mosow, RussiaAbstratSome geometrial properties of the generalized states spaesimultaneously generated by quantum and thermal stohastiin�uene of environment are studied. As a model we hoose aquantum osillator (QO) in the thermostat. Its states have asense of thermal orrelated - oherent states (TCCS). Earlier wefound a wave funtion in the TCCS that has a temperature de-pendent amplitude and phase. Under the suitable parametriza-tion it generates a Riemannian struture on the states spae.The last irumstane allows us to alulate the Gaussian ur-vature in the spae and to make a omparative study of thegeometrial properties for di�erent TCCS in all the tempera-ture range.CONTENTS1. Introdution2. Geometrial interpretation of the wave funtion in the TCCSspae3. Some geometrial harateristis of TCCS spae
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4. Connetion oe�ients and the Riemann-Christo�el tensor5. ConlusionReferenes I. IntrodutionReently it beame apparent that our knowledge of matter struture wasvery approximate. Under these onditions the signi�ane of universal non-model theories like Geometry and Thermodynamis essentially inreases.Within the frame of lassial (deterministi) Physis the main interest at-trats Geometry of events spae , i.e. four-dimensional spae-time. It is thesubjet of many papers.However, in non-lassial (stohasti) Physis suh as Quantum mehan-is (QM), Statistial thermodynamis (ST), and their generalizations Ge-ometry does not appear to be the subjet of systematial study. As is wellknown, the onept of states spae is the entral one in these theories.The results of Provost and Vallee [1℄ and Ruppeiner [2℄ have shownthat in QM and ST one an introdue the Riemannian struture in theorresponding states spaes. Its typial features an be expressed in termsof dispersions of the system random harateristis and their orrelators.In this paper some geometrial properties of the generalized states spaesimultaneously generated by quantum and thermal stohasti in�uene ofenvironment are studied. As a model we hoose a quantum osillator (QO)in the thermostat. In another words, QO loates in the thermo�eld vauumand its states have a sense of thermal orrelated-oherent states (TCCS)[3℄.We assume that a wave funtion in the TCCS has a temperature - depen-dent amplitude and phase. Under the suitable parameterization it generatesa Riemannian struture on the states spae. The last irumstane allowsus to introdue a gauge-invariant metri tensor and alulate the Gaussianurvature in the spae. The latter fat gives us a possibility to make aomparative study of the geometrial properties for di�erent TCCS in theentire temperature range. 83



II. Geometrial interpretation of the wave funtion in the TCCSspaeThe starting point of our study is the Shroedinger unertainty relation forthe variables "oordinate-momentum". In the ase of equality it is knownas the saturated one. In another words, it has a form of equality:
(∆p)2 (∆q)2 = |〈|∆p̂∆q̂ |〉|2 =

~2

4

[
coth

~ω

2kBT

]2

. (1)For QO in the thermostat we found [4℄ the wave funtion in TCCS satisfyingthis relation has the form
ψ(q) = [2π(∆q)2]−1/4 exp

{
− q2

4(∆q)2
(1 − iα)

}
, (2)where the oe�ient α and the oordinate dispersion are

α =

[
sinh

~ω

2kBT

]−1

; (3)
(∆q)2 =

~

2mω
coth

~ω

2kBT
. (4)We will interpret ψ(q) as some surfae in the Hilbert spae of TCCS. To thisend we onsider the parameters as some e�etive oordinates in the two-dimensional Riemannian spae. The hoie of parameters being non-unique,we review only one possible variant.Let us represent ψ(q) as a ray in the projetive Hilbert spae putting

ψ(q) ≡ ψ(s1s2) = γs1 exp{−βq2(s41 − is2)}. (5)Here s1, s2 are e�etive oordinates of the Riemannian spae
s1 =

[
coth

~ω

2kBT

]−1/4

; (6)
s2 =

[
cosh

~ω

2kBT

]−1 (7)84



and onstants are
γ =

[
π~

mω

]−1/4

; β =
mω

2~
. (8)Following [1℄let us introdue the gauge-invariant metri tensor

gik = γik − βiβk, (9)where
γik = ℜ

〈
∂ψ∗

∂si

∣∣∣∣
∂ψ

∂sk

〉
; (10)

βk = −i 〈ψ∗| ∂ψ
∂sk

〉. (11)III. Some geometrial harateristis of TCCS spaeKnowing the wave funtion ψ(s1, s2) we an �rst of all alulate the om-ponents of the gauge-invariant metri tensor gik using the formulas above.Negleting the details of the alulations we get
β1 = 0; β2 =

1

4
s−4
1 ; (12)

g11 = γ11 = 2s−2
1 ; (13)

g12 = g21 = γ12 = 0; (14)
γ22 =

3

16
s−8
1 ; (15)

g22 = γ22 − β2
2 =

1

8
s−8
1 . (16)Now we alulate the Riemannian metri on the studied surfae in the TCCSspae

dl2 = gik(si, sk)dsidsk, (17)where dl stands for the elementary length of a urve on the surfae ψ(s1, s2).At last the determinant of the metri tensor gik is determined by theformula
g =

1

4
s−10
1 , (18)85



where the tensor g is a diagonal one.Correspondingly we an get the harateristis of sympleti struture
σik = −σki = ℑ

〈
∂ψ∗

∂si

∣∣∣∣
∂ψ

∂sk

〉 (19)In the given ase
σ12 = −σ21 = −1

2
s−5
1 (20)It is interesting that

g = g11g22 = |σ12|2 (21)Note that the main property of all these quantities is the dependene onthe parameter (s1)
−1 in the form (6).One an note that under the temperature variation in the range 0<T<∞the parameter (s1)
−1, where s1 has the form (6), takes values in the range

1 6 s−1
1 6

(
2kBT

~ω

)1/4

. (22)We underline that the dependene on the temperature is the signi�antpeuliarity of the TCCS spae. It should be also realled that the oordinatedispersion (4) so the quantities g11, g22, and σ12 an be expressed throughthe oordinate dispersion of QO as follows
s−4
1 =

2mω

~
(∆q)2. (23)Thus we establish the relation between features of the TCCS spae and�utuations of physial harateristis in non-lassial Physis.IV. Connetion oe�ients and the Riemann-Christo�el tensorTo alulate a urvature in 2-dimensional Riemannian spae under the ho-sen parameterization let us �rst alulate onnetion oe�ients. Beausethe metri is non-degenerate, i.e. det gij 6≡ 0, there exists a unique onne-tion that is symmetri and onsistent with metri gij .86



It is de�ned as follows [5,6℄:
Γij,k =

1

2

(
∂gjk

∂si
+
∂gik

∂sj
− ∂gij

∂sk

)
. (24)In our ase only three onnetion oe�ients are not trivial:

Γ11,1 =
1

2

∂g11
∂s1

= 2s−3
1 ; (25)

Γ22,1 = − 1

2

∂g22
∂s1

=
1

2
s−9
1 ; (26)

Γ12,2 =
1

2

∂g22
∂s1

= −1

2
s−9
1 . (27)They depend on the temperature through the expressions (6) for oordinate

s1 of e�etive Riemannian spae and (4) for oordinate dispersion QO inthe thermostat.Knowing the quantities Γij,k one an alulate omponents of the Riemann-Christo�el tensor
Rmlkj = gmiR

i
lkj = gmi

(
∂Γi

lj

∂sk
− ∂Γi

lk

∂sj
+ Γi

nkΓ
n
lj − Γi

njΓ
n
lk

)
, (28)where it is neessary to take into aount the expression

Γi,kl = gimΓm
kl. (29)In the 2-dimensional ase from the symmetry of the Riemann-Christo�eltensor follows that its unique omponent is

R2112 = −∂Γ12,2

∂s1
− Γ11,iΓ22,jg

ij + Γ12,iΓ12,jg
ij . (30)If one inserts the obtained quantities in this formula one gets

R2112 = −∂Γ12,2

∂s1
− Γ11,1Γ22,1 g

11 + Γ12,2Γ12,2 g
22. (31)Taking into aount that g11 = 1/g11 and g22 = 1/g22 one an �nally obtain

R2112 = −9

2
s−10
1 +

1

2
s−10
1 + 2s−10

1 = −2s−10
1 , (32)87



where the dependene on temperature appears again through oordinatedispersion.Finally, from the formulas above one an alulate the Gaussian salarurvature K:
K =

R2112

g
= −8. (33)It should be underlined that the urvature of the TCCS spae at the pointassoiated with the normalized state in the projetive Hilbert spae is on-stant and negative. This metri orresponds to geometrial features of hy-perboloid. V. ConlusionLet us summarize our geometri results and make some physial omments.If we �x some set of the wave funtion harateristis for QO in ther-mostat, we an use its geometrial interpretation as a surfae in the TCCSspae.In this ase suh features of the spae as metri tensor omponents,onnetion oe�ients, and omponents of the Riemann-Christo�el tensordepend on oordinate dispersion assoiated with the thermostat tempera-ture.The Gaussian salar urvature of the surfae assoiated with the wavefuntion is onstant and negative. We laim that this result shows resem-blane to that obtained earlier [1℄ for the same ase by group-theoretialmethod.We hope that our results will be useful for establishing of similaritybetween the properties of events spae in lassial and those of the statesspae in non-lassial Physis.88
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ACTA PHYSICA DEBRECINA XLII, 90 (2008)GEOMETRICAL MODEL WITH TWO EXPONENTS FORDESCRIBING THE PROTON-PROTON SCATTERING ATHIGH ENERGIESZ. TarisInstitute of Eletron Physis, Ukrainian National Aademy of Sienes,Uzhgorod, UkraineAbstratA dipole model of pomeron with two independent exponentsis suggested. It is shown that the appearane of the minimaand maxima observed experimentally in the di�erential ross-setions of elasti pp-sattering at high energies ould be de-sribed within the framework of the above model. The modelis analyzed; the limitations for its ertain parameters are ob-tained. I. IntrodutionThe experimental di�erential ross-setions of elasti pp-sattering for mo-mentum transfer 0.5 < |t| < 14 GeV2 (energy √
s = 23.5− 62 GeV) demon-strate di�erent minima and maxima. These extrema shift slowly to lower

|t| with inreasing energy. In [1-3℄, an elegant model was proposed and theabove behavior of ross-setions has been satisfatorily desribed. The ad-vantage of the model is its simpliity (it inludes only the dipole pomeron)and a small number of parameters (four), whih an be �tted from exper-iments. However, its shortoming is that it leads to a dereasing ratio of
σel/σtot, whih tends to an asymptoti onstant value.The model [3, 4℄ inludes a triple pomeron and, therefore, it breaks theunitarity. However, due to a large number of parameters (10-20), this model



desribes perfetly the above minima, maxima and the σel/σtot ratio.Here a dipole pomeron model is suggested ontaining two exponentialterms dependent on t. In this model, the minima and the maxima of thedi�erential ross-setions for the elasti pp-sattering appear as well. Inaddition, it imposes several restritions on the parameters and allows oneto determine those values of √s, for whih the extrema would appear ordisappear. II. Dipole model with one exponentAn ansatz for the dipole pomeron amplitude has a geometrial form [2,3℄
u(s, t) = isg0

(
c1R

2
1 exp(R2

1t) + c2R
2
2 exp(R2

2t)
)
,where radii R1,2 depend on the energy; g0, c1 and c2 are onstants. Makingknown transformations of this amplitude, performing some substitutionsand hoosing de�nitely the onstants c1, c2 [2℄, one obtains [3℄

T (s, t) = A

(
−i s
s0

)α(t) {[
1 +

1

b
ln

(
−i s
s0

)]
eb[α(t)−1] − γ ln

(
−i s
s0

)}
,(1)where A, b, γ are the onstants or parameters. s0 an be hosen as a di-mensionality parameter: s0 = 1 GeV2. The pomeron trajetory was hosenin a linear form:

α(t) = 1 + α′t. (2)In this model, simple formulae were obtained [2℄ for the positions of theminima and maxima as well as for their behavior.III. Dipole model with two exponentsThe amplitude with two exponents for pp (p̄p̄)-sattering is also hosen ina simple form:
P (s, t) = isg0

[
eat + cebt ln

(
−i s
s0

)](
−i s
s0

)α(t)−1

, (3)91



Figure 1: Di�erential ross-setions of elasti pp-sattering.where g0, a, b, c are the onstants and s0 = 1 GeV2.Here the amplitude (3) is normalized in suh a way that the di�erentialand total ross-setions ould be alulated by the following formulae:
dσel

dt
=

π

s2
|P (s, t)|2, (4)

σtot =
4π

s
ImP (s, t = 0). (5)For the elasti di�erential ross-setion we obtain an expression:

dσel

dt
=
πg2

s2

[(
eat + cebt ln

s

s0

)2

+
(πc

2

)2
e2bt

](
s

s0

)2α(t)

, (6)92



where substitution g = g0s0 was made. The total ross-setion is given bythe following formula:
σtot = −4πg

s0

(
1 + c ln

s

s0

)
. (7)IV. Extrema in di�erential ross-setionsHere we also hoose a linear pomeron trajetory (2). Let us �nd the extremaof the di�erential ross-setion (6) on t. The extremal points should beobtained from the following equation:

(a+α′L)e2at + cL(a+ b+2α′L)e(a+b)t +

[
c2(b+ α′L)

(
L2 +

π2

4

)]
e2bt = 0,(8)where L = ln(s/s0). Multiplying this equation by e−2bt and introduing anew variable

x = e(a−b)t, (9)we obtain
(a+ α′L)x2 + cL(a+ b+ 2α′L)x+ c2(b+ α′L)

(
L2 +

π2

4

)
= 0. (10)The solutions are

x± = − c

2(a+α′L)

[
L(a+b+2α′L) ±

√
L2(a−b)2−π2(a+α′L)(b+α′L)

]
.(11)Let us analyze formula (11). First note that for the pomeron trajetoryslope we hose here α′ = 0.25 GeV−2 and, from experiment, c > 0. Withthis α′ aepted in the most of papers a large number of experimental datawere desribed not only for pp- and pp̄-sattering but also for other high-energy proesses. We notie that our amplitude re�ets the situation whenthe pomeron gives a main ontribution to the physial values, whih hara-terize the proesses. This statement is orret beginning from the energies√

s ∼ 4 − 5 GeV. Thus, L ≥ 0.One an see from expression (9) that the physial values of x are posi-tive. On the other hand, to let the minima and the maxima our in the93



di�erential ross-setion, the determinant of equation (10) must be positive.We require for all L ≥ 0

L2(a− b)2 − π2(a+ α′L)(b+ α′L) > 0. (12)The left-hand part of inequality (12) ould be onsidered a positively de�nedfuntion of L:
f(L) = [(a− b)2 − (πα′)2]L2 − π2α′(a+ b)L− π2ab > 0. (13)It is obvious that

(a− b)2 − (πα′)2 > 0. (14)Inequality (13) must be valid for L = 0 as well. Thus,
−π2ab > 0. (15)Not restriting the generality, we an hoose a > 0 and b < 0. Then itfollows from (14) that

a+ b > 0, a > |b|. (16)The funtion f(L) has a minimum at
Lmin =

π2α′(a+ b)

2[(a− b)2 − (πα′)2]
, (17)i.e., in fat, Lmin > 0. It is obvious that the minimal value is

f(Lmin) = −π2ab
π2α′2(a+ b)2

2[(a− b)2 − (πα′)2]
> 0. (18)This inequality may be represented in a following form

a|b| − π2α′2(a− |b|)2
4[(a + |b|)2 − (πα′)2]

> 0. (19)Hene, it follows
(a+ |b|)2(4a|b| − π2α′2) > 0, (20)i.e.

