
ACTA PHYSICA DEBRECINA XLII, 5 (2008)BGL CONFERENCES: A BRIEF HISTORYL. L. JenkovszkyBogolyubov Institute for Theoreti
al Physi
s, Nat. A
. S
. of UkraineKiev-143, 03680 UKRAINE andRMKI (KFKI), POB 49, Budapest 114, H-1525, HUNGARYAbstra
tThe birth and the evolution of the BGL series of 
onferen
esare brie�y reviewed. I. PreludeIt started in 1997. The idea of the 
onferen
e, that later gave start to theseries, 
ame during a 
onversation with late N.A.Chernikov in the trainDubna - Mos
ow (2 hours of journey). Nikolai Alexandrovi
h Chernikovwas a prominent theorist working at the Bogolyubov Laboratory of The-oreti
al Physi
s of the Joint Institute for Nu
lear Resear
h in Dubna. Hewas an outstanding expert in general relativity, geometry and quantum �eldtheory. With his wife Natalia, they maintained 
lose relations and s
ien-ti�
 
ollaboration with the Loba
hevskij Kazan State University. NikolaiIvanovi
h Loba
hevsky, born in Nizhni Novgorod, dedi
ated most of his lifeto the Kazan University, where he started his studies and his work, laterbe
oming its re
tor. Both towns lie on the splendid Volga river, heart ofRussia, away from Europe's 
ross-roads. The 
hara
ter of the people, theirmentality and their behavior bears mu
h in 
ommon with this unique envi-ronment.Speaking about Loba
hevsky's life, full of drama, Chernikov said- You, Hungarians, have an equally great man in your history! His nameis János Bolyai, and his life was as tragi
 as that of our 
o-patriot. We



should remember of them together!So we de
ided to 
all for a 
onferen
e under the title �Non-Eu
lideangeometry in modern physi
s and mathemati
s� or, in short, BGL, after thenames of Bolyai, Gauss and Loba
hevsky, where Russians and Hungarianswould join their e�orts to remember the heritage of their great an
estors.The name of Friedri
h Gauss is usually 
ited among the 
reators of thenew geometry, and we are looking forward for a wider German involvementin future BGL 
onferen
es. The ordering in the abbreviation is purely al-phabeti
. Although there are di�erent opinions about the priority of thedis
overy of the non-Eu
lidean geometry, we avoided any preferen
e at thispoint. The title of the subsequent 
onferen
es slightly varied, the last pro-posal being: �Non-Eu
lidean geometry and modern physi
s�, but the sym-boli
 abbreviation (BGL) remaining un
hanged. The topi
s of the BGLwere settled as: history (from Eu
lides to the present times), mathemati
sand physi
s, the a

ents depending on the interests of the organizers.It should be stressed that, apart from its stri
t physi
s and geometri

ontent, the 
onferen
e has also a spe
ial �human� or �
ultural� aspe
t inbringing together traditions of the 
lassi
al s
ien
e and the spirit of the OldContinent, di�erent from the so-
alled globalization. BGL is also a bridgebetween East and West in this 
hanging world. The number of the par-ti
ipants is stable, varying around 50. The �rst 
onferen
e gave start to aseries of biannial meetings at varying pla
es of Europe.Let us re
all brie�y the history of 5 previous BGL 
onferen
es, 
ompris-ing now a period of more that 10 years - a �quasi jubilee�.II. Ungvár-Uzhgorod, Trans
arpatia (1997)The venue of the �rst BGL was 
hosen to be in Ungvár, Trans
arpatia (nowUzhgorod, Ukraine), where I was born and I have studied at the lo
al univer-sity. Trans
arpatia is bordering with several 
ountries, lo
ated between theWestern (Hungarian and German) and Eastern (Slavi
) 
ultural environ-ments and in�uen
e, symboli
ally linking the heritage of Bolyai, Gauss andLoba
hevsky and their followers. The lo
al Institute of Ele
tron Physi
s(IEP) of the Ukrainian A
ademy of S
ien
es kindly provided hospitalityfor the �rst BGL 
onferen
e. A bust of N.I. Loba
hevsky, by the knownUkrainian s
ulptor V. Fedi
hev (Kiev) was inaugurated at the opening, andwas donated to the IEP.6



The dire
tor of the IEP, member of the Ukrainian A
ademy and for-eign member of the Hungarian A
ademy of S
ien
es Otto Spenik with thes
ienti�
 se
retary of the Institute Zoltán Tari
s 
onsolidated the lo
al orga-nizing 
ommittee providing ex
ellent working 
onditions for the Conferen
eas well as ex
ursions with 
onferen
e dinners at the villages Nagy Dobronyand Péterfalva. It was, perhaps, for the �rst time sin
e the end of the 2ndWorld War that physi
ists and mathemati
ians from the neighboring Tran-s
arpatia and Transylvania, separated by less than 100 km (and a border!),
ould meet and dis
uss the 
ommon 
ultural heritage. Russia was repre-sented by two great physi
ists � N.I. Chernikov and A.A. Tyapkin - bothfrom Dubna.Of 
ru
ial importan
e for the �rst and subsequent BGL 
onferen
es wasthe support from the Hungarian A
ademy of S
ien
es and its member Pro-fessor István Lovas, who remains a 
entral �gure in the organization of allsubsequent BGL meetings. The pro
eedings of the �rst BGL 
onferen
ewere published in [1℄.III. Nyíregyháza, Eastern Hungary (1999)The venue of the 2nd BGL meeting, thanks to the e�orts of Arpád Szabó,former dire
tor of the Hungarian ly
eum in Ungvár (Uzhgorod), was theNyíregyháza Pedagogi
al Institute, where A. Szabó moved in the mean-time. The Institute provided all the ne
essary fa
ilities (
onferen
e hall,lodging and meals at low pri
es), enabling wide parti
ipation at the 
onfer-en
e - both from East (Romania, Ukraine, Bielorussia, Russia) and from theWest [A. de Alfaro (Torino), M. Tonin (Padova), H. Terazawa (Tokyo), L.Csernai (Bergen) and many others℄. For the �rst time Transylvania, home-land of János Bolyai, was represented by its leading experts on the subje
t,in
luding Samu Benk® and Tibor Toró (history of s
ien
e). Parti
ipant wasalso the outstanding, world-wide re
ognized expert of the Bolyai heritage,Elemér Kiss from Marosvásárhely, where János Bolyai spent most of his life.E. Kiss be
ame an expert on Bolyai's manus
ripts and wrote a book on thestudies of these manus
ripts (being di�
ult to read!) where, apart from thenew geometry, Bolyai's 
ontribution to the number theory is also presented.The book, besides the two Hungarian editions, was translated and printedalso in English and is now a bibliographi
 rarity. Two great men, followersof Loba
hevsky and Bolyai, namely N.A, Chernikov and E. Kiss, met during7



BGL-2 in Nyíregyháza - for the �rst and, alas!, the last time. After heavyand long straggle against their disease, both died of 
an
er (in 2006).The se
ond BGL meeting in Nyíregyháza rea�rmed the universal andhumanisti
 spirit of the BGL 
onferen
es. The so
ial program in
luded anex
ursion to the famous Tokaj wine yards. The pro
eedings of the BGL
onferen
e were published, due to the invaluable e�orts of Prof. I. Lovas,in two issues of the A
ta Physi
a Hungari
a [2℄.IV. Marosvásárhely � Targu Mures (Transylvania) (2002)2002 was the year of the widely 
elebrated 200-th anniversary of JánosBolyai. In parti
ular, the Hungarian A
ademy of S
ien
es organized a largeBolyai-
onferen
e in Budapest in August. We de
ided to join the 
elebra-tions by organizing BGL-3 in September 2002, after an �irregular�, 3-yearsinterval. János Bolyai was born in Kolozsvár (Klausenburg, Cluj Napo
a),but he lived with his father and died in Marosvásárhely, leaving there morethan 20,000 pages of mathemati
al manus
ripts, that 
an now be found inthe Bolyai-Teleki library.Vi
e-Mayor of Marosvásárhely Sándor Csegzi, together with a
ademi
ianIstván Lovas from Budapest and Debre
en were the prin
ipal organizers ofthe BGL-3 
onferen
e. The Hungarian Sapientia University of Transylva-nia, together with the Town Coun
il as well as the Hungarian A
ademyof S
ien
es supported the 
onferen
e. Most of the parti
ipants 
ame fromRomania, Hungary, Ukraine, Russia and Bielorussia, but there were alsoparti
ipants from far away 
ountries like Japan. The atmosphere of the
onferen
e was dominated by the mysti
al presen
e of Bolyais � father andson. We visited memorial pla
es of the family, in
luding the 
emetery. Amore relaxed ex
ursion was organized to neighboring villages, populated bySzékelys, �Hungarian 
ossaks�, whose uno�
ial 
apital is Marosvásárhely.The Pro
eedings of BGL-3 are published in [3℄.V.Nizhni Novgorod (Russia) (2004)From Central Europe, BGL moved to North-East, to Russia. In 2004 theLoba
hevsky Nizhni Novgorod University was the host of the 4-th 
on-feren
e (see: http://www.unn.ru/bgl4/). It was organized by Prof. F.8



Polotovskiy and his sta�, supported by the Re
tor of the University, prof.Strongin.We enjoyed the 
ordial Russian hospitality and pro�ted from the high-level presentations, espe
ially those in mathemati
al physi
s, the �eld inwhi
h Russia has always a large number of interesting results. The parti
i-pation of a 
onsiderable number of Hungarians at the 
onferen
e at Russia'sheartland, in spite of the barriers imposed by visas, high travel 
osts andprejudi
es from mass media, was a proof of the viability and 
ontinuity of
ultural links between East and West and of the mutual respe
t for 
ommonvalues represented by the BGL heritage. During the site-seeing, the par-ti
ipants be
ame a
quainted with the memorial pla
es of N.I.Loba
hevsky.In a boat trip along Volga, the legendary town of N. Novgorod with itsmajesti
 Kremlin has opened its splendor. The pro
eedings of the BGL-4
onferen
e [4℄ 
ontain a 
olle
tion of high-level papers in various �elds ofmathemati
s and theoreti
al physi
s, as well on the history of s
ien
e.VI.Minsk (Bielorussia) (2006)Bielorussia, in spite of its relatively modest dimensions, has a 
ommunity ofphysi
ists and mathemati
ians, grouped in Minsk and elsewhere. ProfessorYury Kuro
hkin, who parti
ipated in most of the previous BGL 
onfer-en
es, is a known expert in geometry and theoreti
al physi
s. With hisassistant, mathemati
ian Vi
tor Red'kov from the Institute of Physi
s ofthe Bielorussian A
ademy of S
ien
es, they led the organizing 
ommittee ofthe 5-th BGL 
onferen
e, held in the fall of 2006, in a resort, outside the
ity of Minsk (http://dragon.bas-net.by/bgl5/). Similar to the previous
onferen
e in N. Novgorod, the hosts provided reasonable low-
ost a

om-modation and food, and ex
ellent, high-level s
ienti�
 presentations. Theprogram was dominated by 
ontributions form Bielorussia and neighboring
ountries. An enjoyable ex
ursion to the 
ity of Minsk was organized. Abig volume of the Pro
eedings was published shortly after BGL-5 [5℄.VII.FutureThis year the Conferen
e returned to Central Europe, Debre
en, heartlandof Hungary. During the dis
ussion 
on
luding BGL-6, we heard that: 9



1. The biennial series should be 
ontinued. Several options for the next
onferen
e site were mentioned, among them were Kolozsvár (Cluj-Napo
a) and Trieste. The optimal title seems to be: �Non-Eu
lideangeometry in modern physi
s�.2. A wider German parti
ipation, in
luding the organization of a futureBGL 
onferen
e in Germany, is highly wel
ome.3. The s
ope of the 
onferen
e is right and it should be 
ontinued; physi
sand mathemati
s should be present in a balan
ed way, with some his-tory of s
ien
e, arts et
. added. Ultimately, János Bolyai was a poly-histor, to use this �modern� term. He was an a

omplished polyglot,speaking nine foreign languages, in
luding Chinese and Tibetan. Heplayed violin and was a skilled fen
er. F. Gauss was learning Rus-sian (to read Pushkin or Loba
hevsky?). Their life and heritage areinspiring! Referen
es[1℄ Non-Eu
lidean geometry in modern physi
s and mathemati
s, Pro-
eedings of the BGL 
onferen
e in Uzhgorod, Edited by L. Jenkovszky,Kiev, 2007.[2℄ A
ta Phys. Hungari
a, Pro
eedings of the BGL-2 
onferen
e in Nyire-gyháza� Edited by I. Lovas ..... (2000).[3℄ Non-Eu
lidean geometry in modern physi
s and mathemati
s, Pro
eed-ings of the BGL-3 
onferen
e in Marosvásárhely� Edited by S.Csegziand I.Lovas, Budapest � 2002.[4℄ Non-Eu
lidean geometry in modern physi
s and mathemati
s, Pro-
eedings of the BGL-4 
onferen
e in Nizhni Novgorod , Edited by L.Jenkovszky and G. Polotovskiy, N.Novgorod - Kiev � 2004.[5℄ Non-Eu
lidean geometry in modern physi
s, Pro
eedings of the BGL-5
onferen
e in Minsk, Edited by Yu.Kuro
hkin and V.Red'kov, Minsk� 2004.10



ACTA PHYSICA DEBRECINA XLII, 11 (2008)A NOTE TO K-TORSE-FORMING VECTOR FIELDS ONCOMPACT MANIFOLDS WITH COMPLEX STRUCTUREM. Chodorová, J. Mike²Department of Algebra and geometry, Fa
ulty of S
ien
e, Pala
ky UniversityOlomou
, Cze
h Republi
Abstra
tCertain properties of torse-forming, 
on
ir
ular and 
onver-gent ve
tor �elds on manifols with a�ne 
onne
tion are stud-ied. Conne
tions of manifols in whi
h su
h ve
tor �elds existare found. Moreover, examples of the mentioned manifols in
ase they are 
ompa
t and metrizable are presented.I. Introdu
tionCon
ir
ular and torse-forming ve
tor �elds were introdu
ed by K. Yano[16℄ in 1944 and their properties in Riemannian spa
es have been stud-ied by various mathemati
ians. Their generalizations are Kählerian torse-forming ve
tor �elds (shortly K-torse-forming) whi
h were introdu
ed byYamagu
hi [14℄. Many authors, for example [2, 10℄, investigated Kähleriantorse-forming ve
tor �elds whi
h we 
all K-
on
ir
ular ve
tor �elds.Spe
ial types of these ve
tor �elds (
ovariantly 
onstant, re
urrent, 
on-vergent, 
on
ir
ular) have been studied earlier. Riemannian spa
es, onwhi
h these �elds exist, have a spe
i�
 form of a metri
, namely they arewarped produ
t spa
es, see for example [6, 7, 8, 12, 13, 15℄.The ve
tor �elds have been studied mostly in Riemannian spa
es. Theirde�nitions, as it is shown, depend �rst of all on an a�ne 
onne
tion andbasi
ally not on a metri
, see [13℄.



In this paper we introdu
ed lo
al and global 
onditions of an existen
e ofthe studied ve
tor �elds on manifolds An with torsion-free a�ne 
onne
tionsand the 
onditions of setting the metri
 in An. A
tually it is a 
ontinuationof our previous paper, see [11℄.II. K-torse-forming ve
tor �eldsFirst we note de�nitions and some properties of torse-forming ve
tor�elds, via them we de�ne re
urrent, 
onvergent and 
on
ir
ular ve
tor �elds,see [8℄.De�nition 1. A ve
tor �eld ξ on a manifold An with an a�ne 
onne
tion
∇ is 
alled torse-forming, if the 
ondition ∇Xξ = ρ · X + a(X) · ξ holdsfor any ve
tor �eld X from X (An), ρ is a fun
tion on An, a is a linearform on An.A torse-forming ve
tor �eld ξ is 
alled

• re
urrent, if ρ ≡ 0,
• 
on
ir
ular, if the form a is gradient (or lo
ally gradient), i.e. thereexists(lo
ally) a fun
tion ϕ(x) su
h that a = dϕ(x) = ∂iϕ(x) dxi,
• 
onvergent, if ξ is 
on
ir
ular and ρ(x) = const · eϕ(x).Let An be an n-dimensional manifold with a�ne 
onne
tion ∇ (shortly� spa
e with a�ne 
onne
tion ∇), on whi
h an a�nor stru
ture F is de�ned(i.e. F is a tensor �eld of type (11) on An), we 
an de�ne more generalizedve
tor �elds.De�nition 2. A ve
tor �eld ξ is 
alled K-torse-forming if

∇Xξ = ρ ·X + σ · FX + a(X) · ξ + b(X) · Fξ, ∀X ∈ TVn, (1)where ρ, σ are some fun
tion, and a, b are linear forms on An.12



In lo
al 
oordinates x it is
ξh
,i = ρ δh

i + σ F h
i + aiξ

h + biF
h
α ξ

α,where ξh, F h
i , ai, bi are 
omponents of ξ, F, a, b, and � , � denote the 
ovariantderivative.These ve
tor �elds are studied on Kählerian, eventually on Hermitian,spa
es from many others aspe
ts, see for example S. Yamagu
hi [3, 14℄, K.R.Esenov [2℄, J. Mike², G.A. Starko [10℄, see [7℄.It is easy to prove an integral 
urve ℓ: x = x(t) of a K-torse-formingve
tor �eld ξ is F -planar, be
ause its tangent ve
tor dx/dt = ξ satis�es afollowing 
ondition ([4, 7, 9℄)

∇ξξ = ̺1(t) ξ + ̺2(t)Fξ,where ̺1, ̺2 are fun
tions of a parameter t.An existen
e of K-torse-forming ve
tor �elds on spa
es with a�ne 
on-ne
tion has two aspe
ts � lo
al and global. These aspe
ts were studied fortorse-forming and 
on
ir
ular ve
tor �elds in [11℄.The fundamental question is an existen
e of spa
es An, on whi
h men-tioned ve
tor �elds exist; for example, su
h global ve
tor �elds live on 
om-pa
t spa
es.III. Lo
al existen
e of K-torse-forming ve
tor �elds on AnIII.1At �rst we 
onstru
t all a�ne 
onne
tions on spa
es An (lo
ally) onwhi
h K-torse-forming ve
tor �elds exist.The �nding of all spa
es An with a�ne 
onne
tion ∇, on whi
h these�elds are de�ned, is easy from a lo
ally aspe
t. It is known, that a 
hart
(x,U) exists on manifolds for non vanishing ve
tor �eld ξ and it holds:

ξh(x) = δh
1 , ∀x ∈ U. 13



We note ξh
,i ≡ ∂iξ

h + ξαΓh
αi, where ξh and Γh

ij are 
omponents of a ve
tor�eld ξ and of an a�ne 
onne
tion ∇ on spa
es An. We get the followingexpression Γh
ij of a�ne 
onne
tion ∇ on spa
es An on whi
h K-torse-form-ing ve
tor spa
es are de�ned if we substitute this to the equations (1):

Γh
1i(x) = ρ(x)δh

i + σ(x)F h
i (x) + ai(x)δ

h
1 + bi(x)F

h
1 (x), (2)where ρ(x), σ(x), ai(x), bi(x) are some fun
tions de�ned on U , F h

i (x) are
omponents of a stru
ture F on U ; the other 
omponents Γh
ij(x) are arbi-trary fun
tions de�ned on U .In general 
ase the 
omponents (2) 
an de�ne a 
onne
tion ∇ with tor-sion. If Γh

ij = Γh
ji then this 
onne
tion ∇ is torsion-free.An analysis of these formulas it follows that a set of manifolds An onwhi
h mentioned ve
tor �elds live is very broad. It is possible to verify thatthe majority of manifolds An are not metrizable, i.e. there does not exist ametri
 g, for whi
h a 
onne
tion on An is not a Levi-Civita 
onne
tion of

g. The a�nor stru
ture F is arbitrary. Evidently, in the event, if F is 
om-plex or almost 
omplex stru
ture, in general 
ase spa
e An is not Kählerianor Hermitian spa
e. III.2It is well-known [7℄ a Kählerian spa
e is a Riemannian spa
e on whi
h thereare de�ned metri
 g and 
omplex stru
ture F satisfying
F 2 = −Id, g(X,FY ) + g(FX,Y ) = 0, ∇F = 0,for all tangent ve
tors X,Y .In paper by J. Mike² and G.A. Starko [10℄ there was introdu
ed a metri
of a Kählerian spa
e and in this spa
e there exists a K-torse-forming (or K-
on
ir
ular) ve
tor �eld. In the 
anoni
al 
oordinate system x this metri
has a following expression:

gab = ga+mb+m = ∂abG+∂a+mb+mG, gab+m = ga+mb = ∂ab+mG−∂a+mbG,14



where G = G(x1 + s(x2, x3, . . . , xm, xm+2, xm+3, . . . , xm+m)), G′, G′′ 6= 0,
G, s ∈ C3, are fun
tions of mentioned arguments, a, b = 1, . . . ,m, m = n/2,the stru
ture F is 
anoni
al, i.e. F a+m

b = −F a
b+m = δa

b , F a
b = F a+m

b+m = 0,and ∂i = ∂/∂xi. In this 
oordinate system a K-torse-forming ve
tor �eld isexpressed: ξ = ∂1.IV. Global existen
e of K-torse-forming ve
tor �elds on 
ompa
t
AnIV.1We introdu
e an example of a spa
e with a�ne 
onne
tion whi
h is madeon n-dimensional torus.Let An = S1×S1×· · ·×S1, and x1, x2, . . . , xn, be the 
orresponding an-gles on the 
ir
les. We have global ve
tor �elds X1 = ∂1,X2 = ∂2, . . . ,Xn =

∂n.We de�ne the a�ne 
onne
tion ∇ through its a
tions on these ve
tor�elds, as follow:
∇Xi