4a|b| > (πα′)2, (21)94



or
a|b| > (πα′/2)2 = 0.15. (22)In the physial region, t ≤ 0 and 0 < x ≤ 1. From formula (11) we obtainfor L = 0

x0 = − c

2a

(
±
√
π2a|b|

) (23)i.e. the physial solution is obtained by hoosing the minus sign. Thus,
πc

2a

√
a|b| ≤ 1 (24)and

|b| ≤ 4a

(πc)2
. (25)So, the onstant b satis�es the following inequalities

(
πα′

2
√
a

)2

< |b| ≤ 4a

(πc)2
. (26)From this expression the lower limit for the onstant a results:

a >
π2α′|c|

4
. (27)It is seen from (22) and (11) that for some L = L1 the value of x− beomeszero and for L > L1 the solution is x− < 0. The equation for L1 has a form

(4L2
1 + π2)(a+ α′L1)(b+ α′L1) = 0, (28)and from here we obtain

L1 =
|b|
α′
. (29)Thus, for L ≥ L1 the extrema vanish. This fat on�rms the data for

p̄p-sattering obtained up to √
s = 546 GeV.The author would like to thank László Jenkovszky for helpful disussions.95
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ACTA PHYSICA DEBRECINA XLII, 97 (2008)THE FRENET APPARATUS OF NULL CURVE AND THENULL HELIX IN RM+2
1A. Alt�nHaettepe University, Beytepe Ankara TurkeyAbstratIn this work we alulated the Frenet apparatus of a nullurve C in Rm+2

1 in terms of the Frenet apparatus of the urve
C∗ whih is the orthogonal projetion of C on Rm+1. We alsogive the theorems whih provides some information about a nullhelix. If C is a null helix then it must be ontained in a fourdimensional subspae in Rm+2

1 .I. PreliminariesThe smooth urve C = α(I) in a semi-Riemannian manifold (Mm+2, g) issaid to be a null urve if the veloity vetor to C at any point is a nullvetor.Let TC be the tangent bundle of C and TC⊥ = ∪t∈ITα(t)C
⊥, where

Tα(t)C
⊥ = {Vα(t) ∈ Tα(t)M : g(Vα(t), α

′(t)) = 0}.At eah point α(t), we hoose a omplementary vetor spae to Tα(t)Cin Tα(t)C
⊥. Denote by S(Tα(t)C

⊥), this hosen subspae. Hene, we get avetor bundle S(TC⊥) on α. Sine
TC⊥ = TC⊥S(TC⊥),

S(TC⊥) is a vetor bundle of rank m. The non-degenerate vetor bundle
S(TC⊥) is alled a sreen vetor bundle of C. Therefore we have

TM |C= S(TC⊥)⊥S(TC⊥)⊥ (1)



where S(TC⊥)⊥ is a omplementary orthogonal vetor bundle to S(TC⊥)in TM |C .Theorem 1.1. Let C be a null urve of a proper semi-Riemannianmanifold (M,g) and S(TC⊥) be a sreen vetor bundle of C. Then thereexists a unique vetor bundle ntr(C) over C of rank 1, suh that on eahoordinate neighbourhood U ⊂ C there is a unique N ∈ Γ(ntr(C) |U )satisfying
g(α′(t), N) = 1, g(N,N) = 0, g(N,X) = 0, ∀X ∈ Γ(S(TC⊥) |U . (2)Consider

tr(C) = ntr(C)⊥S(TC⊥),from (1), (2) then we have the following sum
TM |C= TC⊕tr(C) = (TC⊕ntr(C))⊥S(TC⊥). (3)The vetor �eld N , whih was onstruted in this theorem, is said to be thenull transversal vetor �eld of C with respet to α′ [3.p.53℄. A null urve Cin Rm+2

1 is given loally by the equation of the following form
α(s) = (s,

∫ s

0
α1, ...,

∫ s

0
αm+1), (4)where, α1 = cosb1(s)ds + c1, αa = cosba(s)
∏a−1

k=1 sinbk(s)ds + ca, a ∈
{2, ...,m}, αm+1 =

∏m
k=1 sinbk(s)ds+cm+1, ck ∈ R, bk are smooth funtionsfor any k ∈ {1, ...,m}, and s is the ar-length of the orthogonal projetion

C∗ = α∗(I) of C on Rm+1 give by, [3,p.73℄,
α∗(t) = {α∗

1(t), α
∗
2(t), ..., α

∗
m+1(t)}.In this paper, we mean by αl's, (1 ≤ l ≤ r) the derivatives of the urve α.Let α∗ be a regular urve in Rm+1 and ψ = {(α∗)′(t), (α∗)′′(t), ..., α∗r(t)}be a maximal linearly independent set. The orthonormal system {V1(t),

V2(t), . . ., Vr(t)} an be obtained from ψ. This is alled a Frenet frame atthe point α∗(t), [4℄.Defnition 1.2. Let α∗ be a regular urve in Rm+1 and {V1(t), V2(t),
. . ., Vr(t)} be the Frenet frame at the point α∗(t).98



The funtions ki : I −→ R de�ned by
ki(t) = g(V ′

i (t), Vi+1(t)), 1 ≤ i ≤ r − 1 (5)are alled urvature funtions on α∗. Moreover, the real number ki(t) isalled the i− th urvature on α∗ at the point α∗(t).Theorem 1.3. Let α∗ be a unit speed urve in Rm+1 and the set
{V1(t), V2(t), ..., Vr(t)} be the Frenet frame at the point α∗(t). Then, thefollowings hold, [7,p.194℄,

V ′
1(t) = k1(t)V2(t), (6)
V ′

i (t) = −ki−1(t)Vi−1(t) + ki(t)Vi+1(t), 1 < i < r, (7)
V ′

r (t) = −kr−1(t)Vr−1(t). (8)2. HelixTheorem 2.1. Let α and α∗ be the urves as in equation (4) and
{V1, V2, ..., Vr}, {k1, k2, ..., kr−1} be Frenet �elds and urvature funtions ofurve α∗ respetively. Then, α is a null urve in Rr+1

1 . More over if wehoose S(TC⊥) spanned by {W2, ...,Wr}, then we have the null transversalvetor �eld N = 1
2(−1, V1), and the Frenet equations are

α′′ = k1W2

N ′ =
1

2
k1W2

(W2)
′ = −1

2
k1α

′ − k1N + k2W3

(W3)′ = −k2W2 + k3W4

(W4)
′ = −k3W3 + k4W5

...............................

(Wr−1)
′ = −kr−2Wr−2 + kr−1Wr

(Wr)
′ = −kr−1Wr−1, (9)where

Wj = (0, Vj) j ∈ {2, ..., r} (10)99



and the Frenet frame is F = {α′, N,W2, ...,Wr} on Rr+1
1 along α.Proof. From (4) we have

α′ = (1, (α∗)′), αj = (0, (α∗)j), j ≥ 2.Therefore {α′, α′′, ..., αr} , r ≤ m+ 1 is the maximal linearly independentset. Sine α∗ has at most (r-1) non zero urvatures, α∗ is ontained in Rr.Therefore α is also ontained in Rr
1.We hoose S(TC⊥) = span{W2, ...,Wr} and a omplementary vetorbundle H to TC in S(TC⊥),

Y = (0, (α∗)′) ∈ Γ(H |U ) and g(α′, Y ) 6≡ 0 on U . We alulated the nulltransversal vetor �eld and found that
N =

1

g(α′, Y )
{Y − g(Y, Y )

2g(α′, Y )
α′} =

1

2
(−1, (α∗)′).Sine (α∗)′ = V1, we have

α′ = (1, V1), N =
1

2
(−1, V1). (11)We di�erentiate (10), (11) and by using (6), (7), (8) we obtain (9).By the ideas in [5, p.73] and [6, p.160] , a helix is de�ned as a urve whihhas a onstant salar produt of its tangent vetor �eld and a onstantvetor �eld.We now give the de�nition of a null helix in semi-Eulidean spae Rm+2

1in a similar way to [2℄, as follows.De�nition 2.2. Let α be a null urve in Rm+2
1 and X be a non zeroonstant vetor �eld. If

g(α′(t),X) = onstant 6≡ 0, for all t ∈ I,then, α is said to be a null helix in Rm+2
1 and span {X} is said to be theinlination axes of α,Example 2.3.100



α : R −→ R3
1 be the urve difened by
α(t) = (

4

3
t3 + t, 2t2,

4

3
t3 − t), X = (1, 0, 1)Example 2.4. Let a, σ, ρ, ω, d be non-zero onstants, b be onstant andlet α : R −→ R5

1 be the urve difened by
α(t) = (at+ b,

1

ρ
σcosρt,

1

ρ
σsinρt,

1

ω
dcosωt,

1

ω
dcosωt), X = (1, 0, 0, 0, 0)where a2 = σ2 + d2.De�nition 2.5. Suppose that k1, k2, ..., kn−1 are urvature funtions ofa urve α. A funtion Hi : I −→ R de�ned by

Hi(t) =

{
k1(t)
k2(t) , if i = 1
1

ki+1(t)
{H ′

i−1(t) + ki(t)Hi−2(t)}, if 2 ≤ i ≤ n− 2
(12)is alled the i− th harmoni urvature funtion of α.Lemma 2.6. Let α be a null helix in Rm+2

1 , span{X} be the inlinationaxes, {α′, N,W2, ...,Wr+2} be the Frenet frame �elds of α and let Π be theorthogonal projetion of Rm+2
1 onto the spae span {α′, N,W2, ...,Wr+2} .If r < m, then span{Π(X)} is the inlination axes in span{α′, N , W2, . . .,

Wr+2}.Proof. We an hoose {α′, N,W2, ...,Wr+2, w1, ..., wm−(r+2)

} as an qua-si-orthonormal basis of Rm+2
1 . In this ase

X = x0α
′ + x1N +

r+2∑

i=2

xiWi +

m−(r+2)∑

j=1

bjwj ,

Π(X) = x0α
′ + x1N +

r+2∑

i=2

xiWi.Sine g(
∑m−(r+2)

j=1 bjwj , α
′) = 0 and g(X,α′) = onstant 6≡ 0, we have

g(x0α
′ + x1N +

r+2∑

i=2

xiWi, α
′) = onstant 6≡ 0 101



Sine span{X} is inlination axes, then Π(X) is also non zero and onstant.Theorem 2.7. Let α be a urve in Rm+2
1 with the Frenet frame �eld

{α′, N,W2, ...,Wr} and with harmoni urvatures H1,H2, ...,Hr−2, r ≤ m.Then, α is a null helix in Rm+2
1 if and only if Hi 's are onstant and x1 6≡ 0.Theorem 2.8. There is a relation between urvatures and harmoniurvatures of a urve in Rm+2

1 as follows.
kr =

(
∑r−2

i=1 H
2
i )′

2Hr−1Hr−2
, 3 ≤ r ≤ m− 1 (13)Consequently, ombining (12), (13) and theorem 2.7 we an give our maintheorem.Theorem 2.9. The urve α is a null helix in Rm+2

1 if and only if and
kj = 0 for j ≥ 3.As a onsequene of this theorem we obtain the following.Corollary 2.10. if α is null helix then α is ontained in a four dimen-sional subspaes in Rm+2

1 . Referenes[1℄ A. Altin, Harmoni urvatures of null urves and the null helix inR(m+2,1), International Matematial Forum, 2 22, 1069 (2007).[2℄ A. Altin, Harmoni Curvatures of Non Null Curves and the Helix in
Rn

v , Haettepe Bulletin of Natural Sienes and Engineering 30, 55(2001).[3℄ K. L. Duggal, A. Bejanu, Lightlike Submanifolds of Semi-RiemannianManifolds and Appliations (Kluwer Aademi Publishers Group, Dor-dreht, The Netherlands, 1996).[4℄ H. Gluk, Higher Curvatures of urves in Eulidean spae, AmerianMth. Month. 73, 699 (1966).102



[5℄ A. Goetz, Introdution to Di�erential Geometry, (Addison Wesley Pub-lishing Company, 1970).[6℄ H. W. Guggenheimer, Di�erential Geometry, (M Graw-Hill BookCompany, in, 1963).[7℄ H. H. Haisaliho�glu, Diferensiyel Geometri, (�nönü Üniversitesi FenEdebiyat Fakültesi Yayinlari, 1983).
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ACTA PHYSICA DEBRECINA XLII, 104 (2008)ON ISOMETRIC IMMERSIONS OF N-DIMENSIONALLOBACHEVSKY SPACE INTO (2N-1)-DIMENSIONALEUCLIDEAN SPACEY. AminovB.I. Verkin Institute for Low TemperaturePhysis and Engineering of NAS of Ukraine, KharkivAbstratIn this work some theorems about isometri immersions ofthe Lobahevsky spae into Eulidean spae are presented.I. IntrodutionThe study of isometri immersions of n-dimensional Lobahevsky spae Lninto Eulidean spae E2n−1 from the loal and global points of view isonsidered in the author's papers [1℄ - [10℄ . In this diretion for n > 2there exist also the works by E.Cartan, A.Liber, J.D.Moore, K.Tenenblat,C.-L.Terng, F.Xavier and others.Let Fn be a regular submanifold in E2n−1 isometri to some simpleonneted domain of the Lobahevsky spae Ln with a urvature equal to-1. In terms of urvature oordinates the metri form of Fn an be writtenin the form
ds2 =

n∑

i=1

sin2 σi(du
i)2,

n∑

i=1

sin2 σi = 1. (1)The funtions σi satisfy some system of nonlinear di�erential equations.



For onveniene we shall use the following notation:
Hi = sinσi, βij =

1

Hi

∂Hj

∂ui
, i 6= j.For a regular immersion Hi > 0. Then the following system of di�erentialequations desribes the isometri immersions of the Lobahevsky spae Lninto E2n−1

∂Hj

∂ui
= βijHi,

∂βij

∂uj
+
∂βji

∂ui
+
∑

q

βiqβjq = 0,

∂Hi

∂ui
= −

∑

q

βiqHq,
∂βij

∂ui
+
∂βji

∂uj
+
∑

q

βqiβqj = HiHj ,

∂βij

∂uk
= βikβkj , where i 6= j 6= k 6= i.This system is ompletely integrable and is a generalization of well-known"sin-Gordon" equation.It is natural to all it the system "Lobahevsky-Eulid" or brie�y "LE-system". The solution of this system depends on n(n− 1) analytial fun-tions of one variable. II. SetionOn the Grassmann image of an immersionLet Nk be some k-dimensional subspae in En+k through the �xed point

O. Let e1, ..., en+k be a �xed orthonormal frame in En+k. We take in Nksome orthonormal frame, whih onsists of unit vetors ξ1, ..., ξk and let ξj
ibe the oordinates of ξi with respet to e1, ..., en+k. We all the followingquantities the Plüker oordinates of Nk

pi1...ik =

∣∣∣∣∣∣

ξi1
1 ... ξik

1

... ... ...

ξi1
k ... ξik

k

∣∣∣∣∣∣
. 105



Plüker oordinates pi1...ik are omponents of the simple polyvetor p =
[ξ1, ..., ξk] generated by the vetors ξ1, ..., ξk. Well ordered set of these om-ponents with ondition i1 < i2... < ik gives us a point P in the Eulideanspae Em, where m = Ck

n+k. Sine we onsider the Grassmann manifold
Gk,n+k as some submanifold of Em we an introdue to Gk,n+k a metri
dσ2, whih is indued by ambient spae Em

dσ2 =
∑

i1,...<ik

(dpi1...ik)2.Let Fn be a regular submanifold in the Eulidean spae En+k with the posi-tion vetor r = r(u1, ..., un) and urvilinear oordinates u1, ..., un.Grassmannmap ψ : Fn → Gn−1,2n−1 orrelates the (n-1)-dimensional spae N passingthrough some �xed point O ∈ E2n−1 with every point x ∈ Fn, the spae Nbeing parallel to normal spae Nx of Fn at the point x (i.e. it orrespondsto every point x some point of Grassmann manifold Gn−1,2n−1). The imageof this map ψ(Fn) we denote Γn. The Grassmann mapping ψ transfers o-ordinates from Fn onto the image Γn. So we an write the position vetorof a point of Γ as a vetor-funtion
p = p(u1, ..., un).By using of the Weingarten deomposition we an obtain for the metri dl2of the Grassmann image Γn the following expression

dl2 = dp2 =

k∑

α=1

Lα
ilL

α
jsg

lsduiduj ,where Lα
il are the oe�ients of the seond fundamental form of Fn withrespet to its normal vetor ξα. If Fn is a regular immersion of some do-main of the Lobahevsky spae Ln into E2n−1 and u1, ..., un are urvatureoordinates, so in these oordinates the metri of Γn is written as follows[2℄

dl2 =

n∑

i=1

cos2 σi(du
i)2,

2∑

i=1

cos2 σi = n− 1. (2)From here we obtain106



The sum of the metri of a Lobahevsky spae and its Grassmann imageis the �at metri
ds2 + dl2 = (du1)2 + ...+ (dun)2.From the expression of dl2 it follows also that Γn is a regular n-dimensionalsubmanifold. The map for n > 2 inreases the volume of any domain of Fnand the length of any asymptoti line.It is well known that does not exist loal isometri immersions of an-dimensional Riemannian spae with negative urvature into E2n−2. Mul-tidimensional analogy of the pseudosphere is an example of isometri im-mersion of domain of the Lobahevsky spae Ln into E2n−1.Remember, that for n = 2 it has plae the Hilbert theorem about nonex-istene isometri immersion of omplete Lobahevsky plane into E3. Multi-dimensional analogy of this theorem is open question. We an give answeronly under some additional onditions.The properties of the Grassmann image imply the following resultTheorem 1. If the Grassmann image Γn lies on a losed n-dimensionalmanifold and if the Grassmann map is �nite-to-one, then the immersion ofthe full spae Ln in E2n−1 has singularities.It is interesting to investigate di�erent lasses of immersions. One ofsuh lasses for n = 3 arises on ondition that the Garssmann image ishyperplanar, i.e. Γ3 ⊂ E9.(In the general ase Γ3 ⊂ E10.) In this asethe Plüker oordinates of points of the Grassmann image satisfy the linearequation ∑

i<j

aijp
ij + α = 0,where aij and α are onstant numbers.The existene of loal isometri immersions with the hyperplanar Grass-mann image is proved. In this ase the author found the onnetion of thetheory of isometri immersion with the theory of rigid body rotation with a�xed point in the entral �eld of gravity and the Newton Law of gravity [3℄.107



We show that the set of equations for isometri immersion of L3 into E5 inthis ase has as subset the Kirhho� equations
dH

dt
= [FH],

dFi

dt
= Ci(FjFk − ǫHjHk), i, j, k 6=where H = {Hi}, F = {Fi} are 3-dimensional vetors, Ci and ǫ areonstant,[ ] is the vetor produt in E3. We obtain some number of the�rst integrals. From existene of these integrals it followsEvery solution H of the system for isometri immersions of L3 into E5with hyperp�at Grassmann image in general ase is de�nite and analytialover all parameter spae u1, u2, u3.This statement does not guarantee that a orresponding immersion ofomplete spae L3 into E5 is regular beause there the points of Hi = 0and Hi < 0 may our.In some subases the theorems about nonimmersion of full Lobahevskyspae are proved.The following question arises in a natural way: an the metri of theGrassmann image have a onstant urvature ? The answer to this questionfor n = 3 is given in [6℄.Theorem 2. There is no loal C3 isometri immersion of L3 into E5with onstant urvature of the metri of the Grassmann image.III. SetionOn a family of submanifolds with a onstant negative urvatureIn [10℄ we onsider a (n − 1)- parametri family of submanifolds Fn in

E2n−1 with a onstant negative urvature K0(F
n) in a ball D of the Eu-lidean spae E2n−1. We suppose that this family is inluded in some (2n-1)-orthogonal oordinate system u1, ..., u2n−1 as a family of oordinate sub-manifolds un+1 = const, ..., u2n−1 = const. The author alls this system theBianhi system of oordinates, if the �rst n oe�ients H2

i of the metri108



form of the ambient spae satisfy the following ondition
n∑

i=1

H2
i = 1. (3)Bianhi shows for n = 2 that the ondition (3) satis�ed automatially.The author has proved for n = 3 that for proving the next theorem it willsu�e to demand the ondition (3) only on two oordinate urves u4, u5going through the enter of the ball D. Besides, remark that on eah sub-manifold Fn one an introdue the urvature oordinates, for whih theondition (3) is true. In the paper [10℄ proved isTheorem 3. Assume that a ball of radius ρ in the Eulidean spae