X1 = ρ(x)Xi + σ(x)FXi + a(Xi)X1 + b(X)FX1,and for the others ∇Xi
Xj =

n∑

k=1

ωk
ij(x)Xk, j 6= 1,where ρ, σ, ωk

ij are fun
tions and a, b are linear forms on An, and F is ana�nor stru
ture on An.Evidently, the spa
e An is 
ompa
t, and ξ ≡ X1 is a K-torse-formingve
tor �eld.The stru
ture F on even-dimensional An, for whi
h the following 
ondi-tions hold
FXa = Xa+m, FXa+m = −Xa, ∀a = 1, . . . ,m, 2m = n,is a globally 
omplex stru
ture. It is known, the following expression F 2 =

−Id holds for this stru
ture. 15



IV.2We introdu
e an example of a 
ompa
t spa
e with torsion-free a�ne
onne
tion and 
ovariantly 
onstant 
omplex stru
ture whi
h is made on
n-dimensional torus.Let An = S1 × S1 × · · · × S1, and x1, x2, . . . , xn, n = 2m, be 
orre-sponding angles in 
ir
les. Global ve
tor �elds are de�ned: X1 = ∂1,X2 =
∂2, . . . ,Xn = ∂n.We de�ne 
omplex stru
ture F and a�ne 
onne
tion ∇, by a
tions ofthese ve
tor �elds:

FXa = Xa+m, FXa+m = −Xa, ∀a = 1, . . . ,m, (3)
∇Xi

Xj =

n∑

k=1

ωk
ij(x)Xk, (4)where ωk

ij (= ωk
ji) are fun
tions on An.It has been assumed that the fun
tions ωk

ij satis�es
ωc

ab = ωc+m
ab+m = −ωc

a+m b+m, (5)
ωc+m

a+m b+m = ωc
a b+m = −ωc+m

a b , a, b, c = 1, 2, . . . ,m.Then we prove that the stru
ture F is 
ovariantly 
onstant, i.e. ∇F = 0,see [5℄.Moreover, if
ωc

a1 = ωc+m
a 1+m = ωc+m

a+m 1 = −ωc
a+m1+m = ψaδ

c
1 + ψ1δ

c
a,

ωc+m
a+m 1+m = ωc

a 1+m = −ωc+m
a1 = ψa+mδ

c
1 − ψ1+mδ

c
a,where ψi are fun
tions on An, then the ve
tor �eld ξ = X1 is K-torse-for-ming.Lemma 1. There exists a 
ompa
t manifold An with torsion-free a�ne
onne
tion and globally de�ned 
ovariantly 
onstant 
omplex stru
ture andK-torse-forming ve
tor �eld.16



Furthermore we suppose that
ω1

11 = ω1+m
1 1+m = ω1+m

1+m 1 = −ω1
1+m 1+m = 1,and the other 
omponents of ω are zero. The formulas (4) and (3) de�ne atorsion-free a�ne 
onne
tion ∇ and a 
ovariantly 
onstant a�ne stru
ture

F on An, respe
tive. A ve
tor �eld ξ = X1 is K-torse-forming.Lo
ally this 
onne
tion ∇ is 
al
ulated in terms of a metri
 g = diag(g11,
g22, . . . , gnn), where
g11 = g1+m 1+m = exp(2x1), gaa = ga+m a+m = 1, a = 2, . . . ,m, 2m = n.Evidently, this metri
 lo
ally generates a Kählerian spa
e with the stru
ture
F . In other hand, the 
onstru
ted spa
e An is not globally metrizable.From this follows that ∇ξξ = ξ, and for the lenght |ξ| =

√
g(ξ, ξ), wehave ∇ξ|ξ| = |ξ|. Be
ause, An is 
ompa
t, this 
ase does not exist.This work has been partially supported by the Coun
il of Cze
h Gov-ernment MSM 6198959214. Referen
es[1℄ M. Co
os, A note on symmetri
 
onne
tions, J. of Geometry andPhysi
s 56, 337 (2006).[2℄ K.R. Esenov, On properties of generalized equidistant Kählerian spa
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3 S
hiller University, Jena, GermanyAbstra
tIn this paper we prove that all a�ne 
onne
tion manifoldsare lo
ally proje
tively equivalent to some spa
e with equia�ne
onne
tion (equia�ne manifold). We found a system of linearequations whi
h determine all (pseudo-) Riemannian spa
es ad-mitting geodesi
 mappings onto an a-priori de�ned spa
e witha�ne 
onne
tion.I. Levi-Civita equations of geodesi
 mappingsAs well known, a geodesi
 mapping is a di�eomorphism whi
h preservesgeodesi
 
urves, see for example [1℄-[20℄, et
.Beltrami [1℄ in 1865 began to study geodesi
 mappings onto Eu
lideanspa
es. Levi-Civita [7℄ obtained fundamental equations of geodesi
 map-pings between Riemannian spa
es. H.Weyl [19℄ de�ned geodesi
 mappingsbetween a�ne 
onne
tion manifolds. He showed that the Levi-Civita equa-tions are valid in this 
ase, too.These results were �rst formulated only lo
ally. Many times it was foundthat the Levi-Civita equations hold also globally (� in whole�), see [8℄.Let An and Ān be n-dimensional a�ne 
onne
tion manifolds with 
on-ne
tions ∇ and ∇̄, respe
tively. We suppose that there exists a di�eomor-phism f : An → Ān. Be
ause it is very well known [3, 8, 12, 16, 19℄ that



an a�ne 
onne
tion manifold is proje
tively equivalent to a manifold withsymmetri
 a�ne 
onne
tion, we suppose that the 
onne
tions ∇ and ∇̄ aresymmetri
 a�ne 
onne
tions.If U ⊂ An is a 
oordinate neighborhood with 
oordinates x = (x1, . . . ,
xn), we suppose that the points M ∈ U and M̄ = f(M) ∈ f(U) haveidenti
al 
oordinates x. These 
oordinates x are 
alled 
ommon 
oordinatesof the mapping f .A di�eomorphism f : An → Ān is a geodesi
 mapping if and only if thefollowing Levi-Civita equation holds:

Γ̄h
ij(x) = Γh

ij(x) + δh
i ψj(x) + δh

j ψi(x), (1)where Γh
ij and Γ̄h

ij are 
omponents of ∇ and ∇̄, respe
tively, ψi is 
ove
tor,
δh
i is the Krone
ker symbol.A di�eomorphism f from the manifold An onto the (pseudo-) Rieman-nian manifold V̄n is a geodesi
 mapping if and only if the following Levi-Civita equation holds:̄

gij,k = 2ψk ḡij + ψi ḡjk + ψj ḡik, (2)where ḡij(x) are 
omponents of the metri
 tensor ḡ of V̄n, � , � denotes the
ovariant derivative with respe
t to the 
onne
tion ∇ on An.With the aid of these equations many problems of geodesi
 mappings ofRiemannian manifolds and a�ne 
onne
tion manifolds were solved.Levi-Civita [7℄, see [3℄-[20℄, obtained these fundamental equations forgeodesi
 mappings between Riemannian manifolds. The above Levi-Civitaequations hold equally for Riemannian and for pseudo-Riemannian mani-folds.In the following we suppose that (see [13, 14, 16℄):Riemannian manifold ≡ Riemannian and pseudo-Riemannian manifold.
20



II. Geodesi
 mappings and equia�ne 
onne
tion manifoldsAs we have already said, a�ne 
onne
tion manifolds are proje
tivelyequivalent to some spa
es with symmetri
 a�ne 
onne
tion. Note that asymmetri
 a�ne 
onne
tion ∇ is 
alled equia�ne if the Ri

i tensor of Anis symmetri
 [12, 16℄.It is known [12, 16℄ that the manifold An is equia�ne (this means Anhas an equia�ne 
onne
tion), if and only if on a 
oordinate neighborhood
U there exists a fun
tion f(x) so that Γα

iα(x) = ∂f(x)
∂xi .We have the following theorem.Theorem 1. An a�ne 
onne
tion manifold is lo
ally proje
tively equivalentto an equia�ne manifold.Proof. Let An be a manifold with a�ne 
onne
tion ∇. We 
an restri
tourselves to the 
ase that ∇ is symmetri
. We suppose that a 
oordinateneighborhood U ∈ An is mapped geodesi
ally on Ān under the assumptionof the validity of the Levi-Civita equations (1).We 
onstru
t a 
ove
tor ψi(x) in the following way:

ψi(x) = − 1

n+ 1
Γα

iα(x). (3)From (1) and (3) follows
Γ̄α

iα(x) = 0. (4)Formulae (3) and (4) hold only in the distinguished 
oordinate system x,be
ause Γ̄α
iα(x) is not a 
ove
tor. Condition (4) is equivalent to the sym-metry of the Ri

i tensor of Ān and the equia�nity of Ān. This propertyis not dependent of 
oordinates.
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III. Mike²-Berezovski equations of geodesi
 mappings fromequia�ne manifolds onto Riemannian manifoldsSinyukov started from the following problem: �nd all Riemannian mani-folds V̄n whi
h admit geodesi
 mappings onto an a priori de�ned Riemannianmanifolds Vn, see [8, 16℄.This means we must �nd all metri
 tensors ḡ, whi
h are solutions ofthe Levi-Civita equations (1) and (2). These equations are non-linear withrespe
t to the 
omponents of the metri
 tensor ḡ and for their solution nostandard methods exist. Sinyukov (see [8, 16℄) for this problem obtained aset of linear equations of Cau
hy type.Mike² and Berezovski started from the generalized problem: �nd allRiemannian manifolds V̄n whi
h admit geodesi
 mappings onto an a prioride�ned a�ne 
onne
tion manifold An, see [8, 9℄.Theorem 2 (Mike², Berezovski [8, 9℄). The equia�ne manifold An ad-mits a geodesi
 mapping onto a Riemannian manifold V̄n, if and only if the
omplete set of linear di�erential equations of Cau
hy type in the 
ovariantderivatives in An

(a) aij
,k = λi δj

k + λj δi
k;

(b) nλi
, j = µ δi

j + aiαRαj − aαβRi
αβj;

(c) (n− 1)µ,i = 2(n+ 1)λαRαi + aαβ(2Rαi,β −Rαβ,i)

(5)has a solution with respe
t to the unknown symmetri
 regular tensor aij ,the ve
tor λi, and the fun
tion µ. The solutions of this system and (1) arerelated by the equality
aij = exp(2ψ) ḡij ; λi = − exp(2ψ) ḡiαψα, (6)where ψi is a gradient ve
tor of the fun
tion ψ, ḡij are 
omponents of thedual tensor of the metri
 tensor of V̄n.Here Rh

ijk and Rij = Rα
ijα are 
omponents of the Riemannian and Ri

itensors of An, the 
omma � , � denotes the 
ovariant derivative in An.The �rst formula (5) gives the ne
essary and su�
ient 
ondition for theexisten
e of a geodesi
 mapping: An → V̄n. This mapping is nontrivial ifand only if λi 6≡ 0.22



In this 
ase, the set of equations (5) is linear and its solution is redu
edto the investigation of the integrability 
onditions and their di�erential pro-longations, whi
h are a set of algebrai
 (homogeneous with respe
t to theunknown tensors aij, λi, and µ) equations with 
oe�
ients from An (i.e.
oe�
ients formed from obje
ts de�ned on An). Thus, in prin
iple, we
an solve the following problem, if the given equia�ne manifold An admitsgeodesi
 mappings onto the Riemannian manifold V̄n and if the 
hoi
e ofthis mapping is arbitrary.This system has not more than only one solution for initial 
onditions inthe point x◦:
aij(x◦) =

◦
aij, λi(x◦) =

◦
λi µ(x◦) =

◦
µ.The general solution of Eqs. (5) depends on a �nite number of sub-stantial parameters r ≤ N0 ≡ (n+ 1)(n + 2)

2
. The number r is 
alled thedegree of mobility of An with respe
t to geodesi
 mappings onto Riemannianmanifolds. From here it follows that the set of manifolds V̄n onto whi
h Anadmits geodesi
 mappings, depends on a set of parameters of 
ardinalitynot ex
eeding r.The degree of mobility of An with respe
t to geodesi
 mappings onto V̄nwas investigated in [8, 9℄. In this work, it was shown that the maximumvalue r = (n+1)(n+2)

2 is a
hieved only in proje
tive-Eu
lidean manifolds, andfor nonproje
tive-Eu
lidean An (n > 2) it is true that r = n(n+2)
2 + 2.By a detailed analysis it 
an be shown that Theorem 2 holds for An

∈ C2, i.e. for all the 
omponents Γh
ij(x) ∈ C2 of the a�ne 
onne
tion ∇.IV. Linear equations of geodesi
 mappings from a�ne
onne
tion manifolds onto Riemannian manifoldsIn the paper [9℄ by Mike² and Berezovski (see [8℄) a system of equationsof Cau
hy type for geodesi
 mappings from an a�ne 
onne
tion manifold

An onto a Riemannian manifold V̄n was found. These equations are nonlinear. 23



From Theorem 1 and the equations (5) the existen
e of linear equationsfollows also for this general 
ase.Assume that An admits a geodesi
 mapping onto the equia�ne manifold
Ãn under the 
ondition

Γ̃h
ij(x) = Γh

ij(x) −
1

n+ 1
(δh

i Γα
jα(x) − δh

j Γα
iα(x)). (7)and Ãn admits a geodesi
 mapping onto the Riemannian manifold V̄n withthe metri
 ḡ.The �rst formula of (5) holds

aij
|k ≡ ∂ka

ij + aαjΓ̃
i
αk + aαiΓ̃

j
αk = λiδj

k + λjδi
k (8)where � | � is the 
ovariant derivative on Ãn.By insertion of (7) into (8) we �nd an equation for a geodesi
 mappingfrom An onto V̄n in the following form

aij
,k ≡ ∂ka

ij + aαjΓi
αk + aαiΓj

αk =
2

n+ 1
aij Γα

αk + δi
kΛ

j + δj
kΛ

i, (9)where
Λi = λi +

1

n+ 1
aiβΓα

βα.Equations (9) are linear with respe
t to the unknown fun
tions aij(x)and λi(x). These equations hold in the 
hosen 
oordinate system x. Theirsolutions are tensors aij(x) and λi(x), whi
h do not depend on the 
hoi
eof 
oordinates.For ea
h solution of the equations (9), with the aid of formulae (6), ametri
 ḡ of the Riemannian manifold V̄n 
an be found.Theorem 3. The manifold An admits a geodesi
 mapping onto a Rieman-nian manifold V̄n if and only if there exists a solution of (9) with respe
t tothe unknown fun
tions aij(x) (det ‖aij(x)‖ 6≡ 0) and λi(x). The metri
 ḡof V̄n satis�es the 
onditions (6).24



The geodesi
 mappings of proje
tive Eu
lidean manifolds are studied indetail in the monographs [4, 12, 16℄.By a detailed analysis of the integrability 
onditions of equations (9)and their �rst di�erential prolongations it 
an be shown that in 
oordinateneighborhoods, where An is not proje
tively Eu
lidean, the ve
tor λi 
anbe expressed in the form
λi = aαβ(x)Gi

αβ(x), (10)where Gi
αβ(x) is determined by obje
ts of the a�ne 
onne
tion of An.Then the equations (9) form a 
losed linear system of Cau
hy type withrespe
t to the unknown fun
tions aij(x).Proof. Now we 
an prove formula (10).Asume that An maps geodesi
aly on a Riemannian manifold V̄n. Than inea
h 
oordinate neighbourhood U ⊂ An the equations (9) have a solution.We restri
t ourselves to the 
ase, that in the 
oordinate neighbourhood

U(x) An is not proje
tively �at, i.e. the Weyl tensor of proje
tive 
urvatureis non vanishing, W h
ijk(x) 6= 0.For the 
oordinate neighbourhood U(x) we further 
onstru
t a series ofgeodesi
aly mapping manifolds

An → Ãn → V̄n,where Ãn is an equia�ne manifold.Equations (9), valid in An, have in Ãn the form (8). The integrability
ondition of (8) 
an be written in the form
aα(iR̃

j)
αkl = λ

(i
|lδ

j)
k − λ

(i
|kδ

j)
l . (11)where R̃h

ijk is the Riemannian tensor of Ãn.Be
ause in an equia�ne manifold Ãn the Weyl tensor of proje
tive 
ur-vature has the following form
W̃h

ijk = R̃h
ijk −

1

n− 1
(δh

k R̃ij − δh
j R̃ik), 25



where R̃ij is the Ri

i tensor of Ãn, and this tensor is an invariant ofgeodesi
 mappings, i.e. W̃ h
ijk = W h

ijk, formula (11) 
an be written in thefollowing form
aα(iW

j)
αkl = Λ

(i
l δ

j)
k − Λ

(i
k δ

j)
l ,where Λi

l is a tensor and W h
ijk is the Weyl tensor of proje
tive 
urvatureof An.The 
ovariant derivative of the last formule with respe
t to xm in Anis

aα(i
,mW

j)
αkl + aα(iW

j)
αkl,m = Λ

(i
l,mδ

j)
k − Λ

(i
k,mδ

j)
l .After insertion of (9) a
quires the following prin
ipial form

λ(iW
j)
mkl + aαβT ij

αβklm = Λ
(i
lmδ

j)
k − Λ

(i
kmδ

j)
l + L

(i
k lδ

j)
m . (12)where T ij

αβklm is an obje
t determined by the 
onne
tion ∇ of An and
Λh

lm, L
h
lm are obje
ts.In [11℄ it was proved that for n > 2 whenW 6= 0 there exists a 
oordinatesystem x in whi
h W 1

223 6= 0. One by one we insert into (12):
i = 1, . . . , n, j = 1, m = k = 2, l = 3;
i = j = k = 1, l = 3, m = 2;
i = j = m = 1, l = 3, k = 2;
i = j = k = 1, l = m = 2and we 
an see that (10) holds.This work has been partially supported by the Coun
il of Cze
h Gov-ernment MSM 6198959214.
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ACTA PHYSICA DEBRECINA XLII, 29 (2008)SOME QUESTIONS OF FINSLER- ANDDISTANCE-GEOMETRIESL. TamássyInstitute of Mathemati
s, H-4010, Debre
en, P. O. Box 12, Hungary1. This is a Conferen
e on Non-Eu
lidean Geometry and its Appli
a-tions, 
alled also Bolyai-Gauss-Loba
hevsky Conf. So I feel it pertinent topay respe
t in a few words to these s
ienti�
 luminaries, and at the sametime give a reason for speaking here on Finsler geometry. I would like tostart with a few fa
ts of the history of mathemati
s.Proofs �rst appeared in mathemati
s after the penetration of the ideasof Greek philosophy, only about in the �fth 
entury B.C. With this the eversteepest development started in the history of mathemati
s. Only one and ahalf 
entury later Eu
lid was able to write his famous book, the Elements, inwhi
h he 
ould dedu
e every theorem from a few axioms. Among these thelast one was the well-known parallel axiom. Nevertheless this axiom raisedproblems. Many asked whether this is a real axiom, or else it 
an be proven.The problem turned out to be very hard. It refused any atta
k through twothousand years. Finally it was solved by Bolyai and Loba
hevsky (Bolyaifound it �rst, and published later, Loba
hevsky found it later, and pub-lished it �rst). The answer a�rmed the rank of the parallel axiom. Theproblem was very di�
ult indeed, but the answer did not alter the geometryat all. Everything remained as before. It seemed that the solution requireda really big e�ort, but yielded a modest result. Nevertheless they provedtheir result by 
onstru
ting a new geometry, and this was of the utmost sig-ni�
an
e. The importan
e of this 
onstru
tion 
an be 
ompared to the turnfrom the geo
entri
 world 
on
ept to the helio
entri
 one. The possibility,the existen
e of another geometry was un
on
eivable for nearly all of themathemati
ians of the time. It be
ame properly re
ognized, it gained itsright to its proper pla
e only slowly. Gauss, who also was interested in theproblem, and who had ni
e partial results, was the �rst who understood



and a

epted the idea of Loba
hevsky and Bolyai. However, for some onlypartially a

eptable reasons, he did not want to propagate the new geom-etry. Yet in spite of all di�
ulties the new geometry spread out. Afterthe �rst highly di�
ult steps new and new geometries appeared. In 1854Riemann presented the basi
 ideas of �Riemannian geometry". This hap-pened at his habilitation le
ture under the 
hairmanship of the old Gauss(next year Gauss died). That the new ideas spread but slowly is ex
ellentlyshown by the fa
t that Riemann's ideas were published �rst only after hisdeath (1866) in the volume of his Colle
ted Works (1892), and Riemanngeometry be
ame developed in the XX-th 
entury only. Today we have anumber of geometries, most of them with su

essful appli
ations in physi
s,among them also Finsler geometry. Thus Finsler geometry is the son, or atleast the grandson of Loba
hevsky and Bolyai, and on this right I dare tospeak today on some problems of Finsler geometry.2. First a few introdu
tory words on Finsler and distan
e geometries.We have two types of metri
al di�erential geometries: i/ those built on thear
 length of 
urves, ii/ those built on the distan
e of two points. Sin
e theseare di�erential geometries, in both 
ases everything must be di�erentiable(of 
lass C∞).We 
onsider �rst the geometries whi
h are built on the ar
 length. Let
γ(t) ⊂M , a ≤ t ≤ b, γ̇(t) 6= 0 be a 
urve of a manifold M . Then

s(t) :=

∫ b

a
‖γ̇(t)‖ dt (1)is a quite natural and generally used de�nition for the ar
 length. Clearlythe tangent spa
e TpM , p ∈M must be a normed ve
tor spa
e. What kindof norm ? We put three simple and very natural requirements on s, whi
huniquely determine the type of the norm ‖ . ‖p, p ∈M . These requirementsare the following:A) s > 0B) s is independent of any orientation-preserving parameter transforma-tion.30



C) ‖ . ‖p satis�es the triangle inequality.It is 
lear thatA): s > 0 ⇐⇒ ‖y‖ > 0, y ∈ TpM , y 6= 0.B): Let t = t(τ), τ = τ(t), τ(a) = α, τ(b) = β be a parameter trans-formation. This preserves the orientation if dt
dτ > 0. Then s is independentof the parameter transformation t = t(τ) i�

∫ b

a
‖γ̇(t)‖ dt =

∫ β

α
‖γ′(τ)‖ dτ =

∫ b

a

∥∥∥∥γ̇(t)
dt

dτ

∥∥∥∥
dt

dτ
dt. (2)Sin
e γ̇(t) 
an be any ve
tor of TpM and dt

dτ may be any positive number,B) is equivalent to
‖λγ‖p = λ‖y‖p, y ∈ TpM, λ ∈ R+,where R+ denotes the positive reals.Finally C) says that

‖y1 + y2‖p < ‖y1‖p + ‖y2‖p, y1, y2 ∈ TpM, y1 6= µy2, µ ∈ R.Thus the requirements A), B), C) are equivalent to the following prop-erties of the norm:I) ‖y‖p > 0 if y 6= 0II) ‖λy‖p = λ ‖y‖p, λ ∈ R+III) ‖y1 + y2‖p < ‖y1‖p + ‖y2‖p, y1 6= µy2, y, y1, y2 ∈ TpM , µ ∈ R.I), II), III) 
hara
terize the Bana
h norm. Thus a geometry built on thear
 length satis�es the very natural requirements A), B), C) i� the normapplied in (1) is a Bana
h norm, whi
h depends on the point p ∈M .It is a di�eren
e only in notation, if we introdu
e the fun
tion
F(p, y) := ‖y‖p. 31



Then we de�ne a Finsler spa
e Fn = (M,F) over a manifold M by givinga fundamental (or metri
) fun
tion F(p, y) with the properties I), II), III),and we de�ne the ar
 length of a 
urve γ(t) ⊂M by s :=
∫ b
a F(γ(t), γ̇(t)) dt(see [1℄). Thus Finsler geometry is the most general geometry satisfyingthe very natural requirements A), B), C). If the Bana
h norm redu
es toa Eu
lidean norm, then we obtain a Riemann geometry. It is easy to seethat C) or III) is equivalent to the 
onvexity of the indi
atrix (see (8)),and this 
onvexity is equivalent to the property that in the simplest 
ases(Eu
lidean or Minkowski geometry) geodesi
s are straight lines. This isanother geometri
 expression of the requirement C) or III). Finsler geometryand its numerous simple spe
ial 
ases o�er many possibilities for physi
alappli
ations. This is so, be
ause Finsler geometry has mu
h more freeparameters or fun
tions, than Riemannian geometry.The other type of metri
al di�erential geometries are distan
e spa
es

Dn = (M,̺) (see [2℄). A distan
e spa
e over M is given by a distan
efun
tion ̺ : M ×M → R+ ordering to any ordered pair (p, q) of points anon-negative real. This fun
tion 
an be symmetri
: α) ̺(p, q) = ̺(q, p),and it 
an satisfy the triangle inequality: β) ̺(p, q) + ̺(q, r) ≥ ̺(p, r). Ifboth α) and β) are satis�ed, then Dn is 
alled metri
. If α) may fail, then
Dn is 
alled quasi-metri
. In what follows we 
onsider quasi-metri
 distan
espa
es. Metri
 distan
e spa
es are 
ontained as a spe
ial 
ase.3. What is the relation between distan
e spa
es Dn = (M,̺) and Finslerspa
es Fn = (M,F) over the same manifold M ? Any Finsler metri
determines a distan
e fun
tion ̺F by

̺F (p, q) := inf
Γ
s(γ(p, q)), (3)where Γ means the 
olle
tion of the 
urves from p to q, and s(γ(p, q))means their ar
 length. Then ̺F is non-negative and satis�es the triangleinequality. Thus

F =⇒ ̺F and Fn = (M,F) =⇒ Dn = (M,̺F ).Is this relation invertible ? Does also F determine ̺F ? Yes, namely
lim

t→0+

d

dt
̺F (p0, g(t)) = F(p0, y0), (4)32



where g(t), 0 ≤ t < ε is a geodesi
 of Fn emanating from p0 = g(0), and
y0 is its (one sided) tangent at p0 : y0 = ġ(0). (4) is a famous result of H.Busemann and W. Mayer [3℄ (see also [1℄, p. 158). It 
an be proved easily.If ε is small, then g(t) is a �short geodesi
", whi
h minimizes the ar
 lengthbetween g(0) = p0 and g(t). Hen
e, by (3)

̺F (p0, g(t)) = s(p0, g(t)) =

∫ t

0
F(g(τ), g′(τ))dτ. (4')By (one sided) di�erentiation we obtain (4). This shows that

F =⇒ ̺F =⇒ F =⇒ ̺F . . . ,i.e. the relation between {F} and {̺F } is 1 : 1. We remark that d
dt̺

F (p0, g(t))equals the dire
tional derivative of ̺F :
lim

t→0+

d

dt
̺F (p0, g(t)) =

d

dt

∣∣∣
p0,y0

̺F (p0, q), q ∈M.Now, this relation does not 
ontain the geodesi
 g(t), so starting with adistan
e fun
tion ̺ of a distan
e spa
e Dn = (M,̺)

F(p0, y0) :=
d

dt

∣∣∣
p0,y0

̺(p0, q) (5)de�nes a fun
tion F(p, y). One 
an show that this F satis�es A), B) C).Hen
e this F is a fundamental fun
tion of a Finsler spa
e Fn = (M,F).Thus we obtain
̺ =⇒ F =⇒ ̺F . (6)But is this ̺F of (6) equal to the starting ̺? We show that in general itis not. This 
an be shown by an example, where ̺ =⇒ F =⇒ ̺F 6= ̺.First let M be 1-dimensional: M = R1 with 
anoni
al 
oordinates x. Letus de�ne

̺(x0, x)) := ln(|x− x0| + 1). (7)One 
an 
he
k that this ̺ is non-negative, symmetri
, and satis�es the trian-gle inequality. So it is a distan
e fun
tion of a metri
 spa
e D1 = (R1(x), ̺).By (5) it determines a Finsler metri
 F(p, y), whi
h turns out to be abso-lutely homogeneous, and independent of x0. Therefore the 
onstru
ted33



F 1 = (R1, F ) is a Minkowski spa
e with symmetri
 indi
atrix, and be
auseof n = 1 it is a Eu
lidean spa
e. Hen
e
̺F (x1, x2) = |x1 − x2|.By the integral mean theorem

̺(x1, x2) =

∫ x2

x1

̺′(x1, x) dx = (x2 − x1)̺
′(x1, x)

∣∣
x0

x1 < x2, x0 ∈ (x1, x2),

̺′(x1, x) =
d

dx
̺(x1, x).The derivative of ̺ (given by (5)) is stri
tly de
reasing on x>x1, and

̺′(x0, x)|x0
= 1. Thus ̺′(x1, x0) < 1 and hen
e

̺(x1, x2) = (x2 − x1)̺
′(x1, x)|x0

< |x1 − x2| = ̺F (x1, x2),showing that ̺ 6= ̺F .This example 
an be extended toM = Rn (n > 1). In this 
ase we de�nethe fun
tion z = ̺(0, x), (x, z) ∈ Rn+1 by the rotation of z = ln(|x| + 1)(see (7)) around the z axis, and we de�ne ̺(x0, x) := ̺(0, x − x0). Alsoother examples over M 6= Rn 
an be 
onstru
ted.These show that there are many distan
e spa
es Dn = (M,̺) su
h that
̺ determines by (5) the same Finsler spa
e and the same ̺F , but only forone of these is ̺F = ̺ in (6).For whi
h distan
e spa
es Dn = (M,̺) does ̺ =⇒ F =⇒ ̺F = ̺hold? The answer needs a little more preparation. In [4℄ we gave ne
essaryand su�
ient 
onditions for this. The basi
 idea is the following. In an
Fn = (M,F) along a short geodesi
 g(t), 0 ≦ t ≦ T by (4') we obtain

̺F (p, g(t)) = ̺F (p, g(t1)) + ̺F (g(t1), g(t)),where p ∈ g(τ), 0 ≤ τ < t1 < t < T . From this
[
d

dt
̺F (p, g(t))

]

t1

=

[
d

dt
̺F (g(t1), g(t))

]

t+
134



for every p ∈ g(τ), 0 ≤ τ < t1. This means that the fun
tions ̺F (p, g(t)),whi
h measure the distan
e from the di�erent p ∈ g(τ) to g(t) have the samederivative at t1, and their graphs have parallel tangents at t1. A 
urve of
Dn with similar property is 
alled �parallelity 
urve". In the proof we showthat the existen
e of su
h a parallelity 
urve between any pair of points ofa distan
e spa
e Dn is ne
essary and su�
ient for ̺ = ̺F .4. We show still another interesting global result of Finsler geometry.For the sake of simpli
ity we restri
t ourselves to a two-dimensional abso-lutely homogeneous Finsler spa
e F 2=(M,F). The indi
atrix I(p0) of an
Fn=(M,F) is a hypersurfa
e of the tangent spa
e de�ned by

I(p0) := {y ∈ Tp0
M | F(p0, y) = 1}. (8)

I(p0) is a generalization of the unit sphere Sn−1 of the Eu
lidean spa
e En.If ϕ : M → M is a motion of Fn, then the linear mapping dϕ takes I(p)into I(ϕ(p)). This means that I(p) and I(ϕ(p)) must be a�ne equivalent.Now suppose thata) p1 and p2 are su
h points of F 2 that I(p1) and I(p2) are not a�neequivalent to any other I(p) of F 2b) let F 2 be geodesi
ally 
omplete, i.e. there exists a geodesi
 betweenany pair of points of F 2
) let the inje
tivity radii ι(p1) and ι(p2) be su
h that ι(p1) + ι(p2) ≤
̺(p1, p2). In 
onsequen
e of this there exist geodesi
 
ir
les Sp1

(r1)with radius r1 ≤ ι(p1), 
entered at p1, and Sp2
(r2) with radius r2 <

ι(p2), 
entered at p2d) there exists in F 2 a 1-parameter 
ontinous group of motions ϕt 6= id.We 
laim that under these 
onditions there exists a di�eomorphism Ψ :
F 2 → ϕ ⊂ E3 where ϕ is a revolution surfa
e, and moreover Ψ is anisometry for the meridians and parallels of ϕ [5℄.We sket
h the proof. Sin
e F 2 is geodesi
 
omplete there exists a geodesi
 gbetween p1 and p2. Let q0 ∈ g be su
h that ̺(p1, q0) ≤ ι(p1) and ̺(p2, q0) ≤35



ι(p2). Then there exist two geodesi
 
ir
les Sp1
(k1), k1 = ̺(p1, q)), and

Sp2
(k2), k2 = ̺(p2, q)), through q0. p1 and p2 are �x points of ϕt, for I(p1)and I(p2) are not a�ne equivalent to any other I(p). Hen
e q0 
an moveonly on Sp1

(k1) by any motion ϕt. Furthermore it is easy to see that q0
annot be a �x point of ϕt, for in this 
ase ϕt would be the identity. Thus q0
an be taken into any point of Sp1
(k1) by an appropriate ϕt. Neverthelessthe same is true also for Sp2

(k2). Therefore Sp1
(k1) = Sp2

(k2). Finally we
laim that M = Bp1
(k1) ∪ Bp2

(k2), where Bp1
(k1) is the 
losed disk of Mbounded by Sp1

(k1), and similarly Bp2
(k2). Namely if q (6= p1) is an arbi-trary point of M , then there exists a geodesi
 g∗ through q, and emanatingfrom p1. g∗ interse
ts Sp1

(k1) and Sp2
(k2) perpendi
ularly at a point q∗ andruns further in Sp2

(k2) to p2, and then further to a 
ommon point q∗∗ of
Sp1

(k1) and Sp2
(k2). Therefore q must lie on g∗ between p1 and p2, and thusin Bp1

(k1)∪Bp2
(k2). Sin
e both Bp1

(k1) and Bp2
(k2) are di�eormorphi
 toa hemisphere of S2 ⊂ E3, Bp1

(k1) ∪ Bp2
(k2) = M is di�eomorphi
 to theunit sphere S2 or to a revolution surfa
e ϕ of E3.We 
an show a little more. Let ψ be a di�eomorphism from F 2 to arevolution surfa
e ϕ of E3. We 
an 
hoose ϕ in su
h a way that the imagesof the geodesi
 
ir
les Sp1

(r), r ≤ k1 and Sp2
(r), r ≤ k2 are parallels of ϕ,and the images of the geodesi
s gα, α ∈ A from p1 to p2 are meridians of

ϕ. The radii of these parallels 
an be so that the Eu
lidean ar
 length ofthe parallels is equal to the Finsler ar
 length of the 
orresponding geodesi

ir
le. Let S and S̃ be two geodesi
 
ir
les from the family {Sp1
(r), r ≤

k1; Sp2
(r), r < k2}. S and S̃ 
ut out a segment sα from ea
h gα. TheFinsler ar
 length of sα is independent of α, for any two di�erent sα aretaken into ea
h other by a motion ϕt. Therefore ϕ 
an be 
hosen su
h thatthe Finsler ar
 length of the geodesi
s gα equals the Eu
lidean ar
 lengthof the 
orresponding meridian of ϕ. Thus ψ : F 2 → ϕ ⊂ E3 satis�es theannoun
ed properties.There are several similar results. L. Green [6℄, M. Berger and J. L.Kazdan [7℄ and C. T. Yang [8℄ showed that if in a Riemannian spa
e V n =

(M,g) the 
ut lo
us of any point p ∈M 
onsists of a single other point (thesemanifolds are 
alled �Wiedersehen" manifolds) then this V n is isometri
to the Eu
lidean sphere Sn (see also J. L. Kazdan [9℄℄). In our 
ase the
ut lo
us of p1 is p2. So this property is ful�lled for one pair of points36



only, but we have another severe 
ondition, the existen
e of the motions
ϕt. In fa
t our result, whi
h 
on
erns a Finsler spa
e is weaker. F 2 is onlydi�eomorphi
 to ϕ, and isometry holds only on the parallels and on themeridians of ϕ.In 
ase of an n-dimensional Finsler spa
e Fn the points p1 and p2 ofthe assumption a) must be repla
ed by n points p1, p2, . . . , pn in generalposition, having similar properties as p1, p2, or in d) ϕt must be repla
edby an n−1 parameter 
ontinuous group of motions ϕt1...tn−1

. In these 
asesthe proof is a little longer.There are many interesting results on isometries of Finsler spa
es, su
has in [10℄ by S. Deng and Z Hou, or in [11℄ by L. Kozma and P. Radu. Imention here extra a result of S. Deng [12℄. He showed that if the 
onne
tedsets Vi ⊂M of a Finsler spa
e Fn = (M,F) 
onsist of the zeros of a Killingve
tor �eld ξ, then Vi are totally geodesi
 submanifolds of Fn. This 
anbe related to the a�ne equivalen
e of the indi
atri
es 
onsidered in ourtalk. If in a Finsler spa
e Fn = (M,F) no indi
atrix I(p), p ∈ M is a�neequivalent to an I(p1), then p1 must be a zero of any Killing ve
tor �eld
ξ. Thus if pβ ∈ M , β ∈ A are su
h points as p1, and {pβ} = V is asubmanifold, then this V is totally geodesi
 in Fn. Also the other resultsof Deng hold on su
h submanifolds V = {pβ}.Referen
es[1℄ D. Bao, S. S. Chern and Z. Shen, An Introdu
tion to Riemann-FinslerGeometry, (Springer, New York, 2000).[2℄ L. M. Blumenthal, Theory and Appli
ation of Distan
e Geometry,(Clarendon Press, Oxford, 1953).[3℄ H. Busemann and W. Mayer, On the foundation of 
al
ulus of varia-tion, Trans. AMS. 49, 173 (1948).[4℄ L. Tamássy, Relation between metri
 spa
es and Finsler spa
es, Di�.Geom. Appl. pp. 18 (to apear in 2008). 37
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zAbstra
tMetrization problem means: given a manifold endowed witha (symmetri
) linear 
onne
tion, de
ide whether the 
onne
tionarises from some metri
 tensor as its Levi-Civita 
onne
tion.Compatibility 
onditions for a metri
 are given by a system ofordinary di�erential equations, and the 
lassi
al approa
h is toanalyze the system of integrability 
onditions. Let us presentmore geometri
 solution pro
edure using parallel transport, em-phasize the role of holonomy groups and holonomy algebras.The problem is of some interest in itself (e.g. [6℄; S.B. Edgar, J.Math. Phys. 33, 3716 (1992); [7℄, [8℄, [9℄); we propose one ap-pli
ation: for a parti
ular type of se
ond order system of ODEs,
oe�
ients give rise to a 
onne
tion; provided it is metrizable,
omponents of the 
ompatible metri
 play the role of variationalmultipliers for the Inverse Problem and yield (one of) the La-grangian(s).
Supported by grant MSM 6198959214 of the Ministery of Edu
ation.



I. Metrization as a kind of inverse problemLet (M,g) be a pseudo-Riemannian manifold∗. A (pseudo-)Riemannianmetri
 g on M determines uniquely a 
anoni
al linear (= a�ne) 
onne
tion
∇ on M , 
alled the Levi-Civita 
onne
tion of (M,g), the 
hara
terizingproperties of whi
h are T ≡ 0 (Γi

jk = Γi
kj) and ∇g = 0. The inverse prob-lem 
alled Metrization Problem (MP) is: Given a manifold (M,∇) with alinear symmetri
 
onne
tion, is there a metri
 on M the Levi-Civita 
on-ne
tion of whi
h is just ∇? It belongs probably to the oldest and in a waydi�
ult problems of 
lassi
al di�erential geometry. A similar problem 
anbe posed for a linear 
onne
tion in an arbitrary ve
tor bundle, parti
ularlyin the tangent bundle of a manifold, or in Finsler spa
es ([1℄, L. Tamassy,Balkan J. of Geom. and Appl. 1 (1996) et
). Related problems are: If thereare more su
h metri
s, how mu
h may they di�er from ea
h other? (The an-swer is 
losely related to the 
on
ept of the de Rham -Wu de
omposition.)Given (M,g), �nd all metri
s with the same Levi-Civita 
onne
tion. Allmultiples rg, r ∈ R, have this property, and if there are no others we speakabout uniqueness of the metri
. But if the manifold admits the de Rham -Wu de
omposition there might be the so-
alled alternative metri
s, [8℄. MPis related to the theory of geodesi
 mappings†. An equivalent formulationof MP is: given (M,∇), �nd all possible geodesi
 mappings f :M→M̄ of

(M,∇) onto (pseudo-)Riemannian manifolds (M̄ , ḡ). Hen
e tensor methodsdeveloped‡ in the theory of geodesi
 mappings may be used. Our problemis also related to the Cal
ulus of Variations. The so-
alled Inverse Problem(IP) of the 
al
ulus of variations (still open) is: if a system ẍi = f i(t, xk, ẋk)of SODEs§ is given, de
ide whether it represents Euler-Lagrange equationsof some Lagrangian, i.e. �nd¶ Lagrangian fun
tions L(t, xk, ẋk) and a multi-plier matrix gij(t, x
k, ẋk) su
h that gij(ẍ

i−f i) ≡ d
dt

(
∂L
∂ẋi

)
− ∂L

∂xi . Complete so-
∗M is an n-dimensional manifold of a �su�
iently high" 
lass of di�erentiability, and

g is a non-degenerate metri
, that is, a symmetri
 type (0, 2) tensor �eld on M with lo
al
omponens gij satisfying det(gij) 6= 0, not ne
essarily positive de�nite.
†Re
all that if we are given two manifolds with linear 
onne
tion (M,∇) and (M̄, ∇̄),respe
tively, a (smooth or Cr-di�erentiable, r ≥ 1) bije
tion f : M → M̄ is 
alled ageodesi
 mapping if any (
anoni
ally parametrized) geodesi
 γ of (M,∇) is mapped ontoan unparametrized (= arbitrarily parametrized) geodesi
 γ̄ of (M̄, ∇̄).
‡N.S. Sinyukov, Geodesi
 Mappings of Riemannian Spa
es, Mos
ow, 1979.
§se
ond order di�erential equations; i, k = 1, . . . , n.
¶su�
iently di�erentiable40



lution is known only for n = 2 (J. Douglass, 1941). Hen
e MP 
an be viewedas a parti
ular 
ase‖ of IP, where f i = −Γi
jk(x)ẋ

j ẋk, when the multipliersare time- and velo
ities-independent; then kineti
 energy L = 1
2gij(x)ẋ

iẋj(
omming from MP) is one of the Lagrangians solving IP (there might moregeneral ones). Also the metri
 uniqueness problem was related to the ge-neral inverse problem of Lagrangian dynami
s∗∗. During the time, variousmethods used for solving MP (eventually under some 
onstraints) were sug-gested and developed by various authors, from most straightforward ones,[2℄, based on analysis of integrability 
onditions for ODEs, to more sophis-ti
ated ones, [6℄, [4℄, [5℄, [11℄ and the referen
es therein, based either ontensor methods, or employing parallel transport indu
ed by 
onne
tion, ortheir 
ombinations, et
. Low-dimensional 
ases have been dis
ussed sepa-rately e.g. in [7℄, [10℄ (n = 2), [9℄ (n = 3). Positive de�nite metri
s for asymmetri
 
onne
tion with regular 
urvature were 
onstru
ted in [4℄. Exis-ten
e of positive de�nite metri
s for an analyti
 
onne
tion on an analyti
manifold is de
ided in [5℄ by means of an algorithm based on propertiesof de Rham de
omposition and the fa
t that in the analyti
 
ase, the Lie�holonomy" algebra is spanned by the 
urvature tensor and its 
ovariantderivatives (Ambrose-Singer Theorem); in the a�rmative 
ase, all 
ompat-ible Riemannian metri
s are e�e
tively 
onstru
ted, [11℄.II. Classi
al approa
h - di�erential equationsThe (pseudo-)Riemannian 
onne
tion of (M,g) is uniquely determinedby zero torsion and the 
ondition ∇g = 0, telling in an elegant way thatthe parallel transport indu
ed by the 
onne
tion should preserve the s
alarprudu
t. If (M,∇) is given, ∇g = 0 represents the system of ODEs forunknowns gij

∂gij

∂xk
− gsjΓ

s
ik − gisΓ

s
jk = 0 (1)whi
h should be dis
ussed under the assumption det(gij) 6= 0. In simple
ases, the system (1) 
an be solved dire
tly. Note that a solution of (1) mightnot be a metri
, if non-degenera
y 
ondition det gij 6= 0 is not satis�ed; the

‖In fa
t, provided det gij 6= 0, the system ẍi + Γi
jk(x)ẋjẋk = 0 is equivalent to thesystem gmi(ẍ

i + Γi
jk(x)ẋjẋk) = 0, i, m = 1, . . . , n.

∗∗G. Marmo, C. Rubano, G. Thompson, Class. Quantum Grav.7, 2155 (1990). 41



solution depends on n. The integrability 
onditions for (1) (ne
essary formetrizability) read, in 
oordinate-free form,
g(∇rR(X,Y ;Z1; . . . ;Zr)(Z),W ) + g(Z,∇rR(X,Y ;Z1; . . . ;Zr)(W )) = 0for all X,Y,Z,W,Z1, . . . , Zr ∈ X (M), 0 ≤ r < ∞, whi
h is in fa
t anin�nite homogeneous system of linear equations in gij with 
oe�
ients beingfun
tions in Γ′s and their partial derivatives. For a metrizable 
onne
tion,the above linear 
onditions must stabilize for some positive integer r = N ,i.e. from the (N+1)th stage, the 
onditions must be algebrai
 
onsequen
esof the previous ones. We get no 
onditions for a �at 
onne
tion (R = 0),whi
h is always metrizable (the system has 1

2n(n+1)-parametri
al solution).For n = 2, R 6= 0 (regular), the answer is relatively easy: Lo
al ne
es-sary and su�
ient 
ondition for a nowhere-�at symmetri
 
onne
tion ∇ on
M2 be metrizable are: the Ri

i tensor Ri
 of ∇ should be non-degenerate(detRij 6= 0), symmetri
 (Rij = Rji) and re
urrent, ∇Ri
 = ω ⊗ Ri
where ω is some one-form. If ω is exa
t, ω = df for some fun
tion f , then
ompatible metri
s exist globally, one of the representants being g = e−f Ri
,the other di�er upto a s
alar multiple (i.e. g is �unique"). If M2 is simply
onne
ted, a 
ompatible g exists globally.If both kinds of points, �at (R(x) = 0) and non-�at (R(x) 6= 0) arepresent, we may expe
t 
ompli
ations. For any n ≥ 2, there exist non-metrizable n-dimensional a�ne spa
es. A 
lassi
al algorithm, whi
h bringsa pres
riptive solution (not in a 
losed form), was known already sin
e 1920',[2℄. The result 
an be formulated as follows (a free paraphrase):Theorem 4. A manifold (M,∇) with a linear 
onne
tion ∇ and the 
ur-vature tensor R is metrizable if and only if the homogeneous equations

gsjR
s
ikℓ + gisR

s
jkℓ = 0 (2)are �algebrai
ally 
onsistent" (more pre
isely, the system has at least one-dimensional solution spa
e of non-degenerate metri
s), and any solution of(2) satis�es

gsjR
s
ikℓ;m + gisR

s
jkℓ;m = 0, i, j, k, ℓ,m ∈ {1, . . . , n}. (3)The proof is instru
tive, yields a method for �nding 
ompatible metri
susing several steps from the proof (and 
an be implemented to a 
om-puter). Suppose that (2) is solvable, and that any solution of (2) satis�es42



(3). Choose a basis 〈G(1), . . . , G(p)〉 of the solution spa
e. Any solution g 
anbe now written in the form g =
∑p

α=1 ϕ
(α)G(α) with 
oe�
ients ϕ(α) whi
hare at most fun
tions of 
oordinates (xi) onM . Due to (3), 
ovariant deriva-tives G(α)

sj;m satisfy (2), too, hen
e G(α)
ij;k =

∑p
β=1 µ

(αβ)
k G

(β)
ij . Sin
e se
ond
ovariant derivatives satisfy the Ri

i indentity we get G(α)
ij;kℓ − G

(α)
ij;ℓk = 0,and 
onsequently

∂µ
(αβ)
k

∂xℓ
− ∂µ

(αβ)
ℓ

∂xk
+

p∑

γ=1

(
µ

(αγ)
k µ

(γβ)
ℓ − µ

(αγ)
ℓ µ

(γβ)
k

)
= 0. (4)If ∇g = 0 should hold, ϕ's must satisfy

∂ϕ(α)

∂xk
+

p∑

β=1

ϕ(β)µ
(αβ)
k = 0, α = 1, . . . , p. (5)But a

ording to (4), the system (5) is 
ompletely integrable, hen
e thereexist fun
tions ϕ(1), . . . , ϕ(p) whi
h determine a 
ompatible (pseudo-)Rie-mannian metri
. Let us demonstrate the method presented above on asimple example.Example 1. The system ẍ+ẋ2 ·x/(x2 + 1) = 0, ÿ+ẏ2 ·y/(y2 + 1) = 0 givesrise to a symmetri
 linear 
onne
tion ∇ on R2 with non-zero 
omponents

Γ1
11 = x/(x2 + 1), Γ2

22 = y/(y2 + 1); R ≡ 0 (the 
onne
tion is �at hen
emetrizable). The solution spa
e is a span of independent (global analyti
)type (0, 2) symmetri
 tensor �elds G(1) = dx⊗ dx, G(2) = dy ⊗ dy, G(3) =
dx ⊗ dy + dy ⊗ dx. Their 
ovariant derivatives must be 
ombinations ofthe generators, G(1)

ij;1 = − 2x
x2+1

G
(1)
ij , G(1)

ij;2 = G
(2)
ij;1 = 0, G(2)

ij;1 = − 2y
y2+1

G
(2)
ij ,

G
(3)
ij;1 = − x

x2+1
G

(3)
ij , G(3)

ij;2 = − y
y2+1

G
(3)
ij ; we have µ(11)

1 = − 2x
x2+1

, µ(22)
1 =

− 2y
y2+1

, µ(33)
1 = − x

x2+1
, µ(33)

2 = − y
y2+1

, zero otherwise. All 
ompatiblemetri
s are g = ϕ(1)G(1) + ϕ(2)G(2) + ϕ(3)G(3) where fun
tions ϕ′s solve(5); ϕ(1) = − x
x2+1

et
. All 
ompatible metri
s g are of the form g =

ϕ(1)G(1) + ϕ(2)G(2) + ϕ(3)G(3). We get
(gij) =

(
2b2(x

2 + 1) b1
√
x2 + 1

√
y2 + 1

b1
√
x2 + 1

√
y2 + 1 2b3(y

2 + 1)

) 43



with parameters b1, b2, b3 ∈ R. In tensor notation, g = 2b2(x
2 + 1)x. ⊗ x. +

b1
√
x2 + 1

√
y2 + 1x. ⊗ y. + b1

√
x2 + 1

√
y2 + 1y. ⊗ x. + 2b3(y

2 + 1)y. ⊗ y. , or
lassi
ally, ds2 = 2b2(x
2+1)dx2+2b1

√
x2 + 1

√
y2 + 1dxdy+2b3(y

2+1)dy2.For admissible Riemannian metri
s, bi should be 
hosen so that g be positivede�nite. III. Geometri
 approa
h - Parallel TransportThe �
lassi
al" method mentioned above works, but gives little insight intoa geometri
 meaning of the integrability 
onditions and their 
onsequen
esfor the given 
onne
tion. To make things more transparent and geometri
let us realize what follows. The holonomy of (M,∇) at x ∈ M around apie
ewise-di�erentiable loop µ (i.e. 
losed 
urve with x as starting point aswell as endpoint; the 
lass C1 is su�
ient, [3, I, p. 85, Th. 7.2.℄; loops aretaken with usual 
omposition, [3℄) is an automorphism τµ of the tangentspa
e TxM whi
h is given by parallel propagation of ve
tors along the givenloop. Due to properties of the parallel transport along 
urves (τµ−1 = τ−1
µ ,

τµ ◦ τη = τηµ), all holonomies at x together with 
omposition form theso-
alled (full linear) holonomy group Hol∇x of (M,∇) at x, whi
h is a Lietransformation group; using lo
al 
oordinates about x, it identi�es with asubgroup of GL(n,R). Its 
omponent of unit is the restri
ted holonomygroup Hol0x; it is obtained by a similar 
onstru
tion if we take loops homo-topi
 to zero only; h(x) = Hol∇x denotes a 
ommon Lie algebra. A

ordingto the Ambrose-Singer Theorem, [3℄, if the 
onne
tion is smooth (C∞), theso-
alled in�nitesimal holonomy algebra h′(x) ⊂ h(x) is a span of the lin-ear maps ∇kR(X,Y ;Z1, . . . , Zk), X,Y,Z1,. . . ,Zk from TxM , 0 ≤ k < ∞.The above in
lusion might be sharp, but in parti
ular 
ases, the Lie alge-bras 
oin
ide. For a real analyti
 
onne
tion on a real analyti
 manifold,
h′(x) = h(x) holds, hen
e h(x) 
an be 
al
ulated from the 
urvature tensorand its 
ovariant derivatives, and Hol0x 
an be retrieved. If the underlyingmanifold M is 
onne
ted, holonomy groups of the 
onne
tion in di�erentpoints are isomorphi
, Hol∇x ≃ Hol∇y , x, y ∈ M , so let us write Hol∇. If Mis 
onne
ted, simply 
onne
ted then Hol∇ is a 
onne
ted Lie subgroup ofthe automorphism transformation group GL(TxM) of the �bre; hen
e it isuniquely determined by its Lie algebra h = Hol∇.If the 
onne
tion is metrizable then the parallel transport preserves s
alar44



produ
t, holonomies are isometries in ea
h tangent spa
e; the holonomygroup preserves the metri
 tensor, and identi�es with a subgroup of O(p, q),
p+q = n, a

ording to the signature of g; Hol0 identi�es with a subgroup ofthe spe
ial orthogonal group SO(p, q). The idea of making use of holomomygroups for solution of metrization problem for linear 
onne
tions was dis-
ussed e.g. in [6℄, [1℄. The holonomy group �de
ides" whether a 
onne
tion ismetrizable or not: obviously, a 
onne
tion 
an only be a pseudo-Riemannian
onne
tion of a metri
 g, if the (restri
ted) holonomy group is a subgroup ofthe (spe
ial) generalized orthogonal group 
orresponding to the signature.Another formulation: (Mn,∇) is metrizable if and only if the bundle of allframes is redu
ible to the orthogonal group O(p, q). In a way, the 
onditionis also su�
ient; if Hol0x is a subgroup of the spe
ial orthogonal group ofthe �bre at one point then the 
ompatible metri
 
an be found:Theorem 5. ([1, Th. 3.1., p. 282℄, a free paraphrase) Let (M,∇) be ana�ne manifold with M 
onne
ted. Let there be a point x0 ∈ M su
h thatthe (restri
ted) holonomy group is 
ontained in the (spe
ial) generalized or-thogonal group of Tx0

. Then ∇ is metrizable.Proof. Fixing a 
hart around x0 ∈ M , we may assume that the tangentspa
e Tx0
M is isomorphi
 to (Rn, 〈, 〉) where 〈 , 〉 denotes the standard s
alarprodu
t of the 
orresponding signature. Sin
e M is 
onne
ted, any point

x ∈M 
an be 
onne
ted with x0 by a 
urve inM , and the holonomy groups
Hol∇x , Hol∇x0

are isomorphi
 via parallel transport. We 
an use parallelpropagation to pull the s
alar produ
t ba
k.IV. Riemannian metri
sFor Riemannian metri
s the following tells that no ambiguity arises inthe regular 
ase:Theorem 6. [4, p. 133℄ LetM be a 
onne
ted manifold with dimM ≥ 3. Let
R be the 
urvature of (M,g), where g is a Riemannian metri
 onM , and letthe subset D of all regular points of R be dense in M . Then g is determinedon D by its 
urvature tensor R uniquely upto s
aling by 
onstants.If (M,g) is a (pseudo-)Riemannian manifold with 
urvature R then atany point x ∈ M , we have a linear map Rx : Λ2(TxM) → End (TxM) su
h45



that if w =
∑

i ciXi ∧ Yi ∈ Λ2(TxM) then Rx(w)(Z) =
∑

i ciR(Xi, Yi)Zfor Z ∈ TxM . Let us generalize properties of the Riemannian 
urvature Ras follows. Let G be a positive de�nite symmetri
 bilinear form in TxM .A linear map ̺ : Λ2(TxM) → End (TxM) will be 
alled a 
urvature stru
-ture with respe
t to G if the following holds: (i) G(̺(X ∧ Y )(Z),W ) +
G(Z, ̺(X ∧ Y )W ) = 0; (ii) G(̺(X ∧ Y )Z,W ) = G(̺(Z ∧W )X,Y ) for any
X,Y,Z,W ∈ TxM . In (TxM,g), ̺ = Rx is a natural example. A linearmap ̺ : Λ2(TxM) → End (TxM) will be 
alled regular if ̺(w) 6= 0 whenever
w 6= 0, and singular otherwise. Parti
ularly, the subset of all regular pointsof the Riemannian 
urvature R of (M,g) is open in M .Lemma 1. Let G be a positive de�nite symmetri
 bilinear form on TxM ,and ̺ its 
urvature stru
ture. Then for any G-orthogonal pair X,Y ∈ TxM ,
X 6= 0, there is a bive
tor w ∈ Λ2(TxM) su
h that ̺(w)X = Y . If thereexists a regular 
urvature stru
ture ̺ with respe
t to G then H̺ is one-dimensional.Theorem 7. Let (M,∇) be an a�ne manifold with a torsion-free linear
onne
tion ∇, let the 
urvature R be regular on M , and let H0(M) =⋃

x∈M HRx be the bundle 
orresponding to the 
urvature tensor. Then ∇is a Riemannian 
onne
tion of a positive-de�nite metri
 g if and only if thefollowing 
onditions hold:(1) H0(M) is the line bundle (i.e. all �bres are one-dimensional),(2) the bundle H0(M) is metri
 in the Riemannian sense (that is, there isa positive de�nite symmetri
 biliear form (on TxM) in ea
h H0(x)),(3) any Riemannian metri
 hM → H0(M) is re
urrent, ∇h = ω ⊗ h, andthe 1-form ω is exa
t on M , i.e. ω = df for a fun
tion f .Proof. If h : M → H0(M) is a Riemannian metri
 su
h that ∇h =
−2df ⊗ h then we easily 
he
k that g = e2fh is a metri
 
ompatible with
∇ sin
e ∇g = 0 holds. To prove that the 
onditions are ne
essary is a bitmore 
ompli
ated, [4℄.As already mentioned, in general we 
an not 
al
ulate the holonomygroup from the 
urvature tensor (and its 
ovariant derivatives), it might beeven di�
ult to �nd the holonomy group at all, as well as a quadrati
 forminvariant under it. The real analyti
 
ase on a 
onne
ted simply 
onne
tedmanifold is more favourable, [5℄. To translate invarian
e of a symmetri
46



bilinear (quadrati
) form relative to holonomy group into the language ofholonomy Lie algebra we use the Lemma telling how the assumptions onHol∇ 
an be reformulated as assumptions on h:Lemma 2. Let (M,∇) be a simply 
onne
ted smooth manifold with ∇ tor-sion-free, x ∈M a �xed point. Given a symmetri
 bilinear form G on TxMthen the following holds: G is invariant by Hol∇ if and only if
G(AX,Y ) +G(X,AY ) = 0 for all A ∈ h(x), X,Y ∈ TxM. (6)Proof. We 
he
k here that elements of the holonomy algebra satisfy (6).The other impli
ation also holds but the proof is not so trivial. If A ∈

h(x) 
onsider the 
orresponding one-parameter subgroup sA : R → Hol∇,
t 7→ sA(t) uniquely determined by the initial data sA(0) = 1, (sA)′(0) :=
( d

dt)t=0 s
A(t) = A. LetG be invariant under the holonomy group, G(τX, τY )= G(X,Y ) for any τ ∈ Hol∇. Then we get G(sA(t)X, sA(t)Y ) = G(X,Y )for X,Y ∈ TxM . Di�erentiating with respe
t to t, making use of the for-mula for s
alar produ
t, and 
onsidering t→ 0 we get (6),
G((sA)′(0)(X), sA(0)(Y )) +G(sA(0)(X), (sA)′(0)(Y )) = 0.The above gives us a quite natural motivation for introdu
ing the ve
torsubspa
e H(x) = {Gx ∈ S2(T ∗

xM) |Gx(AX,Y ) + Gx(X,AY ) = 0, A ∈
h(x) for X,Y ∈ TxM}, x ∈M .Theorem 8. Let (M,∇) be 
onne
ted and let there exist Gx0

∈ H(x0)(i.e. Gx0
is invariant under Hol∇). Then ∇ is the Levi-Civita 
onne
tionof a metri
 on M whi
h has the same signature as Gx0

.If ∇ is Riemannian (
omes from a positive de�nite metri
) then for ev-ery x ∈ M , H(x) in
ludes a positive de�nite form; under additional as-sumptions, the 
onverse also holds: ([5, Prop. 1℄, [6℄) Given a 
onne
tedsimply 
onne
ted (M,∇) and x ∈ M , let there be a positive de�nite form
Gx0

∈ H(x). Then ∇ is Riemannian.It might be di�
ult to 
he
k whether there is a positive de�nite form in
H(x); no dire
t de
ision algorithm based on linear algebra only is available.An e�e
tive algorithm (de
iding Riemannian metrizability in real analyti
47




ase) using geometri
 properties of the Levi-Civita 
one
tion and the deRham de
omposition of the tangent spa
e TxM of a Riemannian manifold
(M,g) was developed [5℄, [11℄, together with an e�e
tive pres
ription howto 
onstru
t all 
ompatible Riemannian metri
s. Note that for inde�nitemetri
s, the situation is more 
ompli
ated.Referen
es[1℄ M. Anastasiei, Publ. Math. Debre
en 62, 277 (2003).[2℄ L.P. Eisenhart, O. Veblen, Pro
. London Math. So
. 8, 19 (1922).[3℄ S. Kobayashi, K. Nomizu, Foundations of Di�erential Geometry I, II(Wiley-Inters
. Publ., New York, 1991).[4℄ O. Kowalski, Math. Z. 125, 129 (1972).[5℄ O. Kowalski, Note di Matemati
a 8, 1 (1988).[6℄ B.G. S
hmidt, Commun. Math. Phys. 29, 55 (1973).[7℄ G. Thompson, Chinese J. Phys. 19, 529 (1991).[8℄ G. Thompson, Class. Quantum Grav. 10, 2035 (1993).[9℄ G. Thompson, J. Geom. Phys. 19, 1 (1996).[10℄ A. Vanºurová, Pro
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ACTA PHYSICA DEBRECINA XLII, 49 (2008)GROUPS OF BASIC AUTOMORPHISMS OF FOLIATIONSWITH TRANSVERSE RIGID GEOMETRIESN. I. ZhukovaDepartment of Me
hani
s and Mathemati
s, Nizhny Novgorod State University,603950, Nizhny Novgorod, Gagarina ave., 23, korp. 6, RussiaAbstra
tWe introdu
ed the notion of rigid geometry. Foliations (M,F )with transverse rigid geometries were investigated. An invariant
g0 of (M,F ), where g0 is a Lie algebra, was 
onstru
ted. Weproved that g0 = 0 is a su�
ient 
ondition for the unique ex-isten
e of a Lie group stru
ture in the full basi
 automorphismgroup of this foliation. Some estimates of the dimension of thisgroup depending on the transverse geometry were founded. Ex-amples, illustrating the main results, are 
onstru
ted.I. Introdu
tionOne of the basi
 obje
ts asso
iated with a geometri
 stru
ture on asmooth manifold is its automorphism group. Among the 
entral problems,there is the question whether the automorphism group 
an be endowed witha (�nite-dimensional) Lie group stru
ture [1℄.In the theory of foliations with transverse geometries, automorphisms areunderstood as di�eomorphisms mapping leaves onto leaves and preservingtransverse geometries. The group of all automorphisms of a foliation (M,F )with transverse geometry is denoted by A(M,F ). Let AL(M,F ) be thenormal subgroup of A(M,F ) formed by automorphisms mapping ea
h leafonto itself. The quotient group A(M,F )/AL(M,F ) is 
alled the full basi
automorphism group and is denoted by AB(M,F ).