E2n−1 arries a regular Bianhi system of oordinates suh that K0(F
n) ≤

−1. Then
ρ ≤ π

4
.There exists an example of a regular Bianhi system in a ball D ⊂ E3with radius ρ = 1

2 .As Fn is the submanifold with the �at normal onnetion, then on Fnthere exists a �eld ξ of normal unit vetors parallel translated in the normalbundle. With the help of this �eld ξ we onstrut a map ϕ : Fn → S2n−2 ofthe submanifold Fn into the unit sphere S2n−2. We all the map ϕ spherialand denote its image T (ξ). The metri of T (ξ) has the following form:
(dξ)2 =

n∑

i=1

cos2 σi cos
2 ϕi(du

i)2, (4)where ϕi is an angle between ξ and i-th prinipal vetor of normal urvature
ki, i = 1, ..., n. In the general ase the spherial image annot be regularand, moreover, it an degenerate in a submanifold of lower dimension than
n. We found a urvature tensor of the spherial image and proved a saddleharater of spherial image, whih onsidered as a submanifold in S2n−2.109



Theorem 4. Under a spherial mapping the urvature lines are trans-lated on the urvature lines of the spherial image, the asymptoti lines aretranslated on the asymptoti lines of submanifold T (ξ) ⊂ S2n−2. The lengthof asymptoti lines is preserved under this mapping.IV. SetionSome new results with odimension > n-1.In 1960 E.R Rozendorn in the work [11℄ onstruts isometri immersion ofomplete Lobahevsky plane L2 into E5. His method is modi�ation of themethod of D.Blanusa, who gave the imbedding of L2 into E6(1954).I investigate extrinsi-geometrial properties of the Rozendorn surfaeand proved the following theoremTheorem 5. The modul of the mean urvature vetor H on the Rozen-dorn surfae L2 → E5 is bounded from above
|H| ≤ const.In the work [12℄ D.V.Bolotov proved that does not exist a regular isomet-ri immersion of Ln into Eulidean spae En+m with �at normal onnetionand with |H| ≤ const. Referenes[1℄ Y.A. Aminov, On the immersion of domains of n-dimensionalLobahevsky spae in (2n-1)-dimensional Eulidean spae, Soviet Mat.Dokl. 18, 5 (1977).[2℄ Y.A.Aminov, Isometri immersions of domains of n-dimensionalLobahevsky spae in (2n-1)-dimensional Eulidean spae, Math.USSRSbornik 39, 3 (1981).110



[3℄ Y.A.Aminov, Isometri immersions of domains of three-dimensionalLobahevsky spae in �ve-dimensional Eulidean spae and the motionof a rigid body, Math.USSR Sbornik 50, 1 (1985).[4℄ Y.A.Aminov, The property of the Grassmann image of loal immersionof three-dimensional Lobahevsky spae into �ve-dimensional Eulideanspae (Russian), Ukrainian geometrial Sbornik 27, 1 (1984).[5℄ Y.A.Aminov, Isometri immersions with �at normal onnetion of do-mains of n-dimensional Lobahevsky spae into Eulidean spaes. Amodel of a gauge �eld, Math.USSR Sbornik 65, 2 (1990).[6℄ Y.A.Aminov, Geometry of the Grassmann image of a loal isometriimmersions of Lobahevsky n-dimensional spae in (2n-1)-dimensionalEulidean spae, Matematiheskii Sbornik 188, 1 (1997).[7℄ Y.A.Aminov,New Ideas in Di�erential Geometry of submanifolds Ata,Kharkiv., 2000.[8℄ Y.A.Aminov,The Geometry of Submanifolds Gordon and Breah Aa-demi Publishing House,Amsterdam., 2001.[9℄ Y.A.Aminov, The expression of volume of asymptoti parallelepiped(Russian), Math. �zika, analiz, geometria 9, 4 (2002).[10℄ Y.A.Aminov, Families of submanifolds of onstant negative urvatureof many-dimensional Eulidean spae, Matematiheski Sbornik 197,2 (2006).[11℄ E.R.Rozendorn, The realization of the metri ds2 = du2 + f2(u)dv2 in�ve-dimensional Eulidean spae, Doklady of the Aademy of Sienesof the Armenian SSR 30, 4 (1960).[12℄ D.V.Bolotov, On isometri immersion with �at normal onnetion ofthe Lobahevsky spae Ln into Eulidean spae En+m, Matem. Zametki82, 1 ( 2007).
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ACTA PHYSICA DEBRECINA XLII, 112 (2008)NON-EUCLIDEAN GEOMETRY IN OBSERVER'SMATHEMATICSD. Khots1, B. Khots2
1 3710 S. 202nd Avenue Omaha NE, 68130, USA
2 4725 121st Street Des Moines, IA 50323, USAAbstratThis work onsiders Geometrial and Physial aspets in asetting of arithmeti provided by Observer's Mathematis (seewww.mathrelativity.om). We prove that Eulidean Geome-try works in su�iently small neighborhood of a given line, butwhen we enlarge the neighborhood, non-Eulidean Geometrytakes over. We given an analog of the Lorentz Transform. Weprove that the physial speed is a random variable, whih an-not exeed some onstant, and this onstant does not dependon an inertial oordinate system. Certain results and ommu-niations pertaining to these theorems are also provided.AMS Subjet Classi�ation: 51P05, 81T99Key Words and Phrases: Observer, Geometry, arithmeti, derivative,Lorentz I. IntrodutionThe following disussion is based on the work introdued in [1℄. Furtherinformation an also be found in [2℄ and [3℄. We onsider a �nite well-ordered system of observers, where eah observer sees the real numbers asthe set of all in�nite deimal frations. The observers are ordered by theirlevel of �depth�, i.e. eah observer has a depth number (hene, we have the



regular integer ordering), suh that an observer with depth k sees that anobserver with depth n < k sees and deals (to be de�ned below) not withan in�nite set of in�nite deimal frations, but, atually, with a �nite set of�nite deimal frations. We all this set Wn, i.e. it is the set of all deimalfrations, suh that there are at most than n digits in the integer part and ndigits in the deimal part of the fration. Visually, an element in Wn lookslike _ ... _
︸ ︷︷ ︸

n

. _ ... _
︸ ︷︷ ︸

n

. Moreover, an observer with a given depth isunaware (or an only assume the existene) of observers with larger depthvalues and for his purposes, he deals with �in�nity�. These observers arealled naive, with the observer with the lowest depth number � the mostnaive. However, if there is an observer with a higher depth number, hesees that a given observer atually deals with a �nite set of �nite deimalfrations, and so on. Therefore, if we �x an observer, then this observersees the sets Wn1
,. . . , Wnk

with n1 < ... < nk indiating the depth level,and realizes that the orresponding observers see and deal with in�nity.When we talk about observers, we shall always have some �xed observer(alled `us') who oversees all others and realizes that they are naive. The�Wn-observer� is the abbreviation for somebody who deals with Wn whilethinking that he deals with in�nity.The following setions desribe appliation of the idea of relativity inmathematis to various mathematial �elds.II. ArithmetiWe begin by de�ning setsWn whih onsist of all �nite deimal frationssuh that there are at most n digits in the integer part and at most n digitsin the deimal part. That is, the set Wn ontains all elements of the form
a = a0.a1...an where the integer part an be written as a0 = bn−1...b0, where
bn−1, ..., b0, a1, ...., an ∈ {0, 1, ..., 9}. If n < m, then Wn naturally embedsinto Wm by plaing 0's in the n+ 1st through mth deimal plaes. We allthe embedding ϕn,m : Wn → Wm. Here are some examples: let 2.34 ∈ W2and then ϕ2,4 (2.34) = 2.3400 ∈ W4. Similarly, Wm projets onto Wn byutting o� the super�uous digits on the right of the deimal point. Let
ϕm,n : Wm → Wn be the projetion, then, for example, if 45.4301 ∈ W4,113



then ϕ4,2 (45.4301) = 45.43 ∈W2. If the integer part of a fration ontainsmore than n digits, then ϕm,n is not de�ned.Now, given c = c0.c1...cn, d = d0.d1...dn ∈ Wn we endow Wn with thefollowing arithmeti (+n,−n,×n,÷n):De�nition 1. Addition and subtration
c±n d =

{
c± d, if c± d ∈Wnnot de�ned, if c± d /∈Wnand we write ((... (c1 +n c2) ...) +n cN ) =

N∑
i=1

nci for c1, ..., cN i� the ontentsof any parenthesis are in Wn.De�nition 2. Multipliation
c×n d =

n∑
k=0

n
n−k∑
m=0

n0. 0...0︸︷︷︸
k−1

ck · 0. 0...0︸︷︷︸
m−1

dmwhere c, d ≥ 0, c0 · d0 ∈ Wn, 0. 0...0︸︷︷︸
k−1

ck · 0. 0...0︸︷︷︸
m−1

dm is the standard produt,and k = m = 0 means that 0. 0...0︸︷︷︸
k−1

ck = c0 and 0. 0...0︸︷︷︸
m−1

dm = d0. If either
c < 0 or d < 0, then we ompute |c| ×n |d| and de�ne c×n d = ± |c| ×n |d|,where the sign ± is de�ned as usual. Note, if the ontent of at least oneparentheses (in previous formula) is not in Wn, then c×n d is not de�ned.De�nition 3. Division

c÷n d =

{
r, if ∃! r ∈Wn r ×n d = cnot de�ned, if no suh r exists or it is not uniqueLet n = 2, so we are in W2. Here are some examples of elementsof W2: 3.14,−99, 0.1 ∈ W2 and 0.115, 123.9,−100000 /∈ W2. Now, theexamples of arithmeti: 2.08 +2 11.9 = 13.98; (−2.08) +2 11.9 = 9.82;

80 +2 24 = not de�ned; 21.36 −2 0.87 = 20.49; 1.36 −2 16.95 = −15.59;
1.36−2 (−99.95) = not de�ned; 11×2 8 = 88; (−5)×2 19 = −95; 11×2 12 =not de�ned; 3.41 ×2 2.64 = 8.98; 3.41 ×2 (−2.64) = −8.98; 3.41 ×2 42.64 =not de�ned; 99.41 ×2 1.64 = not de�ned; 0.85 ×2 0.02 = 0; 80 ÷2 4 = 20;
1 ÷n 0.5 = not de�ned (sine we get 10 di�erent r's); 1 ÷n 3 = not de�ned(sine no r exists).114



III. DerivativesFrom the point of view of Wn-observer (we will all suh observers"naive", sine they "think" that they "live" in W and deal with W ) areal funtion y of a real variable x, y = y(x), is alled di�erentiable at
x = x0 (see [4℄) if there is a derivative

y′(x0) = lim
x→x0,x 6=x0

y(x) − y(x0)

x− x0What does the above statement mean from point of view ofWm-observerwith m > n? It means that
|(y(x) −n y(x0)) −n (y′(x0) ×n (x−n x0))| ≤ 0. 0 . . . 01︸ ︷︷ ︸

nwhenever
|y(x) −n y(x0)| = 0. 0 . . . 0yl︸ ︷︷ ︸

l

yl+1 . . . ynand
|(x−n x0)| = 0. 0 . . . 0xk︸ ︷︷ ︸

k

xk+1 . . . xnfor 1 ≤ k, l ≤ n, and xk - non-zero digit.We now state the main theorems.Theorem 1. From the point of view of a Wm-observer a derivative alu-lated by a Wn-observer (m > n) is not de�ned uniquely.Proof. Put y′(x0) = ±a0.a1 . . . apap+1 . . . an with a0.a1 . . . apap+1 . . . an

≥ 0 and p ≤ n. Then 0. 0 . . . 0yl︸ ︷︷ ︸
l

yl+1 . . . yn = a0.a1 . . . apap+1 . . . an

×n0. 0 . . . 0xk︸ ︷︷ ︸
k

xk+1. . .xn =a0.a1 . . . apbp+1 . . . bn×n0. 0 . . . 0xk︸ ︷︷ ︸
k

xk+1 . . . xn forany digits bp+1, . . . , bn and p = n − k. Hene y′(x0) ∈ V = {±a0.a1 . . . ap

ap+1 . . . an|ap+1, . . . , an ∈ {0, 1, . . . , 9}} and |V | = 10k. QED. 115



Theorem 2. From the point of view of aWm-observer withm > n, |y′(x0)| ≤
C l,k

n , where C l,k
n ∈Wn is a onstant de�ned only by n, l, k and not dependenton y(x).Proof. We have ±0. 0 . . . 0yl︸ ︷︷ ︸

l

yl+1 . . . yn = (±a0.a1 . . . an)×n (±0. 0 . . . 0xk︸ ︷︷ ︸
k

xk+1 . . . xn) with xk - non-zero digit and a0.a1 . . . apap+1 . . . an ≥ 0. Now,if l > k then a0 = 0; if l = k then a0 ≤ 9 and if l < k then a0 < 9 × 10k−1.Hene
C l,k

n =





1, if l > k
10, if l = k
9 × 10k−1, if l < kQED.Theorem 3. From the point of view of a Wm-observer, when a Wn-observer(with m > n ≥ 3) alulates the seond derivative:

y′′(x0) = lim
x1→x0,x1 6=x0,x2→x0,x2 6=x0,x3→x1,x3 6=x1

y(x3)−y(x1)
(x3−x1)

− y(x2)−y(x0)
x2−x0

x1 − x0we get the following unequality:
(|x2 −n x0| ×n |x3 −n x1|) ×n |x1 −n x0| ≥ 0. 0 . . . 01︸ ︷︷ ︸

nprovided that y′′(x0) 6= 0.Proof. For the Wm-observer existene of y′′(x0) means that |((y(x3) −n

y(x1))×n (x2−nx0)−n ((y(x2)−ny(x0))×n (x2−nx0)))−ny
′′(x0)×n((|x2−n

x0| ×n |x3 −n x1|) ×n |x1 −n x0|)| ≤ 0. 0 . . . 01︸ ︷︷ ︸
n

, whenever
|(x2 −n x0)| ≤ 0.

n︷ ︸︸ ︷
0 . . . 0p︸ ︷︷ ︸

k

∗ . . . ∗and
|(x3 −n x1)| ≤ 0.

n︷ ︸︸ ︷
0 . . . 0q︸ ︷︷ ︸

l

∗ . . . ∗116



and
|(x1 −n x0)| ≤ 0.

n︷ ︸︸ ︷
0 . . . 0r︸ ︷︷ ︸

s

∗ . . . ∗where p, q, r are non-zero digits, asterisks are any digits and 3 ≤ k+l+s ≤ n.Then given y′′(x0) 6= 0 we have (|x2 −n x0| ×n |x3 −n x1|) ×n |x1 −n x0| ≥
0. 0 . . . 01︸ ︷︷ ︸

n

. QED. IV. Physial InterpretationThe following hypotheses illustrate possible physial interpretation ofprevious theorems.Hypotheses 1 Theorem 1 ould o�er an explanation of why physial speed(or aeleration) is not uniquely de�ned and, from the point of view ofa measurement system (observer), it is possible to onsider speed (oraeleration) as a random variable with distribution dependend on themeasurement system. Let v be the speed with v = v0.v1 . . . vn−k+ξn,k
mwhere ξn,k

m ∈ {0. 0 . . . 0︸ ︷︷ ︸
n−k

vn−k+1 . . . vn} - random variable, m > n, andthe distribution funtion is Fn,k
m (x) = P (ξn,k

m < x).Hypotheses 2 Theorem 2 ould o�er an explanation of why the speed ofany physial body annot exeed some onstant, (the speed of light,for example). Independene of this onstant on expliit expression ofspae-time funtion ould o�er an explanation of why the speed oflight does not depend on an inertial oordinate system.Hypotheses 3 Theorem 3 ould o�er an explantion of the various uner-tainty priniples, when a produt of a �nite number of physial vari-ables has to be not less than a ertain onstant. This an be seen notjust from onsideration of seond derivatives, but of any derivative.Hypotheses 4 Theorems 1, 2, and 3 ombined may provide an insight intothe onnetion between lassial and quantum mehanis. 117



V. Nadezhda E�etIn this setion we onsider an open square Q entered at the originwith sides of length 2 loated on a plane Wn × Wn. We will alulatethe distane D between the origin (0, 0) and any point of Q as follows.
D = ρ((0, 0), (x, y)) =

√
x2 + y2 =

√
x×n x+n y ×n y, where √

a = bmeans b×n b = a, x, y ∈ Q, i.e., |x| < 1, |y| < 1.The �gure below ontains an illustration of the fat that for some pointson Wn ×Wn the onept of distane from the origin does not exist; whilefor others it does exist. The illustration below is for n = 3 (Q ⊂W3 ×W3).Points with no distane to the origin are indiated by blak, while pointswhere distane from the origin exists are indiated in white.

This means that the distane D does not always exist, i.e., not everysegment on a plane has a length. This phenomenon ours for all n. Weall the presene of these "blak holes" as the Nadezhda E�et. This e�etgives us new possibilities for disovering physial proesses and developingtheir mathematial models.118
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ACTA PHYSICA DEBRECINA XLII, 120 (2008)POLYHEDRAL SPACE FORMS WITH HYPERBOLIC ANDOTHER METRICSE. MolnárBudapest University of TehnologyEonomis Institute of Mathematis, Department of GeometryAbstratIn earlier works of the author, partly joint with I. Prok and J. Szirmai(e.g. [M92℄, [M97℄, [M05℄, [MPSz06℄), the projetive sphere PSd(R;Vd+1;
Vd+1; +) has been introdued for presentation of polyhedral d-orbifolds and
d-manifolds, mainly in the homogeneous 3-spaes

E3; S3; H3; S2×R; H2×R; S̃L2R; Nil; Sol(Thurston geometries). The main steps an be indiated as follows.1. A projetive simplex oordinate system has to be introdued for thefundamental polyhedron, where the fae pairing generators are ex-pressed by linear mappings upto projetive freedom with some freeparameters.2. The de�ning relations for the symmetry groups (by the indued edgeequivalene lasses) �x some parameters of the generator mappings,by matrix equations, oasionally of high degree.3. We look for a plane-point polarity (or salar produt) for the orthog-onality of planes of a 3-dimensional projetive metri geometry fromthe eight possibilities above. This polarity (i.e. the orthogonality ofplanes) has to be invariant under the generator mappings. These leadto linear matrix equations for the symmetri polarity matrix.



4. The signature of polarity (salar produt, fundamental quadrati form),if it is not trivial, with some additional properties, provides the pos-sible Thurston geometry.5. If the signature is (0;+;+;+), then we obtain Eulidean 3-tiling withexat matries for the generators and the salar produt, possibly withfree parameters. Moreover, by a onventional oordinate system wean reognize the orresponding rystallographi spae group as well.6. Other signatures (e.g. (+;+;+;+) to spherial spae, (−; +;+;+) tohyperboli or Bolyai-Lobahevskii spae) lead to other realizations.Or - if only trivial polarity is possible - then either ertain "splittinge�ets" our, or the famous Thurston onjeture would not be true(!), onsidered still to be open, in general (?).Referenes[M92℄ Molnár, E. (1992) Polyhedron omplexes with simply transitivegroup ations and their realizations. Ata Math. Hungaria, 59 175�216.[M97℄ Molnár, E. (1997) The projetive interpretation of the eight 3-dimensional homogeneous geometries, Beiträge zur Algebra und Ge-ometrie (Contributions to Algebra and Geometry),, 38 No. 2, 261�288.[M05℄ Molnár, E. (2005) Combinatorial onstrution of tilings by baryen-tri simplex orbits (D symbols) and their realizations in Eulidean andother homogeneous spaes, Ata Cryst., A61, 542-552.[MPSz06℄ Molnár, E. � Prok, I. �Szirmai, J. (2006) Classi�ation oftile-transitive 3-simplex tilings and their realizations in homogeneousspaes. Non-Eulidean Geometries, János Bolyai Memorial VolumeEd. Prekopa, A. and Molnár, E. Mathematis and Its Appliations 581,Springer (2006), 321-363.
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ACTA PHYSICA DEBRECINA XLII, 122 (2008)ON NON-EQUIVALENT FUNCTIONAL BASES OFFIRST-ORDER DIFFERENTIAL INVARIANTS OF THENON-CONJUGATE SUBGROUPS OF THE POINCARÉGROUP P (1, 4)V. M. Fedorhuk1, V. I. Fedorhuk2

1 Pedagogial Aademy, Institute of Mathematis, 2 Podhor�a»yh Street, 30-084Kraków, Poland; Pidstryhah Institute of Applied Problems of Mehanis andMathematis, National Ukrainian Aademy of Sienes, 3b Naukova Street,79-053 L'viv, Ukraine
2 Pidstryhah Institute of Applied Problems of Mehanis and Mathematis,National Ukrainian Aademy of Sienes, 3b Naukova Street, 79-053 L'viv,UkraineAbstratThe funtional bases of the �rst-order di�erential invariantsof all non-onjugate subgroups of the Poinaré group P (1, 4)have been divided into lasses of equivalent bases. The numberof all non-equivalent funtional bases has been determined. Theappliation of the results obtained to the onstrution of lassesof the �rst-order di�erential equations in the spae M(1, 3) ×

R(u) invariant under these subgroups is disussed. Amongthose lasses, there are some invariant under the following sub-groups of the group P (1, 4): SO(2), SO(3), E(2), E(3),
SO(1, 3), SO(4), E(4), P (1, 3), SO(1, 4), G̃(1, 3), et.I. IntrodutionIn many ases, mathematial models of various proesses an be de-sribed by means of di�erential equations (linear or nonlinear) in the spaesof di�erent dimensions and di�erent types (Eulidean, non-Eulidean, et.).



It is well known (see, for example, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11℄) thatthe majority of di�erential equations, whih are useful in theoretial andmathematial physis, mehanis, gas dynamis have non-trivial symmetrygroups. For example, in the spae M(1, 3) × R(u), we have the followingequations:1. The Eikonal equation
uµuµ ≡ (u0)

2 − (u1)
2 − (u2)

2 − (u3)
2 = 1,where u = u(x), x = (x0, x1, x2, x3) ∈ M(1, 3), uµ ≡ ∂u

∂xµ
, uµ = gµνuν ,

µ, ν = 0, 1, 2, 3.2. The Euler-Lagrange-Born-Infeld equation
�u (1 − uνu

ν) + uµuνuµν = 0,where u = u(x), x = (x0, x1, x2, x3) ∈M(1, 3), uµ ≡ ∂u

∂xµ
, uµν ≡ ∂2u

∂xµ∂xν
,

uµ = gµνuν , gµν = (1,−1,−1,−1)δµν , µ, ν = 0, 1, 2, 3, � is thed'Alembert operator.3. The homogeneous Monge-Ampère equation
det (uµν) = 0,where u = u(x), x = (x0, x1, x2, x3) ∈M(1, 3), uµν ≡ ∂2u

∂xµ∂xν
,

µ, ν = 0, 1, 2, 3.4. The inhomogeneous Monge-Ampère equation
det (uµν) = λ (1 − uνu

ν)3 , λ 6= 0, 123



where u = u(x), x = (x0, x1, x2, x3) ∈M(1, 3), uµν ≡ ∂2u

∂xµ∂xν
,

uν = gναuα, uα ≡ ∂u

∂xα
, gµν = (1,−1,−1,−1)δµν , µ, ν, α = 0, 1, 2, 3.Here, and in what follows, M(1, 3) is a four-dimensional Minkowskispae; R(u) is a real number axis of the depended variable u.These equations are invariant under generalized Poinaré group P (1, 4)(see, for example, [7, 12, 13℄). The group P (1, 4) is a group of rotationsand translations of the �ve-dimensional Minkowski spae M(1, 4). Thisgroup has many appliations in theoretial and mathematial physis (see,for example, [9, 14℄). Continuous subgroups of the group P (1, 4) have beenfound in [15, 16, 17℄. One of the nontrivial onsequenes of the desriptionof the non-onjugate subalgebras of the Lie algebra of the group P (1, 4) isthat the Lie algebra of the group P (1, 4) ontains, as subalgebras, the Liealgebra of the Poinaré group P (1, 3) and the Lie algebra of the extendedGalilei group G̃(1, 3) [9, 18℄, i.e. it naturally unites the Lie algebras of thesymmetry groups of relativisti and non-relativisti physis. Therefore, theonstrution of the lasses of di�erential equations, whih are de�ned in thespae M(1, 3) × R(u) and invariant under non-onjugate subgroups of thegroup P (1, 4), is important from di�erent points of view.In many ases (see, for example, [3, 5, 19℄), these lasses an be writtenin the following form:

F (J1, J2, ..., Jt) = 0, (1.1)where F is an arbitrary smooth funtion of its arguments, {J1, J2, ..., Jt} isfuntional basis of di�erential invariants of the orresponding subgroup ofthe group P (1, 4).It should be noted that eah of these lasses is a non-singular di�erentialinvariant manifold of the orresponding non-onjugate subalgebra of the Liealgebra of the group P (1, 4). More details on the manifolds of this type anbe found in [3, 5℄.As we see from the formula (1.1), the properties of these lasses essen-tially depend on the properties of the orresponding funtional bases.124



The onstrution of funtional bases of di�erential invariants for non-onjugate subgroups of di�erent Lie groups has shown that there is no one-to-one orrespondene between the non-onjugate subgroups of these groupsand the orresponding to them funtional bases of di�erential invariants. Itmeans that the di�erent non-onjugate subgroups of Lie groups an havethe same (equivalent) funtional bases of di�erential invariants.In [20, 21℄ we have presented some results, whih referred to the appli-ation of equivalene riterion [20, 22℄ in order to onstrut separately allnon-equivalent funtional bases of the �rst-order di�erential invariants ofsplitting and non-splitting subgroups of the group P (1, 4).The purpose of the present paper is to give some new results obtainedby means of equivalene riterion for funtional bases of the �rst-order dif-ferential invariants of all non-onjugate subgroups of the group P (1, 4).II. The Lie algebra of the group P (1, 4) and its representation.The Lie algebra of the group P (1, 4) is given by the 15 basis elements
Mµν = −Mνµ (µ, ν = 0, 1, 2, 3, 4) and P ′

µ (µ = 0, 1, 2, 3, 4), satisfyingthe ommutation relations
[
P ′

µ, P
′
ν

]
= 0,

[
M ′

µν , P
′
σ

]
= gµσP

′
ν − gνσP

′
µ,

[
M ′

µν ,M
′
ρσ

]
= gµρM

′
νσ + gνσM

′
µρ − gνρM

′
µσ − gµσM

′
νρ,where g00 = −g11 = −g22 = −g33 = −g44 = 1, gµν = 0, if µ 6= ν. Here,and in what follows, M ′

µν = iMµν .In the following we will use new basis elements
G = M ′

40, L1 = M ′
32, L2 = −M ′

31, L3 = M ′
21,

Pa = M ′
4a −M ′

a0, Ca = M ′
4a +M ′

a0, (a = 1, 2, 3),

X0 =
1

2

(
P ′

0 − P ′
4

)
, Xk = P ′

k (k = 1, 2, 3), X4 =
1

2

(
P ′

0 + P ′
4

)
. 125



All non-onjugate subalgebras of the Lie algebra of the group P (1, 4) aredivided into splitting and non-splitting ones. More details on the splittingand non-splitting subalgebras of any �nite-dimensional Lie algebra an befound in [23℄.Splitting subalgebras Pi,a of the Lie algebra of the group P (1, 4) anbe written in the following form:
Pi,a = Fi

◦
+ Nia,where Fi are subalgebras of the Lie algebra of the group O(1, 4), Nia aresubalgebras of the Lie algebra of the translation group T (5) ∈ P (1, 4).Non-splitting subalgebras P̃j,k are subalgebras, for whih basis an behosen in the form:

B̃k = Bk +
∑

i

ckiXi,
∑

j

drjXj ,where cki and drj are �xed real onstants (not equal zero simultaneously).
Bk are bases of subalgebras of the Lie algebra of the group O(1, 4), Xi arebases of subalgebras of the Lie algebra of the group T (5).Let us onsider the following representation of the Lie algebra of thegroup P (1, 4) :

P ′
0 =

∂

∂x0
, P ′

1 = − ∂

∂x1
, P ′

2 = − ∂

∂x2
, P ′

3 = − ∂

∂x3
,

P ′
4 = − ∂

∂u
, M ′

µν = −
(
xµP

′
ν − xνP

′
µ

)
, x4 ≡ u.It means that the group P (1, 4) ats on the spae M(1, 3)×R(u). Moredetails about the representations of this type an be found in [7, 12, 13℄.
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III. On non-equivalent funtional bases of the �rst-orderdi�erential invariants of non-onjugatesubgroups of the group P (1, 4).In this setion we onsider the onstrution of non-equivalent funtionalbases of the �rst-order di�erential invariants of non-onjugate subgroupsof the group P (1, 4), as well as the appliation of them in order to on-strut mathematial models (di�erential equations) with nontrivial symme-try groups in the spae M(1, 3) ×R(u).Let {J (1)
1 , J

(1)
2 , ..., J

(1)
t } and {J (2)

1 , J
(2)
2 , ..., J

(2)
t } be funtional bases ofthe �rst-order di�erential invariants, whih orrespond to the non-onjugatesubalgebras L1 and L2 of the Lie algebra of the group P (1, 4).De�nition. We say that the funtional bases {J (1)

1 , J
(1)
2 , ..., J

(1)
t } and

{J (2)
1 , J

(2)
2 , ..., J

(2)
t } be equivalent if there exist smooth funtions f1, f2, ..., ftand g1, g2, ..., gt suh that

J
(2)
1 = f1(J

(1)
1 , J

(1)
2 , ..., J

(1)
t ) J

(1)
1 = g1(J

(2)
1 , J

(2)
2 , ..., J

(2)
t )

J
(2)
2 = f2(J

(1)
1 , J

(1)
2 , ..., J

(1)
t ) J

(1)
2 = g2(J

(2)
1 , J

(2)
2 , ..., J

(2)
t )

........................................ and ............................................

J
(2)
t = ft(J

(1)
1 , J

(1)
2 , ..., J

(1)
t ) J

(1)
t = gt(J

(2)
1 , J

(2)
2 , ..., J

(2)
t ).Proposition 1. Two funtional bases {J (1)

1 , J
(1)
2 , ..., J

(1)
t } and {J (2)

1 , J
(2)
2 ,

..., J
(2)
t } are equivalent if and only if they satisfy the following onditions:

X̃
(1)
1 J

(2)
1 = 0, X̃

(1)
1 J

(2)
2 = 0, ..., X̃

(1)
r1 J

(2)
t = 0

X̃
(2)
1 J

(1)
1 = 0, X̃

(2)
1 J

(1)
2 = 0, ..., X̃

(2)
r2
J

(1)
t = 0

(3.1)where {X̃(1)
1 , X̃

(1)
2 , ..., X̃

(1)
r1

}, {X̃(2)
1 , X̃

(2)
2 , ..., X̃

(2)
r2

} are the �rst-prolongedbases operators of the Lie subalgebra L1 and L2, respetively; r1, r2 arethe dimensions of the subalgebras L1 and L2. 127



Proof. The Proof of this Proposition for splitting subalgebras of the Liealgebra of the group P (1, 4) an be found in [20℄ (see Lemma). Sine theproof of this Proposition for non-onjugate subalgebras of the Lie algebraof the group P (1, 4) is quite analogial to the ase of splitting subalgebras,therefore we omit it here. The generalization of this Proposition on the fun-tional bases of any �nite order di�erential invariants of the non-onjugatesubgroups of loal Lie groups of the point transformations an be foundin [22℄.We have used this Proposition as the riterion of the equivalene forany two funtional bases of the �rst-order di�erential invariants of the non-onjugate subgroups of the group P (1, 4).Proposition 2. There exist 494 non-equivalent funtional bases of the �rst-order di�erential invariants for the non-onjugate subgroups of the group
P (1, 4).Sketh of proof. The list of all non-onjugate (the onjugation was on-sidered under the group P (1, 4) ) subalgebras of the Lie algebra of the group
P (1, 4) ontains 555 ones [4℄.As following from the alulation of the general ranks of matries, whihontain oordinates of the one-prolonged basis elements of the subalgebrasof the Lie algebra onsidered, and using the theorem on number of invariantsof the Lie group of the point transformations (see, for example, [5, 3℄) wemake sure that the 550 of the non-onjugate subalgebras of the Lie algebraof the group P (1, 4) have the funtional bases of the �rst-order di�erentialinvariants. Thus, there are 550 funtional bases of the �rst-order di�erentialinvariants. Among them, there are equivalent ones. Equivalent funtionalbases an only be among those, whih have the same dimensions.Let L1 be a non-onjugate subalgebra of the Lie algebra of the group
P (1, 4), whih has the t-dimensional funtional basis of the �rst-order di�er-ential invariants {J (1)

1 , J
(1)
2 , ..., J

(1)
t }. To �nd the bases, whih are equivalentto {J (1)

1 , J
(1)
2 , ..., J

(1)
t }, we use the Proposition 1. Let {J (2)

1 , J
(2)
2 , ..., J

(2)
t } bet-dimensional funtional basis of the �rst-order di�erential invariants of theother non-onjugate subalgebra L2. Following the Proposition 1, if thesefuntional bases satisfy the onditions (3.1), then, the onsidered bases are128



equivalent. Otherwise, the onsidered bases are not equivalent. In the anal-ogous manner, we hek whether other t-dimensional funtional bases of the�rst-order di�erential invariants are equivalent to the {J (1)
1 , J

(1)
2 , ..., J

(1)
t } ornot. In this way, we obtain all t-dimensional funtional bases, whih areequivalent to {J (1)

1 , J
(1)
2 , ..., J

(1)
t }.In the analogous manner, we onstrut lasses of the equivalent fun-tional bases of other dimensions.The diret appliation of the mentioned above riterion give us 494 non-equivalent funtional bases of the �rst-order di�erential invariants for thenon-onjugate subgroups of the group P (1, 4). The Proposition is proved.Taking into aount the non-equivalent funtional bases of the �rst-order di�erential invariants of the non-onjugate subgroups of the group

P (1, 4) we an onstrut 494 lasses of the �rst-order di�erential equations,whih are de�ned in the spae M(1, 3)×R(u) and invariant under the non-onjugate subgroups of this group. All these lasses of equations an bewritten in the form (1.1).It is impossible to present all these lasses here. Below, only for theLie algebras of some subgroups of the group P (1, 4), often appliable intheoretial and mathematial physis, we write their basis elements andorresponding lasses of the �rst-order di�erential equations in the spae
M(1, 3) ×R(u).1. 〈L3〉(∼= SO(2)),

F
(
x0, x3, (x2

1 + x2
2)

1/2, u, x1u2 − x2u1, u0, u3, u
2
1 + u2

2

)
= 0,

uµ ≡ ∂u

∂xµ
, µ = 0, 1, 2, 3;2. 〈L1, L2, L3〉(∼= SO(3)),

F
(
x0, (x2

1 + x2
2 + x2

3)
1/2, u, u0, x1u1 + x2u2 + x3u3, u

2
1 + u2

2 + u2
3

)
= 0 ;3. 〈L3, X1, X2〉(∼= E(2)),

F
(
x0, x3, u, u0, u3, u

2
1 + u2

2

)
= 0 ; 129



4. 〈L1, L2, L3, X1, X2, X3〉(∼= E(3)),

F
(
x0, u, u0, u

2
1 + u2

2 + u2
3

)
= 0 ;5. 〈L1, L2, L3, P1 − C1, P2 − C2, P3 − C3〉(∼= SO(1, 3)),

F
(
(x2

0 − x2
1 − x2

2 − x2
3)