In the investigation of foliations (M,F ) with transverse geometry it isnaturally to ask the above problem about the existen
e of a Lie groupstru
ture for the full group AB(M,F ) of basi
 automorphisms of (M,F ).Leslie [2℄ was �rst who solved a similar problem for smooth foliationson 
ompa
t manifolds. For foliations with 
omplete transversal proje
tablea�ne 
onne
tion this problem was studied by Belko [3℄.The leaf spa
eM/F of the foliation is a di�eologi
al spa
e, and the group
AB(M,F ) 
an be 
onsidered as a subgroup of the di�eologi
al Lie group
Diff(M/F ). For Lie foliations with dense leaves on a 
ompa
t manifold, thedi�eologi
al Lie groups Diff(M/F ) are 
omputed by He
tor and Ma
ias-Virgos [4℄.In this work we introdu
e a notion of a rigid stru
ture. Cartan geomet-ries [1℄ and rigid geometri
 stru
tures in the sense of Gromov [5℄ are rigidstru
tures in our sense. A manifold equipped with a rigid stru
ture is 
alleda rigid geometry.We investigate foliations admitting rigid geometries as transverse stru
	tu-res and 
all them by foliations with transverse rigid geometries (TRG).Cartan foliations [6, 7℄, foliations admitting a transverse systems of di�e-rential equations in the sense of Wolak [8℄ and G-foliations, where G is aLie group of �nite type, are foliations with TRG. In parti
ular, Rieman-nian [9℄, pseudo-Riemannian, Lorenz, proje
tive and 
onformal foliationsbelong to the 
lass of foliations under investigation. The 
ategory of folia-tions with TRG is denoted by FTRG. The group AB(M,F ) is an invariantof (M,F ) in the 
ategory FTRG.We always assume that the foliations under
onsideration are 
omplete and transverse rigid geometries are e�e
tive.We 
onstru
ted a foliated bundle for a foliation (M,F ) with TRG andredu
ed problems on the automorphism groups and the basi
 automorphismgroups of (M,F ) to the analogous problems for e-foliations (Theorems 3and 6).For any foliation (M,F ) with TRG we de�ned the stru
ture Lie algebra
g0(M,F ) and showed that g0(M,F ) is an invariant of this foliation in the
ategory FTRG (Proposition 3). One of the main results of this work is thetheorem asserting that if g0(M,F ) is zero, then there exists a unique Lie50



group stru
ture on AB(M,F ). We obtained some estimates of the dimen-sions of these Lie groups depending on the transverse geometries (Theo-rem 7). We gave di�erent interpretations of holonomy groups of foliationswith TRG (Theorem 5) and found some other su�
ient 
onditions for theexisten
e of a Lie group stru
ture on AB(M,F ) (Theorem 8).Re
all that a foliation is said to be proper if ea
h its leaf is an embeddedsubmanifold of the foliated manifold. In parti
ular, the stru
ture Lie algebraof any proper foliation with TRG is zero, and AB(M,F ) is a Lie group(Corollary 1).Examples of 
omputations of the basi
 automorphism group of a foliationwith TRG were 
onstru
ted. Examples 1 and 2 also show that the group
AB(M,F ) depends on the transverse rigid geometry of the foliation (M,F ).II. Rigid geometriesParallelizable manifolds Re
all that a manifold admitted an e-stru
tureis 
alled parallelizable. In other words, a parallelizable manifold is a pair
(P,ω), where P is a smooth manifold and ω is a smooth non-degenerate
Rm-valued 1-form ω on P, i. e., ωu : TuP → Rm is an isomorphism of theve
tor spa
es for ea
h u ∈ P. Here m = dimP.Rigid stru
tures Denote by P (N,H) a prin
ipal H-bundle with the pro-je
tion p : P → N . Suppose that the a
tion of H on P is a right a
tion and
Ra is the di�eomorphism of P , 
orresponding to an element a ∈ H.Two prin
ipal bundles P (N,H) and P̃ (Ñ , H̃) are 
alled isomorphi
 if
H = H̃ and there exists a di�eomorphism Γ: P → P̃ su
h that Γ ◦ Ra =
Ra ◦ Γ, ∀a ∈ H.De�nition 1. Let P (N,H) be a prin
ipal H-bundle and (P,ω) be a par-allelizable manifold satisfying the following 
ondition:(S) there is an in
lusion h ⊂ Rm of the ve
tor spa
e of the Lie algebra
h of the Lie group H into ve
tor spa
e Rm su
h that ω(A∗) = A, ∀A ∈ h,where A∗ is the fundamental ve
tor �eld on P 
orresponding to A.Then ξ = (P (N,H), ω) is 
alled a rigid stru
ture on the manifold N. Apair (N, ξ) is 
alled a rigid geometry. 51



De�nition 2. Let ξ = (P (N,H), ω) and ξ̃ = (P̃ (Ñ , H̃), ω̃) be two rigidstru
tures. An isomorphism Γ: P → P̃ of the prin
ipal bundles P (N,H)and P̃ (Ñ , H̃) satisfying the equality Γ∗ω̃ = ω is 
alled an isomorphism ofthe rigid stru
tures ξ and ξ̃. Any isomorphism Γ of rigid stru
tures ξ and
ξ̃ de�nes a map γ : N → Ñ su
h that p ◦ Γ = γ ◦ p, and γ is a di�eomor-phism from N to Ñ . The proje
tion γ is 
alled an isomorphism of the rigidgeometries (N, ξ) and (Ñ , ξ̃).Indu
ed rigid geometries Let ξ = (P (N,H), ω) be a rigid stru
tureon a manifold N with the proje
tion p : P → N. Let V be an arbitraryopen subset of the manifold N, let PV := p−1(V ) and ωV := ω|PV

. Then
ξV := (PV (V,H), ωV ) is also a rigid stru
ture.De�nition 3. The pair (V, ξV ) de�ned above is 
alled an indu
ed rigidgeometry on the open subset V of N.E�e
tiveness of rigid geometries Let A(ξ) be the group of all auto-morphisms of a rigid stru
ture ξ = (P (N,H), ω). It is a Lie group as a
losed subgroup of the group A(P,ω) of all automorphism of a parallelizablemanifold (P,ω). Denote by A(N, ξ) the group of all automorphisms of thegeometry (N, ξ), i. e., A(N, ξ) := {γ ∈ Diff(N) | ∃Γ ∈ A(ξ) : p ◦Γ = γ ◦p}.Consider the natural group epimorphism χ : A(ξ) → A(N, ξ) : Γ 7→ γ, where
γ is the proje
tion of Γ with respe
t to p : P → N.De�nition 4. Let ξ = (P (N,H), ω) be a rigid stru
ture on a manifold Nwith the proje
tion p : P → N. The group Gauge(ξ) := {Γ ∈ A(ξ) | p ◦ Γ =
p} is 
alled a group of gauge transformations of the rigid stru
ture ξ.Remark that Gauge(ξ) is a 
losed normal Lie subgroup of the Lie group
A(ξ), be
ause it is the kernel of the group epimorphism χ : A(ξ) → A(N, ξ).De�nition 5. A rigid stru
ture ξ = (P (N,H), ω) is 
alled e�e
tive if for anarbitrary open subset V in N the indu
ed rigid stru
ture
ξV = (PV (V,H), ωV ) has the trivial group of gauge transformations, i. e.,
Gauge(ξV ) = {idPV

}. A rigid geometry (N, ξ) is said to be e�e
tive if ξ isan e�e
tive stru
ture.Pseudogroup of lo
al automorphisms Let (N, ξ) be a rigid geometry.For arbitrary open subsets V, V ′ ⊂ N an isomorphism V → V ′ of the52



indu
ed rigid geometries (V, ξV ) and (V ′, ξV ′) is 
alled a lo
al automorphismof (N, ξ). The familyH of all lo
al automorphisms of a rigid geometry (N, ξ)forms a pseudogroup of lo
al automorphisms. Denote it by H = H(N, ξ).Re
all that a pseudogroup H of lo
al di�eomorphisms of manifold N is
alled quasi-analyti
 if the existen
e of an open subset V ⊂ N and anelement γ ∈ H su
h that γ|V = idV implies that γ|D(γ) = idD(γ) in theentire (
onne
ted) domain D(γ) on whi
h γ is de�ned.Proposition 1. The pseudogroup H = H(N, ξ) of all lo
al automorphismsof an e�e
tive rigid geometry (N, ξ) is quasi-analyti
.III. Foliations with transverse rigid geometries. Foliated bundlesFoliations with transverse rigid geometries (TRG) A foliation (M,F )of 
odimension q on an n-manifoldM has a transverse rigid geometry (N, ξ),where N is a q-manifold, if (M,F ) is de�ned by a 
o
y
le η = {Ui, fi, {γij}}modeled on (N, ξ), i. e.,1) {Ui} is an open 
overing of M ;2) fi : Ui → N are submersions with 
onne
ted �bres;3) γij ◦ fj = fi on Ui ∩ Uj,with γij is a lo
al automorphism of (N, ξ). The topologi
al spa
e N is notassumed to be 
onne
ted.Without loss of generality, we will suppose that N = ∪i∈Jfi(Ui) and thefamily {(Ui, fi)} is maximal as it is generally used in manifold theory.De�nition 6. The rigid geometry (N, ξ) mentioned above is 
alled a trans-verse geometry of the foliation (M,F ). The 
o
y
le η modelled on (N, ξ) issaid to be an (N, ξ)-
o
y
le.Assumptions In this work we will assume that ea
h rigid geometry ise�e
tive and all the foliations under 
onsideration are modeled on e�e
tiverigid geometries.Notations We denote by X(N) the Lie algebra of smooth ve
tor �elds ona manifold N. If Q is a smooth distribution on M, then XQ(M) := {X ∈53



X(M) | Xu ∈ Qu, ∀u ∈M}. If Q is an integrable distribution and de�nes afoliation F, where Q = TF, we also use notation XF (M) for XQ(M).Foliated bundles We 
onstru
ted a foliated bundle for a foliation with TRGand studied its properties.Theorem 1. Let (M,F ) be a foliation with a transverse rigid geometry
(N, ξ), where ξ = (P (N,H), ω). Then there exist a prin
ipal H-bundle
π : R → M, an H-invariant foliation (R,F) whose leaves are proje
tedby π onto the leaves of (M,F ) and an Rm-valued 1-form ω̃ on R, where
m = dimP, that satisfy the following 
onditions:(i) the map ω̃u : Tu(R) → Rm, ∀u ∈ R, is surje
tive; moreover, ker ω̃u =
TuF ;(ii) there is an in
lusion h ⊂ Rm of the ve
tor spa
e of the Lie algebra hof the Lie group H into Rm su
h that ω̃(A∗) = A, ∀A ∈ h, where A∗ is thefundamental ve
tor �eld on R 
orresponding to A;(iii) the foliation (R,F) is an e-foliation;(iv) the restri
tion πL on an arbitrary leaf L of the foliation (R,F) is aregular 
overing map onto a leaf of (M,F ), and the subgroup H(L) := {a ∈
H | Ra(L) = L} of the Lie group H is the group of de
k transformations.De�nition 7. A prin
ipal H-bundleR(M,H) with anH-invariant foliation
(R,F) satisfying the statement of Theorem 1 is 
alled a foliated bundle forthe foliation (M,F ) with transverse rigid geometry (N, ξ) and (R,F) is
alled a lifted foliation.If H is dis
onne
ted, R may be also dis
onne
ted. In this 
ase all the
onne
ted 
omponents of R are mutually di�eomorphi
, and we will 
on-sider one of them. Thus, we assume that the spa
e of the foliated bundle
R is 
onne
ted.IV. Completeness and a stru
ture Lie algebraof a foliation with TRGCompleteness of foliations with TRG Let (M,F ) be an arbitrarysmooth foliation on a manifoldM and TF be the distribution onM formed54



by the ve
tor spa
es tangent to the leaves of the foliation F. The ve
tor quo-tient bundle TM/TF is 
alled the transverse ve
tor bundle of the foliation
(M,F ). Let us identify TM/TF with an arbitrary smooth distribution Mon M that is transverse to the foliation (M,F ), i. e., TM = TF ⊕ M.Let (M,F ) be a foliation with TRG and (R,F) be the lifted foliation.It is natural to identify the transverse ve
tor bundle TR/TF with a distri-bution M := π∗M on R, i. e., with a distribution de�ned by the equality
Mu := {Xu ∈ TuR | π∗Xu ∈ Mx}, where x = π(u) and u ∈ R.De�nition 8. A foliation (M,F ) with transverse rigid geometry is said tobe M-
omplete if any ve
tor �eld X ∈ X

M
(R) su
h that ω̃(X) = const is
omplete. A foliation (M,F ) with TRG of arbitrary 
odimension q is saidto be 
omplete if there exists a smooth q-dimensional transverse distribution

M on M su
h that (M,F ) is M-
omplete.In other words, (M,F ) is an M-
omplete foliation i� the lifted e-foliation
(R,F) is 
omplete with respe
t to the distribution M in the sense of Con-lon [10℄. Remark that 
omplete e-foliation in the sense of Conlon is also
omplete in the sense of Molino [9℄.Proposition 2. If (M,F ) is an M-
omplete foliation with TRG, then Mis an Ehresmann 
onne
tion for this foliation in sense of Blumenthal andHebda [11℄.It is well known [10, 9℄ that for a 
omplete e-foliation (R,F) all leavesare mutually di�eomorphi
.Stru
ture Lie algebra We applied the relevant results of Molino [9℄ on
omplete e-foliations and obtained the following theorem.Theorem 2. Let (M,F ) be a 
omplete foliation with TRG and (R,F) beits lifted e-foliation. Then:(i) the 
losure of the leaves of the foliation F are �bers of a 
ertain lo
allytrivial �bration πb : R →W ;(ii) the foliation (L,F|L) indu
ed on the 
losure L is a Lie foliationwith dense leaves with the stru
ture Lie algebra g0, that is the same forany L ∈ F . 55



De�nition 9. The stru
ture Lie algebra g0 of the Lie foliation (L,F|L) is
alled a stru
ture Lie algebra of the 
omplete foliation (M,F ) and is denotedby g0 = g0(M,F ).If (M,F ) is a Riemannian foliation on a 
ompa
t manifold, this notion
oin
ides with the notion of a stru
ture Lie algebra in sense of Molino [9℄.V. Category of foliations with TRGCategory of foliations Denote by Fol the 
ategory of foliations, obje
tsof whi
h are foliations, morphisms of two arbitrary foliations (M,F ) and
(M ′, F ′) are smooth maps M →M ′ mapping leaves of the foliation (M,F )into leaves of the foliation (M ′, F ′); a 
omposition of morphisms 
oin
ideswith the 
omposition of maps.Category of foliations with TRG Let (M,F ) and (M ′, F ′) are foliationswith transverse rigid geometries (N, ξ) and (N ′, ξ′) de�ned by an (N, ξ)-
o
y
le η = {Ui, fi, {γij}} and an (N ′, ξ′)-
o
y
le η′ = {U ′

r, f
′
r, {γ′rs}}, re-spe
tively. Let f : M →M ′ be a morphism whi
h is a lo
al isomorphism inthe 
ategory Fol. Hen
e for any x ∈M and y := f(x) there exist neighbor-hoods Uk ∋ x and U ′

k ∋ y from η and η′ respe
tively and a di�eomorphism
λ : Vk → V ′

s , where Vk := fk(Uk) and V ′
s := f ′s(U

′
s), satisfying the relations

f(Uk) = U ′
s and λ ◦ fk = f ′s ◦ f |Uk

. We will say that f preserves transverserigid stru
ture if the di�eomorphism λ : Vk → V ′
s is an isomorphism of theindu
ed rigid geometries (Vk, ξVk

) and (V ′
s , ξ

′
V ′

s
).This notion is well de�ned, i. e., it does not depend of the 
hoi
e ofneighborhoods Uk and U ′

k from the 
o
y
les η and η′.By a TRG-morphism of two foliations (M,F ) and (M ′, F ′) with trans-verse rigid geometries we mean a morphism f : M → M ′ in the 
ategory
Fol whi
h preserves transverse rigid stru
ture. The 
ategory FTRG obje
tsof whi
h are foliations with TRG, morphisms are TRG-morphisms, is 
alledthe 
ategory of foliations with transverse rigid geometries.The following statement shows that the stru
ture Lie algebra g0(M,F )of a foliation (M,F ) with TRG is an invariant in the 
ategory FTRG.Proposition 3. Let (M,F ) and (M ′, F ′) be two foliations with TRG iso-56



morphi
 in the 
ategory FTRG. Then their stru
ture Lie algebras g0(M,F )and g0(M
′, F ′) are isomorphi
.Automorphism groups of foliations with TRG Let (M,F ) be a foli-ation with a �xed transverse rigid stru
ture (N, ξ). Denote by A(M,F ) thegroup of all automorphisms of (M,F ) in the 
ategory FTRG. We say alsothat A(M,F ) is the full group of automorphisms.Theorem 3. Let (M,F ) be a foliation with TRG. Let (R,F) be the liftedfoliation and AH(R,F) = {f ∈ A(R,F) | f ◦Ra = Ra◦f, ∀a ∈ H}. Thenthe map µ : AH(R,F) → A(M,F ) : f̂ 7→ f, where f is the proje
tion of

f̂ ∈ AH(R,F) with respe
t to π : R →M, is a natural group isomorphism.VI. Di�erent interpretations of holonomy groupsEquivalent approa
hes to the notion of holonomy groups Denoteby Γ(L, x) the germ holonomy group of a leaf L of a smooth foliation (M,F )whi
h is generally used in foliation theory.Blumenthal and Hebda [11℄ introdu
ed a notion of a holonomy group ofthe leaf L of the foliation (M,F ) with the Ehresmann 
onne
tion M. Thisgroup is 
alled an M-holonomy group and is denoted by HM(L, x), x ∈ L[12℄. The following assertion is a dire
t 
onsequen
e of Theorem 7 provedby the author in [12℄.Theorem 4. Let (M,F ) be a foliation with an Ehresmann 
onne
tion M.The natural group epimorphism δ : HM(L, x) → Γ(L, x) is an isomorphismif and only if the holonomy pseudogroup of the foliation (M,F ) is quasi-analyti
.We applied Theorems 1 and 4 and proved the following statement aboutdi�erent interpretations of holonomy groups of 
omplete foliations withtransverse rigid geometries.Theorem 5. Let (M,F ) be an M-
omplete foliation with TRG de�ned byan (N, ξ)-
o
y
le {Ui, fi, {γij}}. Let L = L(x), x ∈ M, be an arbitrary leafof this foliation and L = L(u), u ∈ π−1(x), be the 
orresponding leaf of thelifted foliation (R,F). Then the germ holonomy group Γ(L, x) of the leaf Lis isomorphi
 to ea
h of the following �ve groups: 57



(i) the M-holonomy group HM(L, x);(ii) the group Hv formed by germs of lo
al di�eomorphisms belonging tothe isotropy subpseudogroup of the holonomy pseudogroup H of lo
al auto-morphisms of the transverse rigid geometry (N, ξ) at point v = fi(x), where
x ∈ Ui;(iii) the group of de
k transformations of the regular 
overing map
π|L : L → L;(iv) the subgroup H(L) = {a ∈ H | Ra(L) = L} of the Lie group H;(v) the holonomy group Φ(u) of the integrable 
onne
tion T (F|π−1(L)) inthe prin
ipal H-bundle with the proje
tion π|π−1(L) : π

−1(L) → L.VII. The groups of basi
 automorphisms of foliations with TRGLet A(M,F ) be the full automorphism group of a foliation (M,F ) withTRG. We denote by µ : AH(R,F) → A(M,F ) the group isomorphism de-�ned in Theorem 3.De�nition 10. The quotient group AB(M,F ) := A(M,F )/AL(M,F ) is
alled the basi
 automorphism group of the foliation (M,F ) with TRG.Emphasize that the basi
 automorphism group AB(M,F ) of a foliation
(M,F ) with TRG is an invariant of this foliation in the 
ategory FTRG.Theorem 6. Let (M,F ) be a foliation with TRG and (R,F ) be the liftedfoliation. Denote by AH

B (R,F ) the quotient group AH(R,F)/AH
L (R,F).There exists a natural group isomorphism χ : AH

B (R,F) → AB(M,F ) sat-isfying the equality s ◦ µ = χ ◦ r, where r : AH(R,F) → AH
B (R,F) and

s : A(M,F ) → AB(M,F ) are the asso
iated group epimorphisms onto thequotient groups.IX. Conditions guarantee that AB(M,F ) is a Lie groupThe 
ase g0(M,F ) = 0 A leaf L of a foliation (M,F ) is 
alled 
losed if
L is a 
losed subset in the topology of the manifold M. Further we use theterm �a 
losed leaf� only in this sense.58



Theorem 7. Let (M,F ) be a 
omplete foliation with a transverse rigidgeometry (N, ξ), where ξ = (P (N,H), ω). Suppose that the stru
ture Liealgebra g0(M,F ) is zero. Then:(i) the full basi
 automorphism group AB(M,F ) admits a Lie groupstru
ture with the following estimate of its dimension:
dimAB(M,F ) ≤ dimP ; (1)(ii) if there exists an isolated 
losed leaf L of the foliation (M,F ), then
dimAB(M,F ) ≤ dimH; (2)(iii) there exists a unique topology and a unique smooth stru
ture on thefull group AB(M,F ) of basi
 automorphisms of the foliation (M,F ), making

AB(M,F ) into a Lie group.Theorem 7 does not ex
lude the triviality of the full group AB(M,F ).Remark 1. The main result of the work [3℄ by Belko is the theoremasserting that if there exists a 
losed leaf of a foliation (M,F ) with 
ompletetransversally proje
table a�ne 
onne
tion, then the group AB(M,F ) is aLie group. This statement is not 
orre
t. It's proof essentially uses thefa
t that existen
e of a 
losed leaf of this foliation implies that the liftedfoliation is simple. It is not true, in general. Let us 
onsider a foliation
(M,F ) from Example 3 (in Se
tion X), when r = 1/π, as a�ne foliation. Ithas a 
ompa
t leaf, but g0(M,F ) = R1 6≡ 0, hen
e the lifted foliation is notsimple. Thus the foliation (M,F ) is a Lie foliation with non-zero stru
tureLie algebra g0(M,F ). Hen
e the group AB(M,F ) is not a Lie group.Dis
rete holonomy groups of leaves Let (M,F ) be a foliation withTRG. Let π : R →M be the proje
tion of the foliated bundle over (M,F ).De�nition 11. We say that the holonomy group of a leaf L ∋ x of thefoliation (M,F ) is dis
rete if there exists a point u ∈ π−1(x) su
h that thegroup H(L) := {a ∈ H | Ra(L) = L, L = L(u) ∈ F} is a dis
rete subgroupof the Lie group H.Let u′ ∈ π−1(x) and u 6∈ L′ = L′(u′). In this 
ase the subgroup H(L′)is 
onjugate to the subgroup H(L) in the Lie group H. Hen
e H(L) is a59



dis
rete subgroup of H if and only if H(L′) is a dis
rete subgroup of H.Thus, a

ording to Theorem 5 the notion of dis
rete holonomy group of leaf
L is well de�ned.Re
all that a leaf L of a foliation (M,F ) is said to be proper if L is anembedded submanifold in M. A foliation (M,F ) is 
alled proper if ea
h itsleaf is proper.Let (M,F ) be a 
omplete foliation with TRG. We proved that the ex-isten
e a proper leaf L with a dis
rete holonomy group implies that thestru
ture Lie algebra g0(M,F ) is zero. In view of this fa
t and Theorem 7we got the following statement.Theorem 8. Let (M,F ) be a 
omplete foliation with transverse rigid ge-ometry (N, ξ), where ξ = (P (N,H), ω). If at least one of the following
onditions holds:(i) there exists a proper leaf L with dis
rete holonomy group;(ii) there is a 
losed leaf L with dis
rete holonomy group;(iii) there exists a proper leaf L with �nite holonomy group;(iv) there is a 
losed leaf L with �nite holonomy group,then the basi
 automorphism group AB(M,F ) admits a Lie group stru
tureof dimension at most dimP, and this stru
ture is unique.It is well known that any foliation has leaves without holonomy. Hen
ethe following statement is a 
onsequen
e of Theorem 8.Corollary 1. For any proper 
omplete foliation (M,F ) with TRG the basi
automorphism group AB(M,F ) admits a unique Lie group stru
ture.X. ExamplesSuspended foliations The suspension of a homomorphism was suggestedby Hae�iger. This method of 
onstru
tion examples is widely used in foli-ation theory.Let ρ : π1(B, b0) → Diff(T ) be a homomorphism of the fundamental60



group of a manifold B ∋ b0 into the group of di�eomorphisms of a q-dimensional manifold T, and let p : B̂ → B be the universal 
overing map-ping. Then we have a right a
tion of the group Π := π1(B, b0) on B̂ byde
k transformations. The equality
(x, t) · g := (x · g, ρ(g−1)(t)), ∀(x, t) ∈ B̂ × T, ∀g ∈ Π,de�nes a free right properly dis
ontinuous smooth a
tion of the group Πon the produ
t of manifolds B̂ × T ; therefore the quotient manifold M :=