1/2, u, x0u0 + x1u1 + x2u2 + x3u3,

u2
0 − u2

1 − u2
2 − u2

3

)
= 0 ;6. 〈L1, L2, L3, P1 + C1, P2 + C2, P3 + C3〉(∼= SO(4)),

F

(
x0, (x2

1 + x2
2 + x2

3 + u2)1/2,
x1u1 + x2u2 + x3u3 − u

u0
,

u2
1 + u2

2 + u2
3 + 1

u2
0

)
= 0 ;7. 〈L1, L2, L3, P1+C1, P2+C2, P3+C3, X1, X2, X3, X0−X4〉(∼= E(4)),

〈L1 +
1

2
(P1 + C1) , L2 +

1

2
(P2 + C2) , L3 +

1

2
(P3 + C3) , X1, X2,

X3, X0 −X4〉,

〈L1+
1

2
(P1 + C1) , L2+

1

2
(P2 + C2) , L3+

1

2
(P3 + C3) , L3−

1

2
(P3 + C3) ,

X1, X2, X3, X0 −X4〉,

F

(
x0,

u2
1 + u2

2 + u2
3 + 1

u2
0

)
= 0 ;8. 〈L1, L2, L3, P1−C1, P2−C2, P3−C3, X1,X2, X3, X0+X4〉(∼= P (1, 3)),

F
(
u, u2

0 − u2
1 − u2

2 − u2
3

)
= 0 ;9. 〈G, C1, C2, C3, L1, L2, L3, P1, P2, P3〉(∼= SO(1, 4)),

F

(
(x2

0 − x2
1 − x2

2 − x2
3 − u2)1/2,

(x0u0 + x1u1 + x2u2 + x3u3 − u)2

u2
0 − u2

1 − u2
2 − u2

3 − 1

)
= 0 ;10. 〈L1, L2, L3, P1, P2, P3, X0, X1, X2, X3, X4〉(∼= G̃(1, 3)),

〈P1, P2, P3, X0, X1, X2, X3, X4〉,
〈L3 − P3, P1, P2, X0, X1, X2, X3, X4〉,130



〈L3, P1, P2, P3, X0, X1, X2, X3, X4〉,
〈L3 −X0, P1, P2, P3, X1, X2, X3, X4〉,
〈P1, P2, P3 +X0, L3 + βX0, X1, X2, X3, X4, β < 0〉,

F

(
u2

1 + u2
2 + u2

3 + 2(u0 + 1)

(u0 + 1)2

)
= 0 .Sine the Lie algebra of the group P (1, 4) ontains, as subalgebras,the Lie algebra of the Poinaré group P (1, 3) and the Lie algebra of theextended Galilei group G̃(1, 3) (see also [9, 18℄), the obtained lasses ofdi�erential equations an be used in relativisti and non-relativisti physis.Referenes[1℄ S. Lie, G. She�ers, Vorlesungen über Di�erentialgleihungen mitbekannten in�nitesimalen Transformationen (Leipzig, 1891).[2℄ E. Vessiot, Ata math. 28, 307 (1904).[3℄ L. V. Ovsiannikov, Group Analysis of Di�erential Equations (AademiPress, New York, 1982).[4℄ W. I. Fushhyh, L. F. Barannyk and A. F. Barannyk, Subgroup anal-ysis of the Galilei and Poinaré groups and redutions of nonlinearequations (Kiev, Naukova Dumka, 1991).[5℄ P.J. Olver, Appliations of Lie Groups to Di�erential Equations (Sprin-ger-Verlag, New York, 1986).[6℄ W. Miller, Jr., Symmetry and Separation of Variables (Addison-Wesley,Readnig, Mass., 1977).[7℄ W.I. Fushhyh, W.M. Shtelen and N. I. Serov, Symmetry Analysisand Exat Solutions of Equations of Nonlinear Mathematial Physis(Dordreht, Kluver Aademi Publishers, 1993).[8℄ W.I. Fushhyh, R.Z. Zhdanov, Symmetries of Nonlinear Dira Equa-tions (Kyiv, Mathematial Ukraina Publishers, 1997). 131
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ACTA PHYSICA DEBRECINA XLII, 133 (2008)ITÔ-STRATONOVITCH FORMULA FOR A FOUR ORDEROPERATOR ON A TORUSR. LéandreInstitut de Mathématiques. Université de Bourgogne. 21000. Dijon. FRANCEAbstratWe give an It�-Stratonovith formula for a semi-group gen-erated by a four order operator on a torus.I. IntrodutionLet Bt a Brownian motion on R. By the elebrated It� formula ([2℄), wehave if f is a C2 funtion from R into R:
f(Bt) = f(B0) +

∫ t

0
f ′(Bs)δBs + 1/2

∫ t

0
f”(Bs)ds (1)where δBs is the It� di�erential.This formula an be onvert in the Stratonovith Calulus in

f(Bt) = f(B0) +

∫ t

0
f ′(Bs)dBs (2)where dBs is the Stratonovith di�erential.It�-Stratonovith formula for di�usion proesses was translated in semi-group theory by Léandre ([11℄). Léandre ([3℄, [4℄, [5℄, [6℄, [7℄, [8℄, [9℄, [10℄,[11℄, [12℄, [13℄, [14℄, [15℄) has translated in semi-group theory a lot of toolsof stohasti analysis, by using the lassial relation between the theory ofstohasti proesses and the theory of Markovian semi-groups, suh that



the tools of stohasti analysis beome algebrai omptations on the semi-group, the estimates being done beause we get semi-groups in probabilitymeasures.It is interesting to developp this strategy when we onsider more generalsemi group: it is the purpose of this ommuniation to do that in a simplease. II. Statement of the main theoremWe onsider a torus Tn (x ∈ Tn) and a orthonormal basis of its Liealgebra ∂i. We onsider the four order ellipti oeparator ∆ =
∑

(∂i)
4. It issymmetri positive self-adjoint. It generates a (non-markovian!) semi-group

Pt on L2(Tn), the torus being endowed of its Haar measure.We onsider a smooth funtion f from Tn into R and the vetor �eld on
Tn × R, (x, y) ∈ Tn × R

∂f
i = ∂i + (∂if)∂y (3)and we onsider the degenerated operator on Tn × R

∆f =
∑

(∂f
i )4 (4)It is symmetri positive, and therefore has a self-adjoint extension on L2(Tn×

R), Tn × R being endowed of its Haar measure. This self-adjoint extension
∆f generates therefore a semi-group P f

t on L2(Tn × R).We onsider a smooth funtion g(., .) from Tn×R with ompat supportand the funtion on Tn

gf (x) = g(x, f(x)) (5)Our main theorem is:Theorem(It�-Stratonovith)We have the relation
Pt[g

f ](x) = P f
t [g(., .)](x, f(x)) (6)
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III. Proof of the theoremIt follows the same strategy of the proof of the It�-Stratonovith for-mula of [11℄, the di�ulty being that for the estimates we onsider a Non-Markovian semi-group, the algebra being more at less the same.We suppose �rst of all that f is a �nite sum of trigonometri and that
g is a �nit sum of a produt of trigometri funtion in x and expression ofthe type yn exp[−ay2] a > 0. In suh a ase,

Pt[g
f ](x) = gf (x) +

∑ tn

n!
(−∆)ngf (x) (7)But if we onsider an expression ψ whih depends only on x, we have

∂i(g
fψ) = (∂f

i (g(., .)ψ)(x, f(x)) (8)suh that we reognize in the right hand side of (7)
g(x, f(x)) +

∑ tn

n!
(−∆f )n(g(., .))(x, f(x)) = P f

t [g(., .)](x, f(x)) (9)Sine the ontinuous semi-groups are ontinuous in L2, the formula (6) isvalid for all smooth g(., .) with ompat supports.The theorem omes then from the following lemma:LemmaIf fn as well as all its derivatives tend to f uniformly, and if gis smooth with ompat support, then
P fn

t [g(., .)](x, y) → P f
t [g(., .)](x, y) (10)uniformly and in L2(Tn × R).Proof: We remark that the vetor �elds ∂f

i ommute and that ∂y = ∂f
0ommutes with them. Moreover if the supremum norm of the kth derivativesof f are bounded, ∂f

i , i = 0, .., n onstitute uniformly a basis of the tangentspae of Tn × R. Let (α) = (α0, .., αn) be a multiindex and (∂f )(α) be theassoiated di�erential operator. It is enough to show that
(∂fn)(α)P fn

t [g(., .)](x, y) → (∂f )(α)P f
t [g(., .)](x, y) (11)135



uniformly and in L2. But (∂fn)(α) ommute with ∆fn suh that
(∂fn)(α)P fn

t [g(., .)](x, y) = P fn

t [(∂fn)(α)g(., .)](x, y) (12)Moreover,
(∂f )(α)P f

t [g(., .)](x, y) − (∂fn)(α)P fn

t [g(., .)](x, y) (13)is solution of the problem
ϕ0 = ((∂f )(α) − (∂fn)(α))g(., .) ;

∂

∂t
ϕt = ∆fϕt + (∆f − ∆fn)ϕn

t (14)where ϕn
t = P fn

t [(∂fn)(α)g(., .)](., .). We solve this problem by the methodof variation of onstant. The result omes from the fat that a funtionwhih has all its derivatives in the distributional sense in L2 is a smoothfuntion whose Ck uniform norm an be estimated in terms of the L2 normof his higher derivatives.♦. Referenes[1℄ P. Ausher, P. Thamithian, Square root problems for divergene op-erators and related topis (Asterisque 249, Paris S.M.F., 1998).[2℄ C. Dellaherie, P.A. Meyer, Probabilités et potentiel. Théorie des mar-tingales (Hermann, Paris, 1980).[3℄ R. Léandre, In Festhrift in honour of K. Sinha.A.M. Boutet de Mon-vel and al eds, Pro. Indian. Aad. Si (Math. Si.) 116, 507 (2006).arXiv:0707.2143v1[math.PR℄[4℄ R. Léandre, In Mathematial methods in engineerings (Ankara), D.Baleanu and al eds. (Springer, Heidelberg, 2007), 205.[5℄ R. Léandre, Mathematishe Zeitshrift 258, 893 (2008).[6℄ R. Léandre, In Simulation, Modelling and Optimization (Lisboa), A.M. Madureira C.D. 2006, 559. WSEAS transations on mathematis5, 1205 (2006).136



[7℄ R. Léandre, In Applied mathematis (Dallas) K. Psarris edt.(W.S.E.A.S. press, Athens, 2007), 7.[8℄ R. Léandre, WSEAS Transations on mathematis 6, 755 (2007).[9℄ R. Léandre, In Num. Ana. Applied. Mathematis.(Corfu) T. Simos edt.(A.I.P. Proeedings 936, Melville, 2007), 336.[10℄ R. Léandre: Malliavin Calulus of Bismut type for Poisson proesseswithout probability. To appear in Frational systems J. Sabatier andal eds Jour.Eur.Syst.Aut. 42, (.)[11℄ R. Léandre, Wentzel-Freidlin estimates in semi-group theory. To appearin Control, Automation, Robotis and Vision (I.E.E.E.), (Hanoi), YengChai Soh edt, 2008.[12℄ R. Léandre, In Applied omputing onferene (Istanbul), M. Garia-Planas and al eds. (W.S.E.A.S. press, Athens, 2008), 77.[13℄ R. Léandre, Malliavin Calulus of Bismut type in semi-group theory.Far East Journal of Mathematial Sienes 26, 1 (2008).[14℄ R. Léandre, In Nonlinear Siene and Complexity (Porto) M. Silva andal eds. C.D. (2008) Mittag Le�er Preprint. Fall 2007. S.P.D.E. 10.[15℄ R. Léandre, WSEAS Transations on mathematis 7, 244 (2008)(Ele-troni)
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ACTA PHYSICA DEBRECINA XLII, 138 (2008)LORENTZ-COVARIANT THEORIES OF HIGHER-SPINFIELDS AND INSIDEV. V. DvoeglazovUniversidad de Zaateas, Apartado Postal 636, Su. 3 CruzesZaateas 98064, Za., MéxioAbstratWe generalize the Stuekelberg formalism in the (1/2, 1/2)representation of the Lorentz Group. We analize the problemof the mass generation and of the inde�nite metris from themodern viewpoints. Some relations to other modern-physismodels are found. I. IntrodutionReent advanes in astrophysis [1℄ suggest the existene of fundamentalsalar osmologial �elds [2, 3℄. On the other hand, the (1/2, 1/2) represen-tation of the Lorentz group provides suitable frameworks for introdutionof the S = 0 �eld, Ref. [4℄. In a series of papers, starting from the verybeginning we propose a generalized theory in the 4-vetor representation,for the antisymetri tensor �eld of the seond rank as well [5℄, see also [6℄.The results an be useful in any theory dealing with the light phenomenaand vetor bosons. The plan of my talk is following:
• Anteedents. Mapping between the Weinberg-Tuker-Hammer (WTH)formulation and antisymmetri tensor (AST) �elds of the 2nd rank.Modi�ed Bargmann-Wigner (BW) formalism. Pseudovetor poten-tial. Parity.



• Matrix form of the general equation in the (1/2, 1/2) representation.
• Lagrangian in the matrix form. Masses.
• Standard Basis and Heliity Basis.
• Dynamial invariants. Field operators. Propagators.
• The inde�nite metri.
• The Gelfand-Tsetlin-Sokolik-type quantum �eld theory.
• The Spin-2 Framework.
• Non-ommutativity.II. Results and Conlusions
• The mapping exists between the Weinberg-Tuker-Hammer (WTH)formalism for S = 1 and the antisymmetri tensor �elds (AST) offour kinds (provided that the solutions of the WTH equations are ofthe de�nite parity).
• Their massless limits ontain additional solutions omparing with theMaxwell equations. This was related to the possible theoretial exis-tene of the Ogievetski��-Polubarinov-Kalb-Ramond notoph, Ref. [7℄.
• In some partiular ases (A = 0, B = 1, see ref. [5℄) the massivesolutions of di�erent parities are naturally divided into the lasses ofausal and tahyoni solutions.
• If we want to take into aount the solutions of the WTH equations ofdi�erent parity properties, this indues us to generalize the Bargmann-Wigner, Proa and the Du�n-Kemmer formalisms.
• In the (1/2, 0)⊕ (0, 1/2), (1, 0)⊕ (0, 1) et. representations it is possi-ble to introdue the parity-violating frameworks. The orrespondingsolutions are the mixing of various polarization states. 139



• The sum of the Klein-Gordon equation with the (S, 0) ⊕ (0, S) equa-tions may hange the theoretial ontent even on the free level. Forinstane, the higher-spin equations may atually desribe various spinand mass states.
• The mappings exists between the WTH solutions of unde�ned parityand the AST �elds, whih ontain both tensor and dual tensor. Theyare eight.
• The 4-potentials and eletromagneti �elds [8, 9℄ in the heliity basishave di�erent parity properties omparing with the standard basis ofthe polarization vetors.
• In the previous paper [10℄ and several talks I presented the theoryin the (1/2, 0) ⊕ (0, 1/2) representation in the heliity basis. Underthe spae inversion operation, di�erent heliity states transform eahother, Puh(−p) = −iu−h(p), Pvh(−p) = +iv−h(p).
• So, from the abovementioned (an my previous papers) it is not di�ultto understand the importane of Ãµ ∼ ∂µχ term in the eletrodynam-is and in the Proa theory, f. [11℄.
• The (1/2, 1/2) representation ontains both the spin-1 and spin-0states (f. with the Stuekelberg formalism).
• Unless we take into aount the fourth state (the �time-like" state,or the spin-0 state) the set of 4-vetors is not a omplete set in amathematial sense.
• We annot remove terms like (∂µB

∗
µ)(∂νBν) terms from the Lagrangianand dynamial invariants unless we apply the Fermi method, i. e.,manually. The Lorentz ondition applies only to the spin-1 states.