B̂ ×Π T is de�ned. Let κ : B̂ × T → M be the natural proje
tion. Then
F := {κ(B̂ × {t}) | t ∈ T} is a foliation of 
odimension q on M ; in this
ase, it is said that the foliation (M,F ) is obtained by suspension of thehomomorphism ρ. For this foliation we will use the notation (M,F ) :=
Sus(T,B, ρ). The image Ψ := imρ is the global holonomy group of (M,F ).Transversally similar and transversally homotheti
 foliations Let
G be the similarity group of the Eu
lidean spa
e Eq, q ≥ 1, and R+ bethe multipli
ative group of positive real numbers. Then G = CO(q) ⋌ Rqis the semidire
t produ
t of the 
onformal group CO(q) = R+ · O(q) andthe group Rq. Let H = CO(q) and p : G → G/H = Eq be the 
anoni
alprin
ipal H-bundle. Let g be the Lie algebra of the Lie group G, and ωbe the Maurer-Cartan g-valued 1-form on G. Then ξ = (G(Eq,H), ω) is ane�e
tive rigid geometry. Foliations with this transverse geometry (Eq, ξ) are
alled transversally similarity foliations [7℄.Denote by E the neutral element of the group O(q). If G = (R+ ·E)⋌Rq,
H = R+ ·E, and ω is the Maurer-Cartan g-valued 1-form on the Lie group
G, then foliations with the transverse e�e
tive rigid geometry (Eq, ξ), where
ξ = (G(Eq,R+ · E), ω), are 
alled transversally homotheti
 foliations [7℄.Example 1. Let B be a smooth p-dimensional manifold whose fundamen-tal group π1(B, b) 
ontains an element α of in�nite order. For an arbitrarynatural number q ≥ 1, denote by Eq a q-dimensional Eu
lidean spa
e. De-�ne a homomorphism ρ : Π := π1(B, b) → Diff(Eq) by setting ρ(α) = ψ,where ψ is the homotheti
 transformation of the Eu
lidean spa
e Eq withthe 
oe�
ient λ 6≡ 1, i. e. ψ(x) = λx, ∀x ∈ Eq, and ρ(β) = idEq forany element β ∈ π1(B, b) su
h that β 6≡ αk with some integer k. Then
(M,F ) = Sus(Eq, B, ρ) is a proper transversally similar foliation with aunique 
losed leaf di�eomorphi
 to B. 61



A

ording to Corollary 1, the full basi
 automorphism group AB(M,F )of this foliation (M,F ) admits a unique Lie group stru
ture. The groupA(ξ)is equal to the group of left translations of the Lie group G = CO(q) ⋌ Rq,hen
e we 
an identify A(Eq, ξ) ∼= A(ξ) with G. In this 
ase it is not di�
ultto show that the full group of basi
 automorphisms AB(M,F ) is isomorphi
to the quotient group N(Ψ)/Ψ, where N(Ψ) is the normalizer of Ψ in the Liegroup G. In our 
ase Ψ = 〈ψ〉 and N(Ψ) = R+ ·O(q), therefore AB(M,F ) ∼=
U(1)×O(q), where U(1) ∼= (R+ ·E)/Ψ is the 
ompa
t 1-dimensional abeliangroup.If q = 1, then O(q) = Z2 and AB(M,F ) ∼= U(1) × Z2.Example 2. Consider the foliation (M,F ) 
onstru
ted in Example 1 asa transversally homotheti
 foliation, i. e., with a di�erent transverse rigidgeometry. In this 
ase the Lie group AB(M,F ) is isomorphi
 to the quotientLie group N(Ψ)/Ψ, where N(Ψ) is the normalizer of Ψ in the Lie group
(R+ · E) ⋌ Rq. Sin
e N(Ψ) = R+ ·E, so AB(M,F ) ∼= U(1).Remark 2. In both examples 1 and 2 the foliation (M,F ) has a unique
losed leaf and, in Theorem 7, the equality is a
hieved in the estimate (ii)of the dimension of AB(M,F ).Example 3. Let ψ be the rotation of the plane E2 about the point 0 ∈ E2through the angle δ = 2πr. Consider an Eu
lidean metri
 g on E2. Denoteby Iso(E2, g) the full isometry group of (E2, g). Let ρ : π1(S

1, b) ∼= Z →
Iso(E2, g) be de�ned by the equality ρ(1) := ψ, 1 ∈ Z. Then we havea suspended Riemannian foliation (M,F ) := Sus(E2, S1, ρ). This foliationhas a unique 
losed (
ompa
t) leaf.There exists a group isomorphism between AB(M,F ) and the quotientgroup N(Ψ)/Ψ, where Ψ = 〈ψ〉 and N(Ψ) is the normalizer of Ψ in theLie group Iso(E2, g) identi�ed with O(2) ⋌ R2. Sin
e N(Ψ) = O(2), so
AB(M,F ) = O(2)/Ψ. Hen
e AB(M,F ) admits a Lie group stru
ture if andonly if Ψ is a 
losed subgroup of O(2) or, equivalent, when δ = 2πr for somerational number r. If δ = 2πr, where r is a nonzero rational number, then
AB(M,F ) ∼= O(2).This work was supported by the Russian Foundation for Basi
 Resear
h,proje
t no. 06-01-00331-a.62
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ACTA PHYSICA DEBRECINA XLII, 64 (2008)CORRELATIONS BEETWEN THE QUANTUMFLUCTUATIONS AND THE PHASE OF THEGRAVITATIONAL WAVESE. Balogh1, I. Bartos2, I. Lovas3 and Sz. Márka2

1 János Bolyai Gymnasium, Salgótarján, Hungary
2 Columbia University, Department of Physi
s, New York, NY10027, USA

3 Debre
en University, Department of Theoreti
al Physi
s, Debre
en, H4010,HungaryAbstra
tThe existen
e of gravitational waves is proved by astronom-i
al observations. The belief that the gravitational waves arequantized is almost hundred years old. Nevertheless up till nowthere are neither theoreti
al, nor observational proof of this be-lief. In this note we suggest to measure the �u
tuations of thegravitational waves. If the �u
tuations are 
orrelated with thephase of the gravitational wave, in other words, if the gravita-tional wave is squeezed, then it is quantized.I. Introdu
tionThe Einstein-equations of the general relativity 
an be redu
ed to waveequations in linear approximation. It was taken as granted that the solu-tions of these equations des
ribe gravitational waves, whi
h exist in nature.Moreover it was assumed already before the middle of the last 
entury thatthese waves are quantized, i.e. they are asso
iated with gravitons havingenergy of hν and spin of 2h/(2π), where the Plan
k-
onstant is denoted by
h and the frequen
y by ν. The existen
e of the gravitational waves, how-ever, was proved only in the se
ond part of the XX-th 
entury by Hulse and



Taylor [1℄. They observed the pulsar radiation of a neutron star whi
h ismoving around another neutron star. It was possible to observe that theperiastron is shifted in a similar way as in the 
ase of the Mer
ury mov-ing around the Sun, furthermore it was seen that the energy of the systemis de
reasing 
ontinuously. Both phenomena were perfe
tly des
ribed bythe Einstein-equations if the possibility of gravitational wave emission wastaken into a

ount.Re
ently a binary system of huge bla
k holes has been observed in theJ 287 quasar [2℄. A very spe
ta
ular outburst is produ
ed by the smallerbla
k hole when it 
ollides with the a

retion dis
 of the bigger bla
k hole.A great number of outbursts were observed and interpreted 
orre
tly. Ifthe emission of the gravitational waves were negle
ted from the analysisthe beautiful agreement was destroyed. Thus one may 
on
lude that themotion of the binary system with mass 17 billion Sun mass 
an be des
ribedperfe
tly well by the Einstein-equations, and the gravitational waves reallyexist in nature. Sin
e now we are 
onvin
ed about the existen
e of thegravitational waves it is justi�ed to hope that they 
an be observed sooneror later on the surfa
e of the Earth, as well.The question of the quantized 
hara
ter of the gravitational waves isa more 
ompli
ated issue. Up till now the quantization of the theory ofgravitation is an unresolved problem in spite of the tremendous amount ofe�orts. Consequently the theoreti
al proof of the quantized 
hara
ter ofthe gravitational waves is missing. The experimental proof of the quantized
hara
ter is missing either.In this note we try to �nd a possibility to observe the quantized 
har-a
ter of the gravitational waves. We assume that the basi
 features of thequantization of the gravitation are similar to that of the ele
tromagnetism.Therefore we look for genuine, observable signatures of the quantization inthe realm of ele
tromagnetism. The energy quantum hν belongs to this
ategory, however it 
an not be used in the 
ase of the gravitation be
auseof the extremely low values of the frequen
y ν. It was proved by Glauber [3℄in the framework of the quantum ele
trodynami
s that the phenomenon ofthe squeezing is a genuine signature of the quantized nature. The existen
eof the squeezing was proved by experiments, that is, de�nite 
orrelation hasbeen found between the phase of the wave and the quantum �u
tuations.65



Here we assume that something similar is true in the 
ase of the gravita-tional waves, as well. It was pointed out by Grish
huk [4℄ that the quantumnoise is 
orrelated with the phase of the gravitational wave if it is gener-ated by the non-linear gravitational ba
kground. He fo
used the attentionto those gravitational waves whi
h were generated in the time of the BigBang. Here we want to emphasize that those existing and working GWdete
tors whi
h will be able to dete
t the arrival of the gravitational waveswill be able to dete
t also the quantum �u
tuations. If some 
orrelation 
anbe observed between the phase of the wave and the quantum �u
tuationsthen this 
an be 
onsidered as a proof for the quantized 
hara
ter of thegravitational waves [5℄. If no 
orrelation 
an be found then we are not ableto draw any kind of 
on
lusion.II. Analysis of the signal arriving from the interferometer typegravitational wave dete
torWe assume that the light signal L(t) arriving from the interferometertype gravitational wave dete
tor at time t 
an be des
ribed by the followingsum:
L(t) = C(t, ν) +Q(t, ν, ϕ) +B(t); (1)where the frequen
y of the wave is denoted by ν, the 
ontribution of the�
lassi
al wave� by C(t, ν), the 
ontribution of the �quantum �u
tuation� by

Q(t, ν, ϕ) and the 
ontribution of the external random ba
kground by B(t).In the �rst step of the analysis we negle
t Q(t, ν, ϕ), and we determine fromthe observed data the quantities ν, C(t, ν), and B(t). By the way, this isthe original task of the gravitational wave dete
tor! As a se
ond step ofthe analysis we 
al
ulate from the observed data the 
ontribution of thequantum �u
tuations Q(t, ν, ϕ)Q, using the values of ν, C(t, ν), and B(t),obtained in the �rst step of the analysis.III. The Energy Flux of the Gravitational WavesWe 
onsider a gravitational plane wave far away from its sour
e havingfrequen
y ν and amplitude a. The energy �ux F of su
h a wave, i.e. the66



energy per unit area, per sampling (with sampling frequen
y νs) 
an beexpressed in the following form:
F =

πc3ν2a2

Gνs
. (2)The energy arriving into the dete
tor per sampling is given by:

E = FA, (3)where A is the 
ross se
tional area of the dete
tor.The expe
tation value of the number of the gravitons arriving into thedete
tor per sampling is given by:
〈N〉 =

E

hν
=
πAc3ν2a2

hGνs
. (4)The �u
tuation of the graviton number may be approximated by the fol-lowing expression [ 6 ℄ :

〈∆N2〉 = 〈N〉
[
e−2S cos2

(ϕ
2
− θ
)

+ e2S sin2
(ϕ

2
− θ
)]
. (5)Here θ is the phase of the wave at time t: θ = νt+ θ0.The squeezing parameters are denoted by S and ϕ. The la
k of squeezingis 
hara
terised by S = 0. In this 
ase the number of gravitons is des
ribedby the Poisson-distribution:

〈∆N2〉 = 〈N〉. (6)If the measured values of the signal are stored together with a time stampby a Field Programmable Gate Array (FPGA) [7℄, then the evaluation ofthe measurement 
an be done o� line. The evaluation 
an be performed asan iterative pro
edure when the stored values 
an be used repeatedly. Itis worth while to point out that by using an FPGA the 
omparison of thesignals of parallel dete
tors 
an be done also o� line. If the noise/signal ratiois not too large then the frequen
y ν, the squeezing parameters S and ϕ, andthe value of the random noise 
an be obtained from the measurements. Ifthe value of the squeezing parameter S turns out to be signi�
antly di�erent67



from zero then, it is proved that the gravitational waves are quantized! Thesu

ess of su
h an experiment depends �rst of all on the distan
e of thesour
e of the gravitational waves. It must be 
onfessed that if the signal
ontains more then one frequen
y with non-negligible amplitudes then theanalysis will be rather tedious.A
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ow, Russia
2 Joint Institute for Nu
lear Resear
h, Dubna, RussiaAbstra
tA 
ertain resemblan
e between properties of the states spa
ein non-
lassi
al Physi
s and the events spa
e in 
lassi
al Physi
sis re
ognized.It is noted that in the absen
e of thermal in�uen
e or, 
or-respondingly, of gravitation there are the simplest Riemannianstru
tures with a diagonal metri
 and zero 
urvature in both
ases. Either the square of the half of the Plan
k's 
onstant orthe square of the ele
trodynami
s 
onstant are the invariants,limiting the minimal values of 
orresponding quantities. Theseminimal limitations are initially intrinsi
 to the obje
t environ-ment only in the form of "
old" va
uum. It is proposed the
on
epts of "self-a
tion" and "equilibrium shell".In view of gravitation in the obje
t environment or the 
hangeof "
old" va
uum to "warm" one lead to 
ardinal new prop-erties. First of all, the non-trivial Riemannian stru
tures appearso that the metri
s be
omes non-diagonal. Se
ond, in both 
asesthe 
urvature of spa
e be
omes not equal to zero.

††The resear
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 Resear
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One may 
onsider all these 
ir
umstan
es as �rst steps tojoin both spa
es of matter existen
e.CONTENTS1. Introdu
tion2. Flu
tuation states submanifold of 
oordinate and momentum3. S
hroedinger un
ertainty relation4. A model "quantum os
illator"5. Some interesting geometri
al 
hara
teristi
s6. Consequen
esReferen
es I. Introdu
tionThe main aim of our investigation is to exhaust the maximal physi
al in-formation from the analysis of geometri
al properties of the non-
lassi
alstates spa
e. Under the term non-
lassi
al we understand all situationswhen an obje
t is under a sto
hasti
 in�uen
e - both quantum ("
old"va
uum in Quantum Me
hani
s - QM) and thermal one (thermostat in Sta-tisti
al Thermodynami
s � ST).In the most general 
ase an obje
t is a�e
ted by both types of the in�u-en
e simultaneously. As a result the 
hara
teristi
s of the obje
t �u
tuates.They are said to be quantum-thermal �u
tuations. Our study is based onthe Cau
hy-Bunjakovsky-S
hwarz unequality (hereafter noted CBSU) usedin the states spa
e.II. Flu
tuation states submanifold of 
oordinate and momentumFrom the Hilbert manifold of arbitrary states | > for a mi
ro-obje
t let ussele
t a submanifold of �u
tuations states. For this goal let us introdu
e�rst of all the operators of 
oordinate and momentum �u
tuations ∆q̂ and
∆p̂ respe
tively in su
h a manner:

∆q̂ = q̂ − 〈|q̂ |〉; (1)70



∆p̂ = p̂− 〈|p̂ |〉. (2)One 
an get the submanifold, that is of interest to us, as a result of theoperators ∆q̂ and ∆p̂ a
ting upon an arbitrary state | >:
|∆q〉 ≡ ∆q̂ | 〉; (3)
|∆p〉 ≡ ∆p̂ | 〉. (4)We 
all it the submanifold of �u
tuation states of the 
oordinate and themomentum. As it is well known, in an arbitrary Hilbert spa
e a bilinearhermitian form is de�ned. Usually it is treated as a s
alar produ
t of stateve
tors < Φ|Ψ >.In the sele
ted submanifold of �u
tuations states it is:

Rpq ≡ 〈∆p|∆q〉 = 〈|∆p̂∆q̂ |〉 (5)or equivalently
Rp q ≡ 1

2
〈|∆p̂∆q̂ + ∆q̂∆p̂ |〉 +

1

2
〈|∆p̂∆q̂ − ∆q̂∆p̂ |〉. (6)As at the same time the s
alar produ
t is a 
omplex quantity, it is 
onvenientto write this expression in a di�erent way

Rpq = σp q + i cp q, (7)where its imaginary part
cp q ≡ 1

2
|〈|{p̂, q̂ }|〉| =

~

2
(8)
hara
terizes a symple
ti
 stru
ture on the sele
ted states submanifold |∆p >,

|∆q > in the Hilbert spa
e.However, the subje
t of our subsequent interest will be mainly the realterm
σp q ≡ 1

2
〈|{∆p̂,∆q̂ }|〉. (9)In the quasi-
lassi
al limit the operators ∆p̂ and ∆q̂ 
an be 
hanged by

c-numbers. In this 
ase the quantity σpq is in 
lose 
onne
tion with the71



standard de�nition of a 
orrelator in the probability theory. This fa
t allowsus to 
all σpq a 
orrelator of quantum or (in more general 
ase) quantum-thermal �u
tuations of 
oordinate and momentum, or, a quantum 
orrela-tor.If the quantity σpq in
ludes the two identi
al operators ∆q̂ or ∆p̂ ittakes the form either σqq = 〈∆q|∆q 〉 = 〈|(∆q̂ )2|〉 or σpp = 〈∆p|∆p 〉 =
〈|(∆p̂ )2|〉 where σqq and σpp are dispersions of 
oordinate and momentum.All the three quantities σpq, σpp, and σqq together des
ribe the Riemannianstru
ture on the submanifold of states under study.Now let us make some remark following Caianiello and No
e [1℄. Inthe frame of ST they supposed that one 
an interpret the 
orrelator ofthermal �u
tuations of a 
onjugated ma
roparameter pair a and b as a"s
alar produ
t" of 
onventional "ve
tors" δa and δb in the Riemannianspa
e of the thermal �u
tuations

σT
a b = (∆a∆b) ≡ δa · δb. (10)Then dispersions of random quantities a and b are
σT

a a = (∆a)2 ≡ (δa)2, (11)
σT

b b = (∆b)2 ≡ (δb)2and have a sense of norms of the "ve
tors". We on
e more emphasise thatall the three quantities σT
a b, σ

T
a a, and σT

b b des
ribe the Riemannian spa
e ofthermal �u
tuations.This fa
t allows us to use this idea in our 
ase. For this goal we introdu
ethe two-dimensional Riemannian spa
e and on this ground we assume thatthe three quantities, i.e. the quantum 
orrelator σpq and the dispersions
σqq,σpp 
an be interpreted as a 
onventional "s
alar produ
t" and norms ofpe
uliar ve
tors δq and δp in this spa
e:

σp q ≡ (δp δq), σp p ≡ (δp)2, σq q ≡ (δq)2. (12)Some additional reason for identifying the quantum 
orrelator with a "s
alarprodu
t" of 
onventional "ve
tors" is the similar behavior of the quantum
orrelator in the high temperature limit and that of the thermal 
orrelator.72



In this 
ase the quantum 
orrelator σpq is in 
lose 
onne
tion with thethermal 
orrelator
σp,q → σT

p q = (∆p∆q). (13)III. S
hroedinger un
ertainty relationLet us 
onsider some pe
uliarities of the states submanifold |∆p >, |∆q >.Our starting point is the CBSU. We note that in many kinds of manifoldsit plays a role of some limiter for the 
orresponding geometri
al stru
tures.Thus for the given submanifold we have the CBSU in the form whi
hphysi
ists 
all the S
hroedinger un
ertainty relation (SUR):
(δp)2(δq)2 > |Rp q|2 = σ2

p q + c2p q. (14)Let us remember that Rpq is the transition amplitude from the state |∆q〉to the state |∆p〉. Thus we see that the squared transition amplitude 
annot be more then "ve
tor" norms produ
t (δp)2(δq)2.Note, that the transition amplitude has two terms. The se
ond of it cpqre�e
ts a type of 
orrelation between momentum and 
oordinate related tothe non-
ommutativity of the 
orresponding operators. At the same timethe �rst of it σpq in the general 
ase 
orresponds to another 
orrelation typesomewhat analogous to 
orrelation one in the 
lassi
al probability theory.Below we restri
t ourselves to the analysis of states for whi
h SUR trans-forms into the stri
t equality
(δp)2(δq)2 = σ2

p q + c2p q. (15)In Physi
s su
h SUR is usually said to be saturated.IV. A model of �quantum os
illator�In the given model the saturated SUR has importan
e in the two 
ases:- in the basi
 state (its wave fun
tion is real, cpq = 0). This state belongsto the family of 
oherent states (CS);- in other states with 
omplex wave fun
tions that satisfy the important73




ondition cpq 6≡ 0. We 
all su
h states 
orrelated-
oherent states (CCS).Note, that to pass from CS to CCS for the quantum os
illator it is ne
essaryto use (u, v)- Bogoliubov transformations generating the Lie group SU(1.1).Among many kinds of CCS there are states that are espe
ially interest-ing for physi
ists be
ause they are more 
lose to the real Nature. Theseare thermal CCS (TCCS) that were �rst introdu
ed by Umezawa [2℄ in theframe of his thermo�eld dynami
s (TFD). Complex wave fun
tions des
rib-ing TCCS for quantum os
illator in a thermostat suppose both quantumand thermal sto
hasti
 in�uen
e of environment simultaneously [3℄. Thesefun
tions must have a temperature-dependent amplitude and phase.To study the �u
tuations of Riemannian spa
e of momentum and 
oor-dinate for quantum os
illator in TCCS in more detail we use SUR below inthe saturated form (15). Earlier in the paper [3℄ we obtained a formula forthe wave fun
tion for the quantum os
illator in the thermostat:
ψ(q) = [2π(∆q)2]−1/4 exp

{
− q2

4(∆q)2
(1 − iα)

}
, (16)where

α =

[
sinh

~ω

2kBT

]−1

.From it one 
an 
al
ulate dispersions of momentum and 
oordinate at anytemperature:
(δp)2 =

~mω

2
coth

~ω

2kBT
, (17)

(δq)2 =
~

2mω
coth

~ω

2kBT
. (18)We emphasise that these quantities depending on the wave fun
tion am-plitude are fun
tions of the temperature. From the formula for the wavefun
tion we 
an obtain also the quantum 
orrelator

σpq =
~

2

[
sinh

~ω

2kBT

]−1

. (19)It depends on the wave fun
tion phase and, what is the most important, itis a fun
tion of the temperature, too.74



In the frame of our Riemannian spa
e we 
an assume that the expression
σp q√

σpp
√
σqq

(20)is a quantity somewhat analogous to the fun
tion cosϕ for the usual s
alarprodu
t in the Eu
lidian spa
e. We note that using all these formulas andre
all (12) as
(δq)2 ≡ σqq; (δp)2 ≡ σpp (21)one 
an easily obtain the 
onventional cosϕ.For the "angle" between "ve
tors" in the Riemannian spa
e this quantityis equal to

[
cosh

~ω

2kBT

]−1

. (22)As a result we obtain that "lengths of ve
tors" rise while the "angle"between them de
reases with in
reasing temperature. So the 
onventional
cosϕ 
hanges in the region from 0 to 1 as it is ne
essary. Thus if no 
or-relation exists between �u
tuations (σpq = 0) the "ve
tors" δp and δq are"orthogonal"(at T = 0). In the general 
ase ( when the 
orrelator σpq 6≡ 0) the "ve
tors" have an arbitrary mutual orientation. It maximally approx-imates 
ollinearity when their s
alar produ
t gets the maximal value.V. Some interesting geometri
al 
hara
teristi
sFor 
onvenien
e of further 
al
ulations we make a slight 
hange of variables:

(δp)2 = mω(δp̃)2; (23)
(δq)2 =

1

mω
(δq̃)2. (24)At the same time the s
alar produ
t does not 
hange

σpq = σ̃pq. (25)75



Taking new variables δp̃ and δq̃ as basi
 ve
tors in the Riemannian spa
ewe get the SUR for the quantum os
illator in TCCS
(δp̃ )2(δq̃ )2 ≡ ~2

4
coth2 ~ω

2kBT
= (26)

= (σ2
pq +

~2

4
) ≡ ~2

4

[
sinh

~ω

2kBT

]−2

+
~2

4
.So we have introdu
ed a �u
tuation spa
e of momentum and 
oordinatewith the basi
 ve
tors δp and δq dependent on the temperature. For its anal-ysis we have two possibilities, based on the saturated SUR for the quantumos
illator in a thermostat.The �rst solution is as follows. Let us rearrange the term σ2

pq to the leftside of SUR. Now we 
an 
onsider the 
ombination
(δp̃ )2(δq̃ )2 − σ2

p q (27)as an entire quantity. From geometri
al point of view it is a non-degeneratedeterminant of some two-dimensional metri
 tensor gik:
Det gik =

∥∥∥∥
(δp̃ )2 σpq

σpq (δq̃ )2

∥∥∥∥. (28)Taking into a

ount the a
tual values of quantities (δq̃)2, (δp̃)2, and σpq one
an rewrite this determinant in the form
Det gik =

~2

4

∥∥∥∥∥∥

coth ~ω
2kBT

[
sinh ~ω

2kBT

]−1

[
sinh ~ω

2kBT

]−1
coth ~ω

2kBT

∥∥∥∥∥∥
. (29)We 
an see the following. Although all its 
omponents are temperaturedependent, Det gik = (~/2)2 is obviously independent on the quantity T .In the limit T → 0: g11 → 1 and g22 → 1, g12 → 0 and g21 → 0. Thisfa
t 
orresponds to the orthogonality 
ondition of the "ve
tors" δp and δq.In the limit (1/T ) → 0 Det gik does not 
hange. So we 
an 
laim thedeterminant is invariant under Bogoliubov (u, v) - transformations. Onemay expe
t that a s
alar 
urvature of 
orresponding spa
e is not equal tozero at T 6≡ 0 but at T → 0 it redu
es to zero.76



We 
an also assume that the equality of values (cpq)
2 and Det gikis not by 
han
e. We suppose it re�e
ts a pe
uliar interferen
e betweenRiemannian and symple
ti
 stru
tures on the submanifold of �u
tuationstates of 
oordinate and momentum. At the same time it 
an serve as aninitial 
riterion of belonging one or another state to the ÑÑS family.The se
ond possibility of analysis is 
onne
ted with the interpretationof the right side of SUR itself. It is 
ommon pra
ti
e to 
onsider the term

δpδq as an entire mathemati
al quantity, named un
ertainty produ
t (UP)hereafter noted
(UP) ≡ δp δq. (30)Earlier we supposed a new theory - Quantum Generalization of equilibriumStatisti
al Thermodynami
s (QGST)[4℄. In the 
ase of the quantum os
il-lator in a thermostat we found the physi
al sense of δpδq. For this goalwe introdu
ed a new ma
ro-parameter - the e�e
tive a
tion as an adiabati
invariant

J =
E
ω
, (31)where a

ording to Plan
k

E =
~ω

2
coth

~ω

2kBT
(32)is the energy of the quantum os
illator in a thermostat. A

ording to SUR

(UP) = J =
E
ω
. (33)In the limit T → 0 the quantity J has the meaningful property: it 
ome upto its minimal value

(J)min ≡ J0 =
E0

ω
=

~

2
, (34)where ε0 is the energy of the os
illator basi
 state. So J0 has a fundamentalsense of the internal or self a
tion that the obje
t has initially due to thequantum sto
hasti
 in�uen
e of the "
old" va
uum.Considering this fa
t we obtain from SUR

J2 = J2
T + J2

0 . (35)77



Here
JT =

~

2

[
sinh

~ω

2kBT

]−1 (36)
an be interpreted as an e�e
t indu
ed by the thermal sto
hasti
 in�uen
eof the environment.Analogi
ally we 
an rewrite SUR in another form
E2 = E2

T + E2
0 , (37)where

ET =
~ω

2

[
sinh

~ω

2kBT

]−1 (38)is the energy indu
ed by a thermal sto
hasti
 in�uen
e of the environment.Now let us 
ompare the two formulas (35) and (37) with the formula forfull relativisti
 energy in the Spe
ial Relativity Theory (SRT)
E2 = p2 +m2 = E2

p + E2
0 (39)(we put the light velo
ity c = 1). Here the quantity E0 ≡ m is the selfenergy, initially belonged to an obje
t and asso
iated with its mass, but

Ep ≡ p is an energy indu
ed by motion of the obje
t and asso
iated with itsmomentum.Considering this resemblan
e we 
laim that (E , Ep) and (E , ET ) are twotime-like ve
tors in the 
orresponding 2-dimensional pseudo-Eu
lidean spa
es.A

ordingly E2
0 = m2 and E2

0 = (~ω/2)2 are their squared lengths, i.e. in-variants.Now one 
an realize a new interpretation for the sense of the saturatedSUR.We know that the formula (39) is usually 
onsidered as a de�nition of amass-shell in the pseudo-Eu
lidean momentum spa
e. This fa
t 
orrespondsto the 
hara
teristi
s of real parti
les. But for virtual parti
les we have theunequality in this formula. It means they exit from the mass- shell.From this point of view one 
an 
laim that the equality in SUR answersthe 
hoi
e of some real states for whi
h the ve
tor (E , ET ) is on a 
ertain"frequen
y shell". Su
h states are the thermal ÑÑS des
ribing a thermal78



equilibrium. All di�erent states have the sense of virtual states for whi
hthe same ve
tor is out of the "frequen
y- shell" or "equilibrium - shell".Probably, they 
orrespond to non-equilibrium.As some remark we remind that the group Lie SU (1,1) of the Bogoli-ubov (u, v)-transformations is lo
al isomorphi
 to the Lorentz-group in 2-dimensional spa
e-time. At the same time there exists an analogy betweenthe pairs of parameters: on the one hand
γ =

1√
1 − β2

; β =
v

c
, (40)and on the other hand

γ T = coth
~ω

2kBT
; (41)

βT =

[
coth

~ω

2kBT

]−1

. (42)It is not di�
ult to see that the limit behavior of the 
orresponding qualitiesis similar:at T → 0 βT → 0 ( at v → 0 β → 0) andat T → ∞ βT → 1 ( at v → c β → 1).VI. Consequen
esSummarizing all the results obtained above we 
an re
ognize a 
ertain re-semblan
e between properties of the states spa
e in non-
lassi
al Physi
sand the events spa
e in 
lassi
al Physi
s. We 
olle
t them in Table 1.One 
an see that in the absen
e of thermal in�uen
e (at kB = 0 as inQM) or, 
orrespondingly of gravitation (at G = 0 as in SRT) there are thesimplest Riemannian stru
tures with a diagonal metri
 and zero 
urvature.At the same time the role of invariants, limiting the minimal values of
orresponding quantities that are possible in Nature, plays either the self-79



Table 1.a
tion squared - (~/2)2 or the ele
trodynami
s 
onstant squared - (1/c)2.These minimal limitations are initially intrinsi
 to the obje
t environmentin the form of "
old" va
uum.The presen
e in the obje
t environment of a matter that is subje
t togravitation (at G 6≡ 0 as in General Relativity Theory - GRT) or the 
hangeof "
old" va
uum to "warm" one (at kB 6≡ 0 as in QST) leads to 
ardinalnew properties. First of all, the non-trivial Riemannian stru
tures appear sothat the metri
s be
ome non-diagonal. Se
ond, in both 
ases the 
urvatureof spa
e be
omes not equal to zero. One 
an respe
t these geometri
alproperties as an indi
ator of some external e�e
ts 
hara
terized either bythe 
onstant G or by the 
onstant kB . All these 
ir
umstan
es may be
onsidered as �rst steps to join both spa
es of matter existen
e.The last question that arises here is 
onne
ted with the notion of sym-ple
ti
 stru
ture. In non-
lassi
al Physi
s the modulus of 
orrespondingquantity is an invariant too that is temperature independ and equal to
(~/2)2. On this ground we have a reason to say some hypothesis. We 
ansuppose that there is a symple
ti
 stru
ture in the events spa
e. Its invari-ant 
hara
teristi
 must be a quantity that is equal to (1/c)2. We have theopinion that in the future it will be desirable to modify the des
ription of80



the events spa
e. On this way the presen
e of symple
ti
 stru
ture 
ouldfollow from the fundamental spa
e-time theory.Referen
es[1℄ E.R. Caianiello, C. No
e, A Metri
 Model of Therodynami
s: Un
er-tainties Relations, Gazzetta Chimi
a Italiana , 244 (1984).[2℄ H. Umezawa, Advan
ed Field Theory. Mi
ro-, Ma
ro- , and ThermalPhysi
s, ( N.Y., AIP, 1993 ).[3℄ A. D. Sukhanov, S
hroedinger Un
ertainties Relation for Quantum Os-
illator in a Thermostat., Theor. Math. Phys. 148, 2, 1123 (2006).[4℄ A.D. Sukhanov, A Quantum Generalization of Equilibrium Statisti-
al Thermodynami
s: E�e
tive Ma
ro-parameters, Theor. Math. Phys154, 1, 153 (2008).
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illator (QO) in the thermostat. Its states have asense of thermal 
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oherent states (TCCS). Earlier wefound a wave fun
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4. Conne
tion 
oe�
ients and the Riemann-Christo�el tensor5. Con
lusionReferen
es I. Introdu
tionRe
ently it be
ame apparent that our knowledge of matter stru
ture wasvery approximate. Under these 
onditions the signi�
an
e of universal non-model theories like Geometry and Thermodynami
s essentially in
reases.Within the frame of 
lassi
al (deterministi
) Physi
s the main interest at-tra
ts Geometry of events spa
e , i.e. four-dimensional spa
e-time. It is thesubje
t of many papers.However, in non-
lassi
al (sto
hasti
) Physi
s su
h as Quantum me
han-i
s (QM), Statisti
al thermodynami
s (ST), and their generalizations Ge-ometry does not appear to be the subje
t of systemati
al study. As is wellknown, the 
on
ept of states spa
e is the 
entral one in these theories.The results of Provost and Vallee [1℄ and Ruppeiner [2℄ have shownthat in QM and ST one 
an introdu
e the Riemannian stru
ture in the
orresponding states spa
es. Its typi
al features 
an be expressed in termsof dispersions of the system random 
hara
teristi
s and their 
orrelators.In this paper some geometri
al properties of the generalized states spa
esimultaneously generated by quantum and thermal sto
hasti
 in�uen
e ofenvironment are studied. As a model we 
hoose a quantum os
illator (QO)in the thermostat. In another words, QO lo
ates in the thermo�eld va
uumand its states have a sense of thermal 
orrelated-
oherent states (TCCS)[3℄.We assume that a wave fun
tion in the TCCS has a temperature - depen-dent amplitude and phase. Under the suitable parameterization it generatesa Riemannian stru
ture on the states spa
e. The last 
ir
umstan
e allowsus to introdu
e a gauge-invariant metri
 tensor and 
al
ulate the Gaussian
urvature in the spa
e. The latter fa
t gives us a possibility to make a
omparative study of the geometri
al properties for di�erent TCCS in theentire temperature range. 83



II. Geometri
al interpretation of the wave fun
tion in the TCCSspa
eThe starting point of our study is the S
hroedinger un
ertainty relation forthe variables "
oordinate-momentum". In the 
ase of equality it is knownas the saturated one. In another words, it has a form of equality:
(∆p)2 (∆q)2 = |〈|∆p̂∆q̂ |〉|2 =

~2

4

[
coth

~ω

2kBT

]2

. (1)For QO in the thermostat we found [4℄ the wave fun
tion in TCCS satisfyingthis relation has the form
ψ(q) = [2π(∆q)2]−1/4 exp

{
− q2

4(∆q)2
(1 − iα)

}
, (2)where the 
oe�
ient α and the 
oordinate dispersion are

α =

[
sinh

~ω

2kBT

]−1

; (3)
(∆q)2 =

~

2mω
coth

~ω

2kBT
. (4)We will interpret ψ(q) as some surfa
e in the Hilbert spa
e of TCCS. To thisend we 
onsider the parameters as some e�e
tive 
oordinates in the two-dimensional Riemannian spa
e. The 
hoi
e of parameters being non-unique,we review only one possible variant.Let us represent ψ(q) as a ray in the proje
tive Hilbert spa
e putting

ψ(q) ≡ ψ(s1s2) = γs1 exp{−βq2(s41 − is2)}. (5)Here s1, s2 are e�e
tive 
oordinates of the Riemannian spa
e
s1 =

[
coth

~ω

2kBT

]−1/4

; (6)
s2 =

[
cosh

~ω

2kBT

]−1 (7)84



and 
onstants are
γ =

[
π~

mω

]−1/4

; β =
mω

2~
. (8)Following [1℄let us introdu
e the gauge-invariant metri
 tensor

gik = γik − βiβk, (9)where
γik = ℜ

〈
∂ψ∗

∂si

∣∣∣∣
∂ψ

∂sk

〉
; (10)

βk = −i 〈ψ∗| ∂ψ
∂sk

〉. (11)III. Some geometri
al 
hara
teristi
s of TCCS spa
eKnowing the wave fun
tion ψ(s1, s2) we 
an �rst of all 
al
ulate the 
om-ponents of the gauge-invariant metri
 tensor gik using the formulas above.Negle
ting the details of the 
al
ulations we get
β1 = 0; β2 =

1

4
s−4
1 ; (12)

g11 = γ11 = 2s−2
1 ; (13)

g12 = g21 = γ12 = 0; (14)
γ22 =

3

16
s−8
1 ; (15)

g22 = γ22 − β2
2 =

1

8
s−8
1 . (16)Now we 
al
ulate the Riemannian metri
 on the studied surfa
e in the TCCSspa
e

dl2 = gik(si, sk)dsidsk, (17)where dl stands for the elementary length of a 
urve on the surfa
e ψ(s1, s2).At last the determinant of the metri
 tensor gik is determined by theformula
g =

1

4
s−10
1 , (18)85



where the tensor g is a diagonal one.Correspondingly we 
an get the 
hara
teristi
s of symple
ti
 stru
ture
σik = −σki = ℑ

〈
∂ψ∗

∂si

∣∣∣∣
∂ψ

∂sk

〉 (19)In the given 
ase
σ12 = −σ21 = −1

2
s−5
1 (20)It is interesting that

g = g11g22 = |σ12|2 (21)Note that the main property of all these quantities is the dependen
e onthe parameter (s1)
−1 in the form (6).One 
an note that under the temperature variation in the range 0<T<∞the parameter (s1)
−1, where s1 has the form (6), takes values in the range

1 6 s−1
1 6

(
2kBT

~ω

)1/4

. (22)We underline that the dependen
e on the temperature is the signi�
antpe
uliarity of the TCCS spa
e. It should be also re
alled that the 
oordinatedispersion (4) so the quantities g11, g22, and σ12 
an be expressed throughthe 
oordinate dispersion of QO as follows
s−4
1 =

2mω

~
(∆q)2. (23)Thus we establish the relation between features of the TCCS spa
e and�u
tuations of physi
al 
hara
teristi
s in non-
lassi
al Physi
s.IV. Conne
tion 
oe�
ients and the Riemann-Christo�el tensorTo 
al
ulate a 
urvature in 2-dimensional Riemannian spa
e under the 
ho-sen parameterization let us �rst 
al
ulate 
onne
tion 
oe�
ients. Be
ausethe metri
 is non-degenerate, i.e. det gij 6≡ 0, there exists a unique 
onne
-tion that is symmetri
 and 
onsistent with metri
 gij .86



It is de�ned as follows [5,6℄:
Γij,k =

1

2

(
∂gjk

∂si
+
∂gik

∂sj
− ∂gij

∂sk

)
. (24)In our 
ase only three 
onne
tion 
oe�
ients are not trivial:

Γ11,1 =
1

2

∂g11
∂s1

= 2s−3
1 ; (25)

Γ22,1 = − 1

2

∂g22
∂s1

=
1

2
s−9
1 ; (26)

Γ12,2 =
1

2

∂g22
∂s1

= −1

2
s−9
1 . (27)They depend on the temperature through the expressions (6) for 
oordinate

s1 of e�e
tive Riemannian spa
e and (4) for 
oordinate dispersion QO inthe thermostat.Knowing the quantities Γij,k one 
an 
al
ulate 
omponents of the Riemann-Christo�el tensor
Rmlkj = gmiR

i
lkj = gmi

(
∂Γi

lj

∂sk
− ∂Γi

lk

∂sj
+ Γi

nkΓ
n
lj − Γi

njΓ
n
lk

)
, (28)where it is ne
essary to take into a

ount the expression

Γi,kl = gimΓm
kl. (29)In the 2-dimensional 
ase from the symmetry of the Riemann-Christo�eltensor follows that its unique 
omponent is

R2112 = −∂Γ12,2

∂s1
− Γ11,iΓ22,jg

ij + Γ12,iΓ12,jg
ij . (30)If one inserts the obtained quantities in this formula one gets

R2112 = −∂Γ12,2

∂s1
− Γ11,1Γ22,1 g

11 + Γ12,2Γ12,2 g
22. (31)Taking into a

ount that g11 = 1/g11 and g22 = 1/g22 one 
an �nally obtain

R2112 = −9

2
s−10
1 +

1

2
s−10
1 + 2s−10

1 = −2s−10
1 , (32)87



where the dependen
e on temperature appears again through 
oordinatedispersion.Finally, from the formulas above one 
an 
al
ulate the Gaussian s
alar
urvature K:
K =