• We have some additional terms in the expressions of the energy-mo-mentum vetor (and, aordingly, those of the 4-urrent and the Pauli-Lunbanski vetors), whih are the onsequene of the impossibility toapply the Lorentz ondition for spin-0 states.
• The heliity vetors are not the eigenvetors of the parity operator.Meanwhile, the parity is a �good" quantum number, [P,H]− = 0 inthe Fok spae.140



• We are able to desribe the states of di�erent masses in any grouprepresentation from the beginning.
• Various-type �eld operators an be onstruted in the (1/2, 1/2) rep-resentation spae. For instane, they an ontain C, P and CP on-jugate states. Even if b†λ = a†λ we an have omplex 4-vetor �elds.We found the relations between reation, annihilation operators fordi�erent types of the �eld operators Bµ.
• Propagators have good behavious in the massless limit as opposed tothose of the Proa theory. In teh generalized Stuekelberg theory oneshould follow the method developed in ref. [12℄.The detailed explanations of several laims presented in this talk aregiven in journal publiations. I am grateful to Profs. V. Gusynin, M.Khlopov, Y. S. Kim, M. Kirhbah, S. I. Kruglov, D. J. Cirilo-Lombardo,N. Manko-Borstnik, H. B. Nielsen, W. Rodrigues, R. Yamaleev, and par-tiipants of the reent onferenes for useful disussions.Referenes[1℄ T. Matos et al., The Salar Field Dark Matter Model. Let.Notes Phys.646, 401-420 (2004) � Proeedings of the 5th Mexian Shool "TheEarly Universe and Observational Cosmology". Playa del Carmen, Nov.24-29, 2002.[2℄ V. V. Dvoeglazov, Generalized Maxwell Equations from the EinsteinPostulate. J. Phys. A33, 5011 (2000).[3℄ V. V. Dvoeglazov, Generalized Maxwell and Weyl Equations for Mass-less Partiles. Rev. Mex. Fis. Supl. 49, S1, 99 (2003) � Proeedings ofthe Huatulo DGFM Shool, 2000, math-ph/0102001.[4℄ S. Weinberg, The Quantum Theory of Fields. Vol. I. Foundations.(Cambridge University Press, Cambridge, 1995).[5℄ V. V. Dvoeglazov, Antisymmetri Tensor Fields, 4-Potentials and In-de�nite Metris. Hadroni J. Suppl. 18, 239 (2003). 141



[6℄ V. V. Dvoeglazov et al. (Eds.), Speial Issue of Ann. Fond. Broglie,dediated to Yang and Mills, 29, Hors Serie No. 2, 873-1066 (2004).[7℄ V. I. Ogievetski�� and I. V. Polubarinov, Yadern. Fiz. 4, 216 (1966)[English translation: Sov. J. Nul. Phys. 4, 156 (1967)℄; K. Hayashi,Phys. Lett. B44, 497 (1973); M. Kalb and P. Ramond, Phys. Rev. D9,2273 (1974).[8℄ V. V. Dvoeglazov, Generalizations of the Dira Equations and the Mod-i�ed Bargmann-Wigner Formalism. Hadroni J., 26, 299 (2003), hep-th/0208159.[9℄ H. M. Rük y W. Greiner, J. Phys. G: Nul. Phys. 3, 657 (1977).[10℄ V. V. Dvoeglazov, Heliity Basis and Parity. Int. J. Theor. Phys. 43,1287 (2004), math-ph/0309002.[11℄ R. A. Berg, Nuovo Cim. A XLII, 148 (1966); D. V. Ahluwalia andM. Kirhbah, Mod. Phys. Lett. A16, 1377 (2001).[12℄ V. V. Dvoeglazov, The Weinberg Propagators. Helv. Phys. Ata, 70,697 (1997); hep-th/9408176.
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ACTA PHYSICA DEBRECINA XLII, 143 (2008)FINITE CHARGE AND MASS RENORMALIZATION INQUANTUM ELECTRODYNAMICSI. D. Feranhuk , S. I. FeranhukBelarusian State University, 220030 Minsk, BelarusAbstratThe self-loalized quasi-partile exitation of the eletron-positron �eld is found for the �rst time in the framework of astandard form of the quantum eletrodynamis. This state isinterpreted as the "physial" eletron (positron) and it leads tothe perturbation theory being free from the ultraviolet diver-gene. I. IntrodutionIt is no doubt at present that the Standard Model is the fundamental ba-sis for the theory of the eletro-weak interation [1℄. It means that thequantum eletrodynamis (QED) is atually the part of the general gaugetheory. Nevertheless, QED onsidered by itself as the isolated system re-mains the most suessful quantum �eld model that allows one to alulatethe observed harateristis of the eletromagneti proesses with a uniqueauray (for example, [2℄ ). It is well known that these alulations arebased on the series of rules onneted with the perturbation theory in the ob-served harge e of the "physial" eletron and the renormalization propertyof QED. The latter one means that the "primary" parameters of the theory(the harge e0 and the mass m0 of the "bare" eletron), that are de�ned bythe divergent integrals, an be exluded from the observed values. However,even the reators of the present form of QED were not satis�ed with theserules [3℄(§81), [4℄. It is also very essential that the dynamial desription



of the internal struture of the "physial" eletron gives the fundamentalpossibility to onsider muon as an exited state of the eletron-positron �eldas it has been shown by Dira [5℄.The relation between the "primary" oupling onstant e0 and the harge
e is undetermined in the present form of QED. Therefore it is possiblethat the value e0 is large in spite the observed renormalized harge is small
e << 1. Our main goal is to �nd suh a form of the renormalization thatwould be logially onsistent but the alulation possibilities of QED forthe observed values would be preserved.II. Constrution of the self-loalized stateIt is well known that the spatially loalized states are very important for alot of quantum �eld models. Let us now onsider the nonperturbative anal-ysis of the spetrum of the one-partile exitations of the QED Hamiltonianthat is de�ned by the following form (for example, [6℄) :

Ĥ =

∫
d~r : {ψ̂∗(~r)[~α(~p+ e0 ~̂A(~r)) + βm0]ψ̂(~r) + e0ϕ̂(~r)ρ̂(~r) −

−1

2
(~∇ϕ̂(~r))2} : +

∑

~kλ

ω(~k)n̂~kλ; ρ̂(~r) =
1

2
[ψ̂∗(~r)ψ̂(~r) − ψ̂(~r)ψ̂∗(~r)]. (1)We suppose here that the �eld operators are given in the Shrödinger rep-resentation, the spinor omponents of the eletron-positron operators beingde�ned in the standard way [6℄.In these formulas ~ = c = 1; the primary harge (−e0), e0 > 0 and m0are onsidered as the parameters of the model; the symbol : Ĥ : meansthe normal ordering of the operators exluding the vauum energy [3℄; ~α, βare Dira matrixes; a~ps(a

+
~ps) and b~ps(b

+
~ps) are the annihilation (reation)operators for the "bare" eletrons and positrons in the orresponding states.The �eld operator ~̂A(~r) and the operator of the photon number n̂~kλ

arerelated to the transversal eletromagneti �eld.For the variational desription of the self-onsistent exitation let ushoose the trial state vetor |Φ1 > in the general form of the wave paketformed by the one-partile exitations of the "bare" eletron-positron �eld144



depending on the set of variational lassial funtions U~qs;V~qs;ϕ(~r). Be-sides, the e�et of polarization and the appearane of the eletrostati �eld
ϕ(~r) should be taken into aount, so we onsider |Φ1 > to be the eigenve-tor for the operator of the salar �eld:
|Φ1 >≃ |Φ(0)

1 (U~qs;V~qs;ϕ(~r)) >=

∫
d~q{U~qsa

+
~qs + V~qsb

+
~qs}|0; 0;ϕ(~r) > . (2)The ground state of the system is |Φ0 >= |0; 0; 0 >, if we use the samenotation. It orresponds to the vauum of both interating �elds.Firstly, let's onsider the exitation with the zero total momentum. Thenthe onstruted trial vetor should satisfy the normalized onditions result-ing from the de�nition of the total momentum ~P and the observed harge

e of the "physial" partile:
< Φ

(0)
1 | ~̂P |Φ(0)

1 >=
∑

s

d~q~q[|U~qs|2 + |V~qs|2] = ~P = 0;

∑

s

d~q[|Uqs|2 + |Vqs|2] = 1;

< Φ
(0)
1 |Q̂|Φ(0)

1 >= e0
∑

s

d~q[|Vqs|2 − |Uqs|2] = e. (3)The last equation de�nes the observed harge of the "physial" partile atthe given value e0 of the initial harge of the "bare" partile. The trial vetor
|Φ1 > is atually the olletive exitation of the system and in this respetthe variational approah di�ers greatly from the perturbation theory. wherethe zero approximation for a one-partile state orrespond to one-partileexitations determined by the harge e0 of the "bare" eletron and the �eld
ϕ(~r) = 0.Thus, the following variational estimation for the energy E1(0)=E1(~P=0)of the state orresponding to the "physial" quasi-partile exitation of thewhole system :

E1(0) ≃ E
(0)
1 [Uqs;Vqs;ϕ(~r)] =< Φ

(0)
1 |Ĥ|Φ(0)

1 >, (4)where the average is alulated with the full Hamiltonian (1) and the fun-tions Uqs;Vqs;ϕ(~r) are to be found as the solutions of variational equationswith the additional onditions (3) . 145



The average value in Eq. (4) is alulated negleting the lassial om-ponents of the vetor �eld. They are appeared in the high-order orretionsthat are de�ned by the renormalized harge el1 and an be onsidered bymeans of the anonial perturbation theory. It should be noted that thepossibility of onstruting self-onsistently the renormalized QED at thenon-zero vauum value of the salar �eld operator was onsidered before [7℄but the solution of the orresponding equations was not disussed.In order to vary the introdued funtional let us de�ne the spinor wavefuntions (not operators) whih desribe the oordinate representation forthe eletron and positron wave pakets in the state vetor |Φ(0)
1 >:

Ψν(~r) =

∫
d~q

(2π)3/2

∑

s

Uqsu~qsνe
i~q~r; Ψc

ν(~r) =

∫
d~q

(2π)3/2

∑

s

V ∗
qsv~qsνe

i~q~r. (5)Varying the funtional (4) by the wave funtions Ψ(~r) and Ψc(~r) taking intoaount their normalization onditions one an �nd the equivalent Diraequations desribing the eletron (positron) motion in the �eld of potential
ϕ(~r):

{(−i~α~∇ + βm0) + e0ϕ(~r)}Ψ(~r) = 0;

{(−i~α~∇ + βm0) + e0ϕ(~r)}Ψc(~r) = 0,

ϕ(~r) =
e0
4π

∫
d~r′

|~r − ~r′| [Ψ
+(~r′)Ψ(~r′) − Ψ+c(~r′)Ψc(~r′)]. (6)But it is important that in spite of the normalization ondition (3) for thetotal state vetor (5) eah of its omponents ould be normalized di�erently

∫
d~rΨ+(~r)Ψ(~r) =

1

1 + C
;

∫
d~rΨ+c(~r)Ψc(~r) =

C

1 + C
. (7)The onstant C is an arbitrary value up to now. It de�nes the ratio of twoharge states in the onsidered wave paket. As a result the self-onsistentpotential ϕ(~r) of the salar �eld depends on C.Sine the onsidered physial system has no preferred vetors if ~P = 0, itis natural to regard the self-onsistent potential as spherially symmetrial.Then the variable separation for the Dira equation is realized on the basis146



of the well known spherial bispinors [2℄. Then the unknown radial funtions
f, g satisfy the following system of the equations:

d(rg)

dr
− 1

r
(rg) − (m0 − e0ϕ(r))(rf) = 0;

d(rf)

dr
+

1

r
(rf)− (m0 + e0ϕ(r))(rg) = 0. (8)The equations for the radial wave funtions f1, g1 of the positron ompo-nents:

d(rg1)

dr
+

1

r
(rg1) − (m0 + e0ϕ(r))(rf1) = 0;

d(rf1)

dr
− 1

r
(rf1) − (m0 − e0ϕ(r))(rg1) = 0. (9)The equation for the self-onsistent potential follows from the de�nition of

ϕ(r) taking into aount the normalization of the spherial spinors [2℄:
d2ϕ

dr2
+

2

r

dϕ

dr
= − e0

4π
[f2 + g2 − f2

1 − g2
1 ]. (10)The boundary ondition for the potential de�nes the harge e of the "phys-ial" eletron (positron)

ϕ(r)|r→∞ =
e

4πr
=

e0
4πr

∫ ∞

0
r21dr1[f

2(r1) + g2(r1) − f2
1 (r1) − g2

1(r1)]. (11)The struture of the equation (6) shows that the onsidered variationalmethod is onsistent with the gauge symmetry of the initial Hamiltonian.One an show that the Hamiltonian (1) ould be hosen in an arbitraryLorentz gauge with the lassial omponents both for the salar �eld ϕ(~r)and for the longitudinal �eld ~Al(~r) [8℄.Dimensionless variables and new funtions an be introdued
x = rm0;E = ǫm0; e0ϕ(r) = m0ϕ(x);

e20
4π

= α0;u(x)
√
m0 = rg(r);

v(x)
√
m0 = rf(r);u1(x)

√
m0 = rg1(r); v1(x)

√
m0 = rf1(r). (12)147



As a result the system of equations for desribing the radial wave funtionsof the one-partile exitation of the eletron-positron �eld and the self-onsistent potential of the vauum polarization an be obtained:
u, v =

√
1

1 + C
u0, v0;u1, v1 =

√
C

1 + C
v0, u0;

∫ ∞

0
dx[u2

0(x) + v2
0(x)] = 1; ρ0(x) = u2

0(x) + v2
0(x);

du0

dx
− 1

x
u0 − (1 − ϕ(x))v0 = 0;

dv0
dx

+
1

x
v0 − (1 + ϕ(x))u0 = 0;

ϕ(x) = α0
1 − C

1 + C
ϕ0(x);ϕ0(x) = [

∫ ∞

x
dy
ρ0(y)

y
+

1

x

∫ x

0
dyρ0(y)]. (13)The energy of the system an also be alulated with these funtions:

E1(0) ≡ E(0) = m0
1 − C

1 + C
[T +

1

2
α0

1 − C

1 + C
Π];

T =

∫ ∞

0
dx[(u′0v0 − v′0u0) − 2

u0v0
x

+ (u2
0 − v2

0)];

Π =

∫ ∞

0
dxϕ0(x)(u

2
0 + v2

0). (14)and Eq.(13) an be obtained when varying of the funtional (14).The value a = α0(1 −C)/(1 +C) is the free parameter of the equations(13) and it plays a role of the eigenvalue when the nontrivial normalizedsolution exists.The method for the numerial solution of the nonlinear self-onsistentsystem of the equations (13) was desribed in detail in the paper [8℄. Onlythe numerial results for the loalized wave funtions and for the salarpotential are desribed in the present work. The numerial value for theparameter a depends on the auray of the �nite-di�erene approximationfor the di�erential operators and was as a = a0 ≈ −3.531.The solutions u0, v0 for the eletron and positron omponents and theself-onsistent potential were drawn in Ref. [8℄. All these funtions areloalized in the domain with the linear size of ∼ m−1
0 . The potential getsover the Coulomb potential of the "physial" harge e for r > r0 = m−1

0 .148



It is important that the harateristi size of this exitation r0 is the sameorder as the lassial radius of the eletron re = α/m, namely r0 = re

2|a0|
≈

0.15re.The stationary loalized olletive exitation of the eletron-positron�eld desribed above is of great interest by itself as the eigenvetor of thewell known QED Hamiltonian that an't be alulated by means of the per-turbation theory and has not be onsidered before. It is naturally to supposethat this loalized state desribes the "physial" eletron (positron) with theobserved harge e. The integral harge of the onsidered one-partile exi-tation is de�ned by the boundary ondition (11) and this supposition leadsto e0(1 − C)/(1 + C) = e. In the result one an �nd the following relationbetween the "primary" oupling onstant α0 = e20/4π and the observedvalue of the �ne struture onstant α = e2/4π

α0 =
a2

0

α
≈ 1708.1. (15)This formula de�nes the renormalization of the harge in the onsideredapproximation and shows self-onsisteny of the initial supposition thatthe interation between the "primary" eletron-positron and salar �elds isstrong.Then the total energy of the exitation with zero momentum is:

E(0) = −m0

α0

Ta0

2
= −m0α

T

2a0
> 0. (16)This value de�nes the minimal energy of the one-partile exitation of theeletron-positron �eld and its positive sign orresponds to the "bottom" ofthe "physial" eletron zone in the renormalized QED. It was also shown in[8℄ that E(0) an be onsidered as the "physial" eletron mass me beauseit de�nes the spetrum of the exitation with non zero total momentum ~Pby Lorentz invariant way:

E(~P ) =
√
P 2 + E2(0); E(0) ≡ me = −m0α

T

2a0
;

m0 = me
2|a0|
α

≈ 1291.7me. (17)As it was shown by Dira [5℄, investigation of the "physial" eletron withthe distributed harge gives the possibility to interpret the "physial" muon149



as the exited state of suh system. The variational approah onsidered inthe present paper allows one to analyze the one-partile exitation di�eredfrom the "physial" eletron without inlusion of any additional parame-ters.This approah leads to a quite reasonable estimation [8℄ for muon mass
(mµ/me) ≈ 191 instead of the experimental value (mµ/me)exp ≈ 206.It was also shown in [8℄ that the interation between the onsidered"physial" eletron and the transversal eletromagneti �eld orresponds tothe perturbation theory relatively to the "physial" harge el1 but withoutthe divergent integrals. Referenes[1℄ Weinberg S., Uni�ed theories of elementary partile interations, Si-enti� Amerian 231, 50 (1974).[2℄ Akhiezer A.I. and Berestekii V.B. , Quantum eletrodynamis, (Nauka,Mosow, 1969); Bogoliubov N.N. and Shirkov D.V. , Introdution to thetheory of quantum �elds, (Nauka, Mosow, 1973).[3℄ Dira P.A.M., The Priniples of quantum mehanis, (The ClarendonPress, Oxford, 1958).[4℄ Feynman R.P., Nobel leture Siene 153, 699 (1966).[5℄ P.A.M. Dira. Pro. Roy. So. London 268, 57 (1962).[6℄ Heitler W., The quantum theory of radiation, (The Clarendon Press,Oxford, 1954).[7℄ Fradkin E.S., Renormalization in quantum eletrodynamis with self-onsistent �eld, Proeedings of Fiz. Inst. of Soviet Aademy of Siene29, 1 (1965).[8℄ I.D. Feranhuk and S.I. Feranhuk. SIGMA 3, 117, (2007); arXiv:math-ph/0605028; /07121107
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ACTA PHYSICA DEBRECINA XLII, 151 (2008)SINGULAR LOCALIZED STATES, EXACTLY SOLVABLEAND QUASI-EXACTLY SOLVABLE PROBLEMS INSTOCHASTIC DYNAMICSG. KrylovPhysis Department, Belarusian State University, 4 Nezavisimosti av., Minsk,220030 BelarusAbstratBased on SUSY QM approah to stohasti problems theonstrution of exatly solvable and quasi-exatly solvable prob-lems is onsidered. The possibility of existene of singular lo-alized eigenstates for linear Fokker-Plank equation has beenexpliitly demonstrated.I. IntrodutionThe problem of onstrution of new exatly solvable problems ontinues tobe very attrative. Even for ases of the most developed one dimensionalquantum mehanis, where there are about 50 known solvable potentials(see, e.g. [1℄) as well as a large number of quasi-exatly solvable ones, newpapers attaking the problem appears every month.At the same time only few examples of solvable Fokker-Plank equationsare known. One of the goals of the paper will be to onsider the problemof solubility of the last equation based on SUSY QM approah.Another interesting question in the �eld is related to the so alled "blowup regimes" for some nonlinear equations. One of the �rst report of thisphenomenon for quasi-linear heat transfer equation has been written in themiddle of 80-th by A. Samarski et al. [2℄. They found that for the equation
∂tf(x, t) = ∂x(D(f)∂xf(x, t)) + U(f, x, t) (1)



with a nonlinear heat transfer oe�ient D depending on temperature (f)as D(f) ∼ fσ, σ > 1 and for soure funtions of the form U(f, x, t) = bfρ,the existene of new regimes is possible (the so alled "blowup", "heat ex-plosion" and "heat loalization" regimes) when singularity of f is produedwithin the �nite time interval. Later suh regimes have attrated muhattention in di�erent �elds see e.g., [3℄ and bibliography therein.It is ommonly aepted that singular loalization is an inevitably non-linear e�et, typially originated from the existene of some generalizedsymmetry and therefore some self-similar solutions.The seond goal of the paper is to demonstrate that singular loalizedsolutions (eigenstates) an naturally appear in some linear problems for theFokker-Plank (F-P) equation in an external �eld.The paper is organized as follows. In the seond setion we shortly out-line the orrespondene between Shrödinger and Fokker-Plank equationsarisen within the framework of supersymmetri quantum mehanis (SUSYQM) to stohasti problems [4, 6℄ and onstrut a series of solvable po-tentials. In the third setion we use one quantum quasi-exatly solvableproblem and onstrut the appropriate F-P problem with singular loalizedeigenfuntions.II. Correspondene between the Shrödinger and Fokker-PlankequationsOne dimensional di�usion equation for the distribution funtion f(x, t)for a system in an external �eld with a potential U(x) reads
∂f(x, t)

∂t
= D

∂2f(x, t)

∂x2
+ a

∂

∂x

(
f(x, t)

dU(x, t)

dx

)
, (2)where D is the di�usion oe�ient, a is the oupling onstant for interationof a partile with an external potential U(x). In subsequent we inorporateit diretly to the potential putting a = 1.In the literature it is ommonly aepted that the only di�erene ofdi�usion equation and Shrödinger's one is in imaginary time on respet to152



real time (Vik's rotation). Though it is evidently true for the ase of a freepartile, for the problem in an external �eld the only sight on the seondequation
i~
∂ψ(x, t)

∂t
= − ~2

2m

∂2ψ(x, t)

∂x2
+ U(x)ψ(x, t) (3)immediately demonstrates that the external �eld is inorporated into theequation (3) in a di�erent way with respet to that in the di�usion ase (2).The prominent feature of the eq.(2) is the existene of zero-mode (sta-tionary or steady-state) solution fs(x), whih simply orresponds to theknown Boltzmann distribution fs(x) = C exp (−U(x)) .In opposite, for the Shrödinger equation (3) the ground state is typiallyunknown and of most interest.This, as we will see, is due to the fat that after transformation of thedi�usion equation into the form of the Shrödinger one, we obtain the lastin the supersymmetri quantum mehanis ( SUSY) form diretly and theproper partner Hamiltonian is just H− [5℄.Let us shortly outline this way [4, 6℄. We assume the units' hoie issuh that ~ = 1,m = 1,D = 1/2. It is worth to note that the steady statesolution reads fs(x) = exp(−2U(x)) with this units' hoie.Then, after substitution f(x) = exp {−U(x) − Et}ψ(x) into

∂f(x, t)

∂t
=

1

2

∂2f(x, t)

∂t2
+

∂

∂x

(
f(x, t)U ′(x)

) (4)we get the Shrödinger equation in the form
1

2
ψ′′(x) + (E − Vq(x))ψ(x) = 0 (5)with a "quantum potential" Vq(x) given by
Vq(x) =

1

2
U ′(x)

2 − 1

2
U ′′(x). (6)The last equation is just in the form of SUSY QM approah with the super-potential given by W (x) = U ′(x) [4℄ and the Hamiltonian operator having153



the fatorized form
Ĥ− = Â†Â =

1√
2

(
− d

dx
+ U ′(x)

)
1√
2

(
d

dx
+ U ′(x)

)
. (7)It is evident from the (5) and (7) that the state E = 0 is the eigenstate of

H−.One an exploit the supersymmetri form diretly by the onstrution ofsolvable ases for 1-D di�usion equation, onsidering known shape-invariantpartner potentials [4℄.There is another way, namely to onstrut the superpotential W (x) =
U ′(x) that leads to exatly-solvable potentials for eq.(5). Denoting a solv-able quantum potential in (5) by Vs(x), we onsider eq.(6) as the Riattiequation for the superpotential W (x)

W ′(x) −W (x)2 = −2 Vs(x). (8)Here it is worth to point out that we an split the energy parameter E in(5) as E = E1 + E2 that leads to the appearane of a term e.g., E2 in theright side of (8) and an be onvenient in subsequent.Based on the known orrespondene of Riatti and Shrödinger equationswe make substitution
W (x) = −Ψ′(x)/Ψ(x)) (9)and rewrite (8) in the form of the Shrödinger equation for the funtion

Ψ(x)

1

2
Ψ′′(x) + (E2 − Vs(x)) Ψ(x) = 0. (10)The last equation means that every eigenstate Ψn(x) of a quantum solvablepotential Vs(x) gives a superpotential through the relation (9) that afterintegration gives the di�usion equation potential U(x) in the form

Un(x) = U0 + log |Ψn(x)| . (11)It is interesting that the set Un(x) leads to the same Shrödinger equation(5) (with di�erent splitting of the onstant E).154



The i-th eigenstate for the exatly solvable di�usion problem with thepotential Un(x) reads
fi(x, t) = Ψn(x) exp (−(Ei+n −En)t)Ψi+n(x), i = 0, 1, ... (12)where Ei is eigenenergy of the appropriate quantum potential).We an onstrut examples of exatly-solvable di�usion potential usingeq.(11) and, e.g., known solutions for the quantum harmoni osillator. Itspotential is Vs(x) = x2/2, the eigenfuntions read (omitting normalizationfator)

Ψn(x) = Hn(x) exp(−x2/2) n = 0, 1... (13)where Hn(x) are Hermite polynomials and eigenenergies are given by En =
n+ 1/2. The di�usion ase (potential,ground eigenstate and the F-P equa-tion) readsn = 0

U0(x) =
x2

2
, f0(x) = e−x2

∂f(x, t)

∂t
=

1

2

∂2f(x, t)

∂x2
+ x

∂f(x, t)

∂x
+ f(x, t),n = 1

U1(x) =
x2

2
− log |x|, f0(x) = x2 e−x2

∂f(x, t)

∂t
=

1

2

∂2f(x, t)

∂x2
+

(
x− 1

x

)
∂f(x, t)

∂x
+

(
1 +

1

x2

)
f(x, t),n = 3

U3(x) =
x2

2
− log |x(2x2 − 3)|, f0(x) = x2 (2x2 − 3)2e−x2

∂f(x, t)

∂t
=

1

2
∂2f(x, t)∂x2 +

(
x− 1

x
− 4x

2x2 − 3

)
∂f(x, t)

∂x
+ 155



(
1 +

1

x2
+

16x2

(2x2 − 3)2
− 4

2x2 − 3

)
f(x, t).We demonstrate the di�usion potential and �rst two eigenstates for thease n = 3 in two adjoined wells, (x ∈ [0,

√
3/2] and x ∈ [

√
3/2,∞]) inFig. 1.
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Figure 1: Di�usion equation potential U3(x) (bold solid line) and �rst twoeigenstates f0(x), f1(x) (solid, and dashed lines, non-normalized) in twoadjoined in�nite barrier wells.The onstruted solvable potentials are logarithmially singular, so thequestion arises either they orrespond to non-penetrable multi-wall di�usionproblem, or di�usion takes plae in all spae. The question needs more deepinvestigation but �rst onlusion is that suh walls are partially penetrablewithin the ordinary di�usion model that ignores partile momentums (andwe an see e.g., non-zero slopes for higher eigenstates funtions in Fig. 1).156



III. Singular loalized eigenstates for the F-P equationIn fat, the method outlined in the previous setion is not restrited tothe onstrution of exatly solvable di�usion models only, it ould be alsoused and for the quasi-exatly solvable ones. The last are suh systemsthat allow algebrai onstrution of only a �nite number of eigenstates (seee.g., [7℄ for more detail and ref. therein). Let us use it for the expliitonstrution of singular loalized eigenstates for the F-P equation.In the paper [8, 9℄ the method has been proposed for the onstrution of1D solvable and quasi-solvable potential families in QM based on polynomialAnsatz for the wave funtion.The general form of the seond order linear di�erential equations allowingpolynomial solutions at some spei�ally hosen values of their oe�ientsreads [8℄̂
Lky(x) = Pk+2(x)y

′′(x) +Qk+1(x)y
′(x) +Rk(x)y(x) = 0. (14)It is easily understood that di�erential operator L̂k maps the spae of the n-th order polynomials Fn[x] into the spae Fn+k[x]. As both spaes are �nitedimensional, the ondition of non-trivial kernel KerL̂ 6= 0 leads simply toa linear algebrai problem for operator representation in this spae plus kadditional onditions imposed on the oe�ients of oe�ient funtions.One example we disussed in [9℄ was

x3y′′(x) + α(x2 − 1)y′(x) + (βx+ γ)y(x) = 0. (15)The Shrödinger equation
Y ′′(u) + (ε− V (u))Y (u) = 0 (16)for this ase has the potential V (u) of the form

V (u) =
A

u2
+Bu2 + Cu4 +Du6. (17)Expliit formulae for the oe�ients A,B,C,D an be found it [9℄. 157



Polynomial Ansatz for n = 1 leads to two eigenstates with the energies
ǫ = ±α and eigenfuntions given as

Y (0)(u) = exp

{
αu4

64

}(
4

u2
+ 1

)
u

3−2 α
2 , (18)

Y (1)(u) = exp

{
αu4

64

}(
4

u2
− 1

)
u

3−2 α
2 . (19)The "admissible region" for the parameter α is given by α ≤ −1/4 (sothat the eigenfuntion is square integrable and non-singular). Then theonstruted eigenstates represent the ground and the �rst exited states forthe potential

V (u) =
α2u6

256
− α (α− 3) u2

8
+

4α2 + 24α + 35

4u2
. (20)If one onsiders the region −1/4 ≤ α < 0, it is easily heked that theeigenfuntions in (18,19) have integrable singularity at x = 0.The substitution of the expliit formula (18) gives for the di�usion po-tential

U(x) = U0 + −αx4 log
(
x−1/2−α

(
4 + x2

))
, (21)for the steady state eigenfuntion

f0(x, t) =
(
Y (0)(u)

)2
=

(
exp

{
αu4

64

}(
4

u2
+ 1

)
u

3−2 α
2

)2 (22)and the �rst exited state eigenfuntion
f1(x, t) = Y (0)(x)Y (1)(x) = e2 αx4−αt

(
1 − 16

x4

)
x3−2 α. (23)In Fig. 2 we demonstrate the quantum and di�usion potential and groundand the �rst exited eigenstates for α = −1/4 with evident singularity at

x = 0.158
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Figure 2: Quantum and di�usion potentials (bold and solid lines), steadystate and the �rst exited state (dotted and dashed lines) for α = −1/4.The obtained result allows us to say that we indeed onstruted singularloalized states for the Fokker-Plank (di�usion) equation, that an be on-sidered as linear analogs of "heat loalization" regimes known in the theoryof quasi-linear equations. AknowledgementThis work has been partially supported by the projet within the Sieneand Tehnial Program "Nanotehnology" of the Republi of Belarus.
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ACTA PHYSICA DEBRECINA XLII, 161 (2008)SECONDARY QUANTIZED PROBLEM OF PAIRCREATION: PROJECTION OPERATOR TECHNIQUEH. V. KrylovaPhysis department, Belarusan State University4 Nezavisimosti Ave., 220030 Minsk, the Republi of BelarusAbstratIn the work a seondary quantized wave funtion of manyfermion systems has been found in terms of one-partile fermionreation (annihilation) operators and two-partile reation (an-nihilation) operators. A Green funtion method developed hasbeen applied for the quantum �eld desription of the problemon pair reation. I. IntrodutionIt is known that fermion pair reation appears in a large number of phys-ial situations desribed in ondensed matter, atomi, nulear, elementarypartile physis, astrophysis, and osmology. Therefore, the problem ofpair prodution from eletri �elds has been the subjet of onsiderable the-oretial interest [1℄. A Dira problem of pair prodution in a homogeneouseletri �eld ~E rotating in plane has been onsidered in [2℄. Symmetry ofthis Dira problem is desribed by the group SO(4) [2℄. The Dira equationdesribes a lassial fermion �eld. However the Dira operator has unphys-ial states that leads to Klein paradox in a problem of eletron satteringon a potential barrier [3℄. The Dira equation desribes a motion of an ele-tron, and its Dira onjugation desribes motion of a positron. Thereforethat fat is surprising that the states belonging to the energy gap of theDira operator, desribe a fermion pair arising in a homogeneous eletri



�eld rotating in the plane. In the seondary quantized Dira problem ofpair prodution in the homogeneous eletri �eld ~E a seondary quantizedfermion �eld is represented as a set of eletrons and positrons, desribed byomplex spinor whih real omponents are eletroni ones, and imaginaryomponents are positroni ones [4℄. An interation Hamiltonian of thisproblem an be onstruted on generators of the algebra of group SO(4)whih is loally isomorphi to the group SU(2)×SU(2) [5℄. To date, ananalyti formalism that suessfully addresses the general problem of �eldswhih vary arbitrarily in both time and spae has not been developed. Thegoal of the work is to o�er a projetion operator tehnique for a seondaryquantized problem of pair reation.II. Seondary quantized problem of pair prodution in ahomogeneous eletri �eld rotating in the planeWe an de�ne an operator of eletron reation ϕ̂1
+ as quantized positivelyfrequeny part ϕ1

+ of �eld funtion ϕ1 , and an operator of positron re-ation ϕ̂†
1

+ as quantized positively frequeny part ϕ†+
1 of Hermitian onju-gate �eld funtion ϕ†

1 . Aordingly, the operator of eletron annihilation
ϕ̂†

1

− is de�ned as quantized negatively frequeny part ϕ†−
1 of Hermitianonjugate �eld funtion ϕ†

1 , and the operator of positron annihilation ϕ̂1
−quantized as negatively frequeny part ϕ−

1 of �eld funtion ϕ1 . Now we ande�ne annihilation operators (Φ̂†
pair

)− and reation operators (Φ̂pair

)+ offermion pairs as
(
Φ̂
†
pair

)−
= Φ− = ϕ̂1

− ϕ̂†
1

−
, (1)

(
Φ̂pair

)+
= Φ+ = ϕ̂†

1

+
ϕ̂1

+, (2)and an operator
(
Φ̂
†
pair

)0
= Φ0 =

1

2

(
ϕ̂1

+ ϕ̂†
1

−
− ϕ̂1

− ϕ̂†
1

+
)
. (3)Substituting into invariant Casimir operator C2 for algebra SU(2)

C2 =
1

2
(Φ+Φ− + Φ−Φ+) + Φ2

0 (4)162



the expliit expressions for Φ±,Φ0 (1) - (3), we �nd the Casimir operatoras
C2 =

3

4

(
1 −

(
ϕ̂1

+ ϕ̂†
1

−
− ϕ̂†

1

+
ϕ̂1

−

)2
)
. (5)One get a wave funtion Ψ(~r1, ~r2) of fermion pair with additional oupledeletron by an ation of the operator ϕ̂1

+ and (Φ̂pair

)+ on a vauum vetor
| 0〉 as

Ψ(~r1, ~r2) =
〈
~r1 |Ψ̂|~r2

〉
=
〈
~r1 | ϕ̂1

+ |0
〉〈

0|
(
Φ̂pair

)+
|~r2
〉
, (6)where ~r1 is a radius - vetor of eletron with spin "up", ~r2 is a radius -vetor of eletron with spin "down". Sine by virtue of state orthogonalityit is possible to add the projetion operator |0 >< 0| in alulations up to

Î, the expression (6) an be transformed to the form
| Ψ〉 = Ψ̂| 0〉 = ϕ̂1

+ Î
(
Φ̂pair

)+
| 0〉 . (7)Negleting orrelations, the vauum vetor | 0〉 an be presented as a prod-ut of vauum vetors | 0 ↑〉 and | 0 ↓〉 for states with spin "up" and "down".Hene, the expression (7) an be rewritten as

| Ψ〉 = Ψ̂| 0〉 = ϕ̂1
+ | 0 ↑〉

(
Φ̂pair

)+
| 0 ↓〉 ≡ | 1, 0〉 | 1, 1〉 , (8)where | 1, 0〉 is a state with one eletron, | 1, 1〉 is a state with one eletronand one positron. Sine, as shown above, ket-vetors | 1, 0〉 and | 1, 1〉 aretransformed on a representation of the symmetry group SU(2), the wavefuntion | Ψ〉 is transformed on representation of the symmetry group SO(4).Let us evaluate a value whih is aepted a Casimir operator C4 of groupSO (4) on the vetor | 1, 0〉 | 1, 1〉 of Fok spae:

C4(| 1, 0〉 | 1, 1〉) = (C2| 1, 0〉) | 1, 1〉 + | 1, 0〉 (C2| 1, 1〉) . (9)Values of the Casimir operator C4 (9) are eigenvalues of the operaror ofsquared angular momentum Ĵ
2 of the state | 1, 0〉 | 1, 1〉 desribing the sys-tem from one eletron and one pair of partile - antipartile. We see that163



operators ϕ̂1
+ ϕ̂†

1

− and ϕ̂†
1

+
ϕ̂1

− are operators of oupation numbers forfermions n̂− and antifermions n̂+ :
n̂− = ϕ̂1

+ ϕ̂†
1

−
, n̂+ = ϕ̂†

1

+
ϕ̂1

− . (10)Substituting the expressions (5) and (10) in the formula (9) we get C4 = 3
4as for the state | 1, 1〉 we have

C2| 1, 1〉 =
3

4
[1 − (n̂− | 1, 1〉 − n̂+ | 1, 1〉)] =

3

4
, (11)and for the state | 1, 0〉 C2 = 0 owing to identity

C2| 1, 0〉 =
3

4
(1 − n̂− | 1, 0〉 + n̂+ | 1, 0〉) = 0. (12)It means that the state | 1, 0〉 | 1, 1〉 is transformed on a spinor representationof the group SU(2). This result is an appearane of a yli symmetryof many fermion systems, meaning, that by virtue of identity of eletronsthere are on�gurations whih are produed by a yli permutation froma on�guration with one unpaired eletron inluding a on�guration with a"hole" - positron and eletron with spin "down". Further we shall develop atehnique of projetion operators allowing the seondary quantization of asystem with variable number of partiles and pairs of partile - antipartile.III. Seondary quantized wave funtion of a system with variablenumber of eletron and fermioni pairsLet us onsider a quantum system onsisting of variable (very large) number

N of idential interating partiles N → ∞. Its desription will be ompleteif one knows aurate within phase multiplier exp(ıθ) a vetor of state |ϕ1 >for one partile, a two-dimensional vetor of state |ϕ1, ϕ2 > for a subsystemfrom two partiles, a three-dimensional vetor of state |ϕ1, ϕ2, ϕ3 > for asubsystem from three partiles, et. A wave funtion |ϕ̂ > of all many par-tile system is desribed by vetors with oordinates < ϕ̂|ϕ0, ϕ1, . . . , ϕn >[6℄: 


< ϕ̂|ϕ0 >< ϕ0|
< ϕ̂|ϕ0, ϕ1 >< ϕ0, ϕ1|

. . .
< ϕ̂|ϕ0, ϕ1, . . . , ϕn−1 >< ϕ0, ϕ1, . . . , ϕn−1|
< ϕ̂|ϕ0, ϕ1, . . . , ϕn >< ϕ0, ϕ1, . . . , ϕn|



. (13)164



Here |ϕ0, ϕ1, . . . , ϕn > is alled a vetor of state in vetor Fok spae,
ϕ0, ϕ1, . . . , ϕn are parameters of partiles, for example, oordinates, mo-mentum, energy. The seondary quantized funtion |ϕ̂ > onsists of thesum of its projetions:
< ϕ̂| =

∞∑

n=0

∫ . . . ∫ dϕ0 . . . dϕn < ϕ̂|ϕ0, ϕ1, . . . , ϕn >< ϕ0, ϕ1, . . . , ϕn| (14)where the following identity holds for a vauum state ϕ0:
∫ dϕ0 ≡ 1. (15)Let us assume that the wave funtion |ϕ̂ > of many partile system isprodued by an ation of projetion operator ϕ̂ on a vetor |ϕ >:

|ϕ̂ >= ϕ̂|ϕ > . (16)Sine the operator ϕ̂ is a projetor it possesses a property of self-adjointness.Hene, after taking into aount the expression onjugated to (16) in (14)the obtained relationship an be transformed to the following form
< ϕ| ϕ̂† =

∞∑

n=0

∫ . . . ∫ dϕ0 . . . dϕn < ϕ|ϕ̂ϕ0, ϕ1, . . . , ϕn >< ϕ0, ϕ1, . . . , ϕn|.(17)The multidimensional vetor |ϕ1, . . . , ϕn > belongs to a tensor produt ofvetor spaes V1 ⊗ V2 ⊗ . . . ⊗ Vn:
|ϕ0, ϕ1, . . . , ϕn >=

1√
n!
|ϕ0 > |ϕ1 > . . . |ϕn > . (18)Sine ϕ0 is a vauum state, the projetion ϕ̂|ϕ0 > of the vetor of vauumstate |ϕ0 > is also the vauum state

ϕ̂|ϕ0 >= |ϕ0 > . (19)Substituting (19) in (17) and multiplying the obtained expression at the leftby a ket - vetor |ϕ > we get
|ϕ >< ϕ̂| ≡ |ϕ >< ϕ| ϕ̂†

=
∞∑

n=0

∫ . . . ∫ dϕ0 . . . dϕn|ϕ >< ϕ|Î|ϕ0, ϕ1, . . . , ϕn >< ϕ0, ϕ1, . . . , ϕn|. (20)165



We see that the n-dimensional vetor |ϕ0, ϕ1, . . . , ϕn > belongs to a sumof tensor produts of vetor spae V on the n − 1 -dimensional spae V1 ⊗
V2 ⊗ . . . ⊗ Vn−1:

|ϕ0, ϕ1, . . . , ϕn >∈ V1 ⊗ V n−1
1 ⊕ V2 ⊗ V n−1

2 ⊕ . . .⊕ Vn ⊗ V n−1
n , (21)where the (n− 1)-dimensional vetor spaes V n−1

k are tensor produts as
V n−1

k = V0 ⊗ V1 ⊗ . . .⊗ Vk−1 ⊗ Vk+1 ⊗ . . .⊗ Vn. (22)Therefore, using (21) and taking into aount antisymmetry of the wavefuntion we an rewrite formula (18) as
|ϕ0, ϕ1, . . . , ϕn >=

1√
n

(|ϕ0, ϕ1 > |ϕ2, . . . , ϕn > +(−1)

×|ϕ0, ϕ2 > |ϕ1, ϕ3, . . . , ϕn > + . . .+ (−1)n−1|ϕ0, ϕn > |ϕ1, . . . , ϕn−1 >)(23)where the multiplier (−1)k has arisen beause of antisymmetry of the manyeletron wave funtion with respet to permutation of partiles. Assumingorthonormality of the vetors |ϕi >: < ϕk|ϕi >= δ(ϕk − ϕi), substituting(23) in the formula (20), and taking into aount deomposition (18) weobtain
|ϕ >< ϕ| ϕ̂† =

∞∑

n=0

∫ . . . ∫ dϕ0 . . . dϕn
1√
n

∞∑

i=1

∑

k

|ϕ >< ϕ|ϕi >

×(−1)k−1δ(ϕk − ϕi)|ϕ0, ϕ1, . . . , ϕk−1, ϕk+1, . . . , ϕn >< ϕ0, ϕ1, . . . , ϕn|.(24)Integrating with aount of presene of δ - funtions and taking into aountidentity of partiles, we transform the expression (24) to the following form
|ϕ >< ϕ| ϕ̂† =

∞∑

n=1

∫ . . . ∫ dϕ0 . . . dϕn−1

√
n

n∑

i=1

(−1)i−1

×|ϕ >< ϕ|Î |ϕi > |ϕ0, ϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕn >< ϕ0, ϕ1, . . . , ϕn|. (25)From expression (25) we �nd the expansion of the projetor ϕ̂:
ϕ̂† =

n∑

k=1

|ϕk > ϕ̂′
k

†
. (26)166



where the operator ϕ̂′
k is de�ned by the following expression:
ϕ̂′

k

†
= (−1)k−1

∞∑

n=1

∫ dϕ0 . . . dϕn−1

√
n

×|ϕ0, ϕ1, . . . , ϕk−1, ϕk+1, . . . , ϕn >< ϕ0, ϕ1, . . . , ϕn|. (27)We onstrut a basis set of operators on whih then we expand the se-ondary quantized funtion < ϕ| ϕ̂†. From the expressions (25), (27) anddeomposition of operator unity Î =
∑

i |ϕi >< ϕi| we �nd
< ϕ| ϕ̂† =

n∑

i,k=1

< ϕ|Î |ϕk > Î|ϕi >< ϕi|Î ϕ̂′
k

†
=

n∑

i,k=1

ak(ϕ)|ϕi >< ϕi|Î ϕ̂′
k

†(28)where fators ak(ϕ) are de�ned by the expression ak(ϕ) =< ϕ|Î |ϕk >.Obviously, the onstruted seondary quantized wave funtions
|ϕi >< ϕi| ϕ̂′

k

†, i, k = 1, 2, . . . an be onsidered as a basis set for theexpansion of seondary quantized funtion < ϕ| ϕ̂† in a series (28). Takinginto aount identity of partiles we an de�ne the one-partile annihilationoperator ϕ̂′
1(ϕα) as [7℄

ϕ̂′
1(ϕα) ≡ ϕ̂′

k=1

†
∣∣∣∣
ϕn→ϕα

= |ϕ0 >< ϕα| +
√

2 ∫ dϕ1|ϕ0, ϕ1 >< ϕ0, ϕ1, ϕα|

+
√

3 ∫ dϕ1dϕ2|ϕ0, ϕ1, ϕ2 >< ϕ0, ϕ1, ϕ2, ϕα| + . . .(29)and express two-partile operators Φ̂
†

pair and Φ̂pair (1), (2) desribing pairsof partiles through these one-partile operators. The seondary quan-tized wave funtion (28) ontains entangled states and onsequently thepositroni ontribution at the o�ered way of quantization.IV. Method of the Green funtionsLet us utilize the tehnique of projetion operators for the desription of aGreen funtion [8℄
Ĝ(z) = Î

2
Ĝ(z) = ∫ ∫ d~rd~r ′|~r ′ >< ~r ′|Ĝ(z)|~r >< ~r|

= ∫ ∫ d~rd~r′|~r′ > G(~r,~r′; z) < ~r|. (30)167



Let us de�ne the Green funtion G for N -dimensional problem as a solutionof the following equation:
[
ı~
∂

∂t
− Ĥ0 − ĤN (~r1, ~r2, . . . , ~rN )

]
G(~r1, ~r

′
1;~r2, ~r

′
2; . . . ;~rN , ~r

′
N ; t, t′)

= δ(~r1 −~r ′
1) . . . δ(~rN −~r ′

N )δ(t − t′). (31)Here Ĥ0 is the kineti energy of partiles, ĤN (~r1, ~r2, . . . , ~rN ) is an intera-tion operator determined as
ĤN (~r1, ~r2, . . . , ~rN ) =

N∑

i<j

Ĥ1(|~ri −~rj |). (32)We an desribe the Green funtion of N-dimensional problem as
ĜN (t1 − t0) = Ĝ

(0)
N (t1 − t0)

+ ∫ Ĝ(0)
N (t1 − ti) ĤN (~r1(ti), ~r2(ti), . . . , ~rN (ti)) Ĝ

(0)
N (ti − t0)dti + ∫ dti

×∫ dtk Ĝ
(0)
N (t1 − ti) ĤN (~r1(ti), ~r2(ti), . . . , ~rN (ti)) Ĝ

(0)
N (ti − tk)

× ĤN (~r1(tk), ~r2(tk), . . . , ~rN (tk)) Ĝ
(0)
N (tk − t0) + . . . = Ĝ

(0)
N (t1 − t0)

+ ∫ dti Ĝ
(0)
N (t1 − ti) ĤN (~r1(ti), ~r2(ti), . . . , ~rN (ti))

[
Ĝ

(0)
N (ti − t0)

+ ∫ dtk Ĝ
(0)
N (ti − tk) ĤN (~r1(tk), ~r2(tk), . . . , ~rN (tk)) Ĝ

(0)
N (tk − t0) + . . .

]

= Ĝ
(0)
N (t1 − t0)

+ ∫ dti Ĝ
(0)
N (t1 − ti) ĤN (~r1(ti), ~r2(ti), . . . , ~rN (ti)) ĜN (ti − t0) (33)where the projetion N -partile Green funtion is de�ned by the followingexpression:

ĜN (t) = ∫ d~r1~r2 . . . ~rNd~r ′
1d~r

′
2 . . . d~r

′
N

×|~r ′
1, ~r

′
2, . . . , ~r

′
N >< ~r1, ~r2, . . . , ~rN |

×Ĝ(t)|~r ′
1, ~r

′
2, . . . , ~r

′
N >< ~r1, ~r2, . . . , ~rN | ≡ ∫ d~r1 . . . ~rNd~r ′

1 . . . d~r
′
N

|~r ′
1, . . . , ~r

′
N >< G(~r1, . . . , ~rN , ~r

′
1, . . . , ~r

′
N ; t) >< ~r1, . . . , ~rN | (34)and the interation is determined by a projetor

ĤN = Î
2
Ĥ1 = ∫ d~r1 . . . ~rN d~r ′

1 . . . d~r
′
N

×|~r ′
1, . . . , ~r

′
N >< ~r ′

1, . . . , ~r
′
N | Ĥ1 |~r1, . . . , ~rN >< ~r1, . . . , ~rN |. (35)168



In the seondary quantized ase the operators ĜN , ĤN beome produts ofprojetion operators:
ĜN (t′1 −t1, . . . , t′N −tN)

= ∫ d~r1 . . . ~rN d~r ′
1 . . . d~r

′
N ϕ+(~r ′

1, t1) . . . ϕ
+(~r ′

N , tN )|0 >
×G(~r1, t1; . . . , ~rN , tN ;~r ′

1, t1; . . . , ~r
′
N , tN ) < 0|ϕ−(~r1, t1) . . . ϕ

−(~rN , tN ), (36)
ĤN =

1

2

∑

i,j

∫ d~ri ~rj d~r
′
i d~r

′
j ϕ

+(~r ′
i)ϕ

+(~r ′
j)|0 >

× < ~r ′
i, ~r

′
j | Ĥ1 |~ri, ~rj > δ(~ri −~r ′

i)δ(~rj −~r ′
j) < 0|ϕ−(~ri)ϕ

−(~rj)

=
1

2

∑

i,j

∫ d~ri ~rj dtjϕ
+(~ri, ti)ϕ

+(~rj , tj)|0 >

× Ĥ1(|~ri −~rj |)δ(ti − tj) < 0|ϕ−(~ri, ti)ϕ
−(~rj, tj) (37)where the time ti(t′i) , i = 1, . . . , N is de�ned as ti = t + εi(t
′
i = t′ + ε′i),

εi(ε
′
i) → 0 and in this sense the equality of the seondary quantized wavefuntions (28) ϕ+(~ri, ti) = ϕ+(~ri(t)) (ϕ−(~ri, ti) = ϕ−(~ri(t))) is understood.Knowing unperturbed Green funtion, the perturbed two-partile operatorGreen funtion an be found from the equation

( ̂̃G2)
ns′ms def

== ϕ+(n)ϕ+(s′)ϕ−(m)ϕ−(s) = (ϕ(0))+(n)(ϕ(0))+(s′)

×(ϕ(0))−(m)(ϕ(0))−(s) +
1

2
∫ dtidtjd~ri ~rj d~r

′
i d~r

′
j

×δ(~ri −~r ′
i)δ(~rj −~r ′

j)
[
(ϕ(0))+(j′)(ϕ(0))+(s′)(ϕ(0))−(m)(ϕ(0))−(i′)

×ϕ+(~r ′
j, t

′
j)ϕ

+(~r ′
i, t

′
i) Ĥ1(|~ri −~rj |)δ(ti − tj)ϕ

−(~ri, ti)ϕ
−(~rj , tj)

×ϕ+(n)ϕ+(i)ϕ−(j)ϕ−(s) + (ϕ(0))+(j′)(ϕ(0))+(s′)(ϕ(0))−(m)(ϕ(0))−(i′)

×ϕ+(~r ′
i, t

′
i)ϕ

+(~r ′
j, t

′
j) Ĥ1(|~ri −~rj |)δ(ti − tj)ϕ

−(~rj , tj)ϕ
−(~ri, ti)

×ϕ+(n)ϕ+(i)ϕ−(j)ϕ−(s)
]
.(38)V. Disussion and onlusionWe observe that the ontributions from partiles and partile-antipartilepairs are not represented by superposition due to antiommutators thatare not equal to zero. In this sense these ontributions are nonseparable.169



For one-partile Dira problem the seondary quantized wave funtion isexpressed only through one-partile reation operators for partiles and an-tipartiles. In this ase one an neglet the nonseparability of ontributionsfrom partiles and partile-antipartile pairs. Therefore instead of operatortwo-partile Green funtion ( ̂̃G2)
ns′ms one an introdue an operator Greenfuntion (Ĝ2)

ms′sn obtained from it by even permutations of the reationand annihilation operators:
(Ĝ2)

ms′sn = ϕ−(m)ϕ+(s′)ϕ−(s)ϕ+(n) for tm > ts′ , ts > tn. (39)By rewriting eq. (38) for the Green funtion (39) and summation over in-dexes s, s′ it is possible to obtain a Dyson equation desribing one-partileGreen funtion. Finally, we have shown that in the ase of variable numberof eletron and fermioni pairs it is neessary to utilize more general equa-tion for the Green funtions whih allows to desribe any ombination ofpartiles and pairs. Referenes[1℄ B. Thaller, The Dira equation (Springer-Verlag, Berlin, 1992).[2℄ Perelomov, Generalized oherent states and their appliations (Nauka,Mosow, 1987) (in russian).[3℄ O. Klein, Z. Physik. 53, 157 (1928).[4℄ V. N. Gribov, Quantum eletrodynamis (RChD, Izhevsk, 2001) (inrussian).[5℄ J. E. Seger and A. B. Balantekin, J. Math. Phys. 37, 219 (1996).[6℄ L. D. Landau and R. Peierls, Zs. F. Phys. 62, 188 (1930).[7℄ V. Fok, Zs. f. Phys. 75, 622 (1932).[8℄ H. V. Grushevskaya, Nonlinear Dynamis and Appliations, vol. 14,eds. L. F. Babihev, V. I. Kuvshinov (Joint Institute of Power Engi-neering and Nulear Researh �Sosny�, Minsk, 2007).170