R2112

g
= −8. (33)It should be underlined that the 
urvature of the TCCS spa
e at the pointasso
iated with the normalized state in the proje
tive Hilbert spa
e is 
on-stant and negative. This metri
 
orresponds to geometri
al features of hy-perboloid. V. Con
lusionLet us summarize our geometri
 results and make some physi
al 
omments.If we �x some set of the wave fun
tion 
hara
teristi
s for QO in ther-mostat, we 
an use its geometri
al interpretation as a surfa
e in the TCCSspa
e.In this 
ase su
h features of the spa
e as metri
 tensor 
omponents,
onne
tion 
oe�
ients, and 
omponents of the Riemann-Christo�el tensordepend on 
oordinate dispersion asso
iated with the thermostat tempera-ture.The Gaussian s
alar 
urvature of the surfa
e asso
iated with the wavefun
tion is 
onstant and negative. We 
laim that this result shows resem-blan
e to that obtained earlier [1℄ for the same 
ase by group-theoreti
almethod.We hope that our results will be useful for establishing of similaritybetween the properties of events spa
e in 
lassi
al and those of the statesspa
e in non-
lassi
al Physi
s.88
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ACTA PHYSICA DEBRECINA XLII, 90 (2008)GEOMETRICAL MODEL WITH TWO EXPONENTS FORDESCRIBING THE PROTON-PROTON SCATTERING ATHIGH ENERGIESZ. Tari
sInstitute of Ele
tron Physi
s, Ukrainian National A
ademy of S
ien
es,Uzhgorod, UkraineAbstra
tA dipole model of pomeron with two independent exponentsis suggested. It is shown that the appearan
e of the minimaand maxima observed experimentally in the di�erential 
ross-se
tions of elasti
 pp-s
attering at high energies 
ould be de-s
ribed within the framework of the above model. The modelis analyzed; the limitations for its 
ertain parameters are ob-tained. I. Introdu
tionThe experimental di�erential 
ross-se
tions of elasti
 pp-s
attering for mo-mentum transfer 0.5 < |t| < 14 GeV2 (energy √
s = 23.5− 62 GeV) demon-strate di�erent minima and maxima. These extrema shift slowly to lower

|t| with in
reasing energy. In [1-3℄, an elegant model was proposed and theabove behavior of 
ross-se
tions has been satisfa
torily des
ribed. The ad-vantage of the model is its simpli
ity (it in
ludes only the dipole pomeron)and a small number of parameters (four), whi
h 
an be �tted from exper-iments. However, its short
oming is that it leads to a de
reasing ratio of
σel/σtot, whi
h tends to an asymptoti
 
onstant value.The model [3, 4℄ in
ludes a triple pomeron and, therefore, it breaks theunitarity. However, due to a large number of parameters (10-20), this model



des
ribes perfe
tly the above minima, maxima and the σel/σtot ratio.Here a dipole pomeron model is suggested 
ontaining two exponentialterms dependent on t. In this model, the minima and the maxima of thedi�erential 
ross-se
tions for the elasti
 pp-s
attering appear as well. Inaddition, it imposes several restri
tions on the parameters and allows oneto determine those values of √s, for whi
h the extrema would appear ordisappear. II. Dipole model with one exponentAn ansatz for the dipole pomeron amplitude has a geometri
al form [2,3℄
u(s, t) = isg0

(
c1R

2
1 exp(R2

1t) + c2R
2
2 exp(R2

2t)
)
,where radii R1,2 depend on the energy; g0, c1 and c2 are 
onstants. Makingknown transformations of this amplitude, performing some substitutionsand 
hoosing de�nitely the 
onstants c1, c2 [2℄, one obtains [3℄

T (s, t) = A

(
−i s
s0

)α(t) {[
1 +

1

b
ln

(
−i s
s0

)]
eb[α(t)−1] − γ ln

(
−i s
s0

)}
,(1)where A, b, γ are the 
onstants or parameters. s0 
an be 
hosen as a di-mensionality parameter: s0 = 1 GeV2. The pomeron traje
tory was 
hosenin a linear form:

α(t) = 1 + α′t. (2)In this model, simple formulae were obtained [2℄ for the positions of theminima and maxima as well as for their behavior.III. Dipole model with two exponentsThe amplitude with two exponents for pp (p̄p̄)-s
attering is also 
hosen ina simple form:
P (s, t) = isg0

[
eat + cebt ln

(
−i s
s0

)](
−i s
s0

)α(t)−1

, (3)91



Figure 1: Di�erential 
ross-se
tions of elasti
 pp-s
attering.where g0, a, b, c are the 
onstants and s0 = 1 GeV2.Here the amplitude (3) is normalized in su
h a way that the di�erentialand total 
ross-se
tions 
ould be 
al
ulated by the following formulae:
dσel

dt
=

π

s2
|P (s, t)|2, (4)

σtot =
4π

s
ImP (s, t = 0). (5)For the elasti
 di�erential 
ross-se
tion we obtain an expression:

dσel

dt
=
πg2

s2

[(
eat + cebt ln

s

s0

)2

+
(πc

2

)2
e2bt

](
s

s0

)2α(t)

, (6)92



where substitution g = g0s0 was made. The total 
ross-se
tion is given bythe following formula:
σtot = −4πg

s0

(
1 + c ln

s

s0

)
. (7)IV. Extrema in di�erential 
ross-se
tionsHere we also 
hoose a linear pomeron traje
tory (2). Let us �nd the extremaof the di�erential 
ross-se
tion (6) on t. The extremal points should beobtained from the following equation:

(a+α′L)e2at + cL(a+ b+2α′L)e(a+b)t +

[
c2(b+ α′L)

(
L2 +

π2

4

)]
e2bt = 0,(8)where L = ln(s/s0). Multiplying this equation by e−2bt and introdu
ing anew variable

x = e(a−b)t, (9)we obtain
(a+ α′L)x2 + cL(a+ b+ 2α′L)x+ c2(b+ α′L)

(
L2 +

π2

4

)
= 0. (10)The solutions are

x± = − c

2(a+α′L)

[
L(a+b+2α′L) ±

√
L2(a−b)2−π2(a+α′L)(b+α′L)

]
.(11)Let us analyze formula (11). First note that for the pomeron traje
toryslope we 
hose here α′ = 0.25 GeV−2 and, from experiment, c > 0. Withthis α′ a

epted in the most of papers a large number of experimental datawere des
ribed not only for pp- and pp̄-s
attering but also for other high-energy pro
esses. We noti
e that our amplitude re�e
ts the situation whenthe pomeron gives a main 
ontribution to the physi
al values, whi
h 
hara
-terize the pro
esses. This statement is 
orre
t beginning from the energies√

s ∼ 4 − 5 GeV. Thus, L ≥ 0.One 
an see from expression (9) that the physi
al values of x are posi-tive. On the other hand, to let the minima and the maxima o

ur in the93



di�erential 
ross-se
tion, the determinant of equation (10) must be positive.We require for all L ≥ 0

L2(a− b)2 − π2(a+ α′L)(b+ α′L) > 0. (12)The left-hand part of inequality (12) 
ould be 
onsidered a positively de�nedfun
tion of L:
f(L) = [(a− b)2 − (πα′)2]L2 − π2α′(a+ b)L− π2ab > 0. (13)It is obvious that

(a− b)2 − (πα′)2 > 0. (14)Inequality (13) must be valid for L = 0 as well. Thus,
−π2ab > 0. (15)Not restri
ting the generality, we 
an 
hoose a > 0 and b < 0. Then itfollows from (14) that

a+ b > 0, a > |b|. (16)The fun
tion f(L) has a minimum at
Lmin =

π2α′(a+ b)

2[(a− b)2 − (πα′)2]
, (17)i.e., in fa
t, Lmin > 0. It is obvious that the minimal value is

f(Lmin) = −π2ab
π2α′2(a+ b)2

2[(a− b)2 − (πα′)2]
> 0. (18)This inequality may be represented in a following form

a|b| − π2α′2(a− |b|)2
4[(a + |b|)2 − (πα′)2]

> 0. (19)Hen
e, it follows
(a+ |b|)2(4a|b| − π2α′2) > 0, (20)i.e.

4a|b| > (πα′)2, (21)94



or
a|b| > (πα′/2)2 = 0.15. (22)In the physi
al region, t ≤ 0 and 0 < x ≤ 1. From formula (11) we obtainfor L = 0

x0 = − c

2a

(
±
√
π2a|b|

) (23)i.e. the physi
al solution is obtained by 
hoosing the minus sign. Thus,
πc

2a

√
a|b| ≤ 1 (24)and

|b| ≤ 4a

(πc)2
. (25)So, the 
onstant b satis�es the following inequalities

(
πα′

2
√
a

)2

< |b| ≤ 4a

(πc)2
. (26)From this expression the lower limit for the 
onstant a results:

a >
π2α′|c|

4
. (27)It is seen from (22) and (11) that for some L = L1 the value of x− be
omeszero and for L > L1 the solution is x− < 0. The equation for L1 has a form

(4L2
1 + π2)(a+ α′L1)(b+ α′L1) = 0, (28)and from here we obtain

L1 =
|b|
α′
. (29)Thus, for L ≥ L1 the extrema vanish. This fa
t 
on�rms the data for

p̄p-s
attering obtained up to √
s = 546 GeV.The author would like to thank László Jenkovszky for helpful dis
ussions.95
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ACTA PHYSICA DEBRECINA XLII, 97 (2008)THE FRENET APPARATUS OF NULL CURVE AND THENULL HELIX IN RM+2
1A. Alt�nHa
ettepe University, Beytepe Ankara TurkeyAbstra
tIn this work we 
al
ulated the Frenet apparatus of a null
urve C in Rm+2

1 in terms of the Frenet apparatus of the 
urve
C∗ whi
h is the orthogonal proje
tion of C on Rm+1. We alsogive the theorems whi
h provides some information about a nullhelix. If C is a null helix then it must be 
ontained in a fourdimensional subspa
e in Rm+2

1 .I. PreliminariesThe smooth 
urve C = α(I) in a semi-Riemannian manifold (Mm+2, g) issaid to be a null 
urve if the velo
ity ve
tor to C at any point is a nullve
tor.Let TC be the tangent bundle of C and TC⊥ = ∪t∈ITα(t)C
⊥, where

Tα(t)C
⊥ = {Vα(t) ∈ Tα(t)M : g(Vα(t), α

′(t)) = 0}.At ea
h point α(t), we 
hoose a 
omplementary ve
tor spa
e to Tα(t)Cin Tα(t)C
⊥. Denote by S(Tα(t)C

⊥), this 
hosen subspa
e. Hen
e, we get ave
tor bundle S(TC⊥) on α. Sin
e
TC⊥ = TC⊥S(TC⊥),

S(TC⊥) is a ve
tor bundle of rank m. The non-degenerate ve
tor bundle
S(TC⊥) is 
alled a s
reen ve
tor bundle of C. Therefore we have

TM |C= S(TC⊥)⊥S(TC⊥)⊥ (1)



where S(TC⊥)⊥ is a 
omplementary orthogonal ve
tor bundle to S(TC⊥)in TM |C .Theorem 1.1. Let C be a null 
urve of a proper semi-Riemannianmanifold (M,g) and S(TC⊥) be a s
reen ve
tor bundle of C. Then thereexists a unique ve
tor bundle ntr(C) over C of rank 1, su
h that on ea
h
oordinate neighbourhood U ⊂ C there is a unique N ∈ Γ(ntr(C) |U )satisfying
g(α′(t), N) = 1, g(N,N) = 0, g(N,X) = 0, ∀X ∈ Γ(S(TC⊥) |U . (2)Consider

tr(C) = ntr(C)⊥S(TC⊥),from (1), (2) then we have the following sum
TM |C= TC⊕tr(C) = (TC⊕ntr(C))⊥S(TC⊥). (3)The ve
tor �eld N , whi
h was 
onstru
ted in this theorem, is said to be thenull transversal ve
tor �eld of C with respe
t to α′ [3.p.53℄. A null 
urve Cin Rm+2

1 is given lo
ally by the equation of the following form
α(s) = (s,

∫ s

0
α1, ...,

∫ s

0
αm+1), (4)where, α1 = cosb1(s)ds + c1, αa = cosba(s)
∏a−1

k=1 sinbk(s)ds + ca, a ∈
{2, ...,m}, αm+1 =

∏m
k=1 sinbk(s)ds+cm+1, ck ∈ R, bk are smooth fun
tionsfor any k ∈ {1, ...,m}, and s is the ar
-length of the orthogonal proje
tion

C∗ = α∗(I) of C on Rm+1 give by, [3,p.73℄,
α∗(t) = {α∗

1(t), α
∗
2(t), ..., α

∗
m+1(t)}.In this paper, we mean by αl's, (1 ≤ l ≤ r) the derivatives of the 
urve α.Let α∗ be a regular 
urve in Rm+1 and ψ = {(α∗)′(t), (α∗)′′(t), ..., α∗r(t)}be a maximal linearly independent set. The orthonormal system {V1(t),

V2(t), . . ., Vr(t)} 
an be obtained from ψ. This is 
alled a Frenet frame atthe point α∗(t), [4℄.Defnition 1.2. Let α∗ be a regular 
urve in Rm+1 and {V1(t), V2(t),
. . ., Vr(t)} be the Frenet frame at the point α∗(t).98



The fun
tions ki : I −→ R de�ned by
ki(t) = g(V ′

i (t), Vi+1(t)), 1 ≤ i ≤ r − 1 (5)are 
alled 
urvature fun
tions on α∗. Moreover, the real number ki(t) is
alled the i− th 
urvature on α∗ at the point α∗(t).Theorem 1.3. Let α∗ be a unit speed 
urve in Rm+1 and the set
{V1(t), V2(t), ..., Vr(t)} be the Frenet frame at the point α∗(t). Then, thefollowings hold, [7,p.194℄,

V ′
1(t) = k1(t)V2(t), (6)
V ′

i (t) = −ki−1(t)Vi−1(t) + ki(t)Vi+1(t), 1 < i < r, (7)
V ′

r (t) = −kr−1(t)Vr−1(t). (8)2. HelixTheorem 2.1. Let α and α∗ be the 
urves as in equation (4) and
{V1, V2, ..., Vr}, {k1, k2, ..., kr−1} be Frenet �elds and 
urvature fun
tions of
urve α∗ respe
tively. Then, α is a null 
urve in Rr+1

1 . More over if we
hoose S(TC⊥) spanned by {W2, ...,Wr}, then we have the null transversalve
tor �eld N = 1
2(−1, V1), and the Frenet equations are

α′′ = k1W2

N ′ =
1

2
k1W2

(W2)
′ = −1

2
k1α

′ − k1N + k2W3

(W3)′ = −k2W2 + k3W4

(W4)
′ = −k3W3 + k4W5

...............................

(Wr−1)
′ = −kr−2Wr−2 + kr−1Wr

(Wr)
′ = −kr−1Wr−1, (9)where

Wj = (0, Vj) j ∈ {2, ..., r} (10)99



and the Frenet frame is F = {α′, N,W2, ...,Wr} on Rr+1
1 along α.Proof. From (4) we have

α′ = (1, (α∗)′), αj = (0, (α∗)j), j ≥ 2.Therefore {α′, α′′, ..., αr} , r ≤ m+ 1 is the maximal linearly independentset. Sin
e α∗ has at most (r-1) non zero 
urvatures, α∗ is 
ontained in Rr.Therefore α is also 
ontained in Rr
1.We 
hoose S(TC⊥) = span{W2, ...,Wr} and a 
omplementary ve
torbundle H to TC in S(TC⊥),

Y = (0, (α∗)′) ∈ Γ(H |U ) and g(α′, Y ) 6≡ 0 on U . We 
al
ulated the nulltransversal ve
tor �eld and found that
N =

1

g(α′, Y )
{Y − g(Y, Y )

2g(α′, Y )
α′} =

1

2
(−1, (α∗)′).Sin
e (α∗)′ = V1, we have

α′ = (1, V1), N =
1

2
(−1, V1). (11)We di�erentiate (10), (11) and by using (6), (7), (8) we obtain (9).By the ideas in [5, p.73] and [6, p.160] , a helix is de�ned as a 
urve whi
hhas a 
onstant s
alar produ
t of its tangent ve
tor �eld and a 
onstantve
tor �eld.We now give the de�nition of a null helix in semi-Eu
lidean spa
e Rm+2

1in a similar way to [2℄, as follows.De�nition 2.2. Let α be a null 
urve in Rm+2
1 and X be a non zero
onstant ve
tor �eld. If

g(α′(t),X) = 
onstant 6≡ 0, for all t ∈ I,then, α is said to be a null helix in Rm+2
1 and span {X} is said to be thein
lination axes of α,Example 2.3.100



α : R −→ R3
1 be the 
urve difened by
α(t) = (

4

3
t3 + t, 2t2,

4

3
t3 − t), X = (1, 0, 1)Example 2.4. Let a, σ, ρ, ω, d be non-zero 
onstants, b be 
onstant andlet α : R −→ R5

1 be the 
urve difened by
α(t) = (at+ b,

1

ρ
σcosρt,

1

ρ
σsinρt,

1

ω
dcosωt,

1

ω
dcosωt), X = (1, 0, 0, 0, 0)where a2 = σ2 + d2.De�nition 2.5. Suppose that k1, k2, ..., kn−1 are 
urvature fun
tions ofa 
urve α. A fun
tion Hi : I −→ R de�ned by

Hi(t) =

{
k1(t)
k2(t) , if i = 1
1

ki+1(t)
{H ′

i−1(t) + ki(t)Hi−2(t)}, if 2 ≤ i ≤ n− 2
(12)is 
alled the i− th harmoni
 
urvature fun
tion of α.Lemma 2.6. Let α be a null helix in Rm+2

1 , span{X} be the in
linationaxes, {α′, N,W2, ...,Wr+2} be the Frenet frame �elds of α and let Π be theorthogonal proje
tion of Rm+2
1 onto the spa
e span {α′, N,W2, ...,Wr+2} .If r < m, then span{Π(X)} is the in
lination axes in span{α′, N , W2, . . .,

Wr+2}.Proof. We 
an 
hoose {α′, N,W2, ...,Wr+2, w1, ..., wm−(r+2)

} as an qua-si-orthonormal basis of Rm+2
1 . In this 
ase

X = x0α
′ + x1N +

r+2∑

i=2

xiWi +

m−(r+2)∑

j=1

bjwj ,

Π(X) = x0α
′ + x1N +

r+2∑

i=2

xiWi.Sin
e g(
∑m−(r+2)

j=1 bjwj , α
′) = 0 and g(X,α′) = 
onstant 6≡ 0, we have

g(x0α
′ + x1N +

r+2∑

i=2

xiWi, α
′) = 
onstant 6≡ 0 101



Sin
e span{X} is in
lination axes, then Π(X) is also non zero and 
onstant.Theorem 2.7. Let α be a 
urve in Rm+2
1 with the Frenet frame �eld

{α′, N,W2, ...,Wr} and with harmoni
 
urvatures H1,H2, ...,Hr−2, r ≤ m.Then, α is a null helix in Rm+2
1 if and only if Hi 's are 
onstant and x1 6≡ 0.Theorem 2.8. There is a relation between 
urvatures and harmoni

urvatures of a 
urve in Rm+2

1 as follows.
kr =

(
∑r−2

i=1 H
2
i )′

2Hr−1Hr−2
, 3 ≤ r ≤ m− 1 (13)Consequently, 
ombining (12), (13) and theorem 2.7 we 
an give our maintheorem.Theorem 2.9. The 
urve α is a null helix in Rm+2

1 if and only if and
kj = 0 for j ≥ 3.As a 
onsequen
e of this theorem we obtain the following.Corollary 2.10. if α is null helix then α is 
ontained in a four dimen-sional subspa
es in Rm+2

1 . Referen
es[1℄ A. Altin, Harmoni
 
urvatures of null 
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ACTA PHYSICA DEBRECINA XLII, 104 (2008)ON ISOMETRIC IMMERSIONS OF N-DIMENSIONALLOBACHEVSKY SPACE INTO (2N-1)-DIMENSIONALEUCLIDEAN SPACEY. AminovB.I. Verkin Institute for Low TemperaturePhysi
s and Engineering of NAS of Ukraine, KharkivAbstra
tIn this work some theorems about isometri
 immersions ofthe Loba
hevsky spa
e into Eu
lidean spa
e are presented.I. Introdu
tionThe study of isometri
 immersions of n-dimensional Loba
hevsky spa
e Lninto Eu
lidean spa
e E2n−1 from the lo
al and global points of view is
onsidered in the author's papers [1℄ - [10℄ . In this dire
tion for n > 2there exist also the works by E.Cartan, A.Liber, J.D.Moore, K.Tenenblat,C.-L.Terng, F.Xavier and others.Let Fn be a regular submanifold in E2n−1 isometri
 to some simple
onne
ted domain of the Loba
hevsky spa
e Ln with a 
urvature equal to-1. In terms of 
urvature 
oordinates the metri
 form of Fn 
an be writtenin the form
ds2 =

n∑

i=1

sin2 σi(du
i)2,

n∑

i=1

sin2 σi = 1. (1)The fun
tions σi satisfy some system of nonlinear di�erential equations.



For 
onvenien
e we shall use the following notation:
Hi = sinσi, βij =

1

Hi

∂Hj

∂ui
, i 6= j.For a regular immersion Hi > 0. Then the following system of di�erentialequations des
ribes the isometri
 immersions of the Loba
hevsky spa
e Lninto E2n−1

∂Hj

∂ui
= βijHi,

∂βij

∂uj
+
∂βji

∂ui
+
∑

q

βiqβjq = 0,

∂Hi

∂ui
= −

∑

q

βiqHq,
∂βij

∂ui
+
∂βji

∂uj
+
∑

q

βqiβqj = HiHj ,

∂βij

∂uk
= βikβkj , where i 6= j 6= k 6= i.This system is 
ompletely integrable and is a generalization of well-known"sin-Gordon" equation.It is natural to 
all it the system "Loba
hevsky-Eu
lid" or brie�y "LE-system". The solution of this system depends on n(n− 1) analyti
al fun
-tions of one variable. II. Se
tionOn the Grassmann image of an immersionLet Nk be some k-dimensional subspa
e in En+k through the �xed point

O. Let e1, ..., en+k be a �xed orthonormal frame in En+k. We take in Nksome orthonormal frame, whi
h 
onsists of unit ve
tors ξ1, ..., ξk and let ξj
ibe the 
oordinates of ξi with respe
t to e1, ..., en+k. We 
all the followingquantities the Plü
ker 
oordinates of Nk

pi1...ik =

∣∣∣∣∣∣

ξi1
1 ... ξik

1

... ... ...

ξi1
k ... ξik

k

∣∣∣∣∣∣
. 105



Plü
ker 
oordinates pi1...ik are 
omponents of the simple polyve
tor p =
[ξ1, ..., ξk] generated by the ve
tors ξ1, ..., ξk. Well ordered set of these 
om-ponents with 
ondition i1 < i2... < ik gives us a point P in the Eu
lideanspa
e Em, where m = Ck

n+k. Sin
e we 
onsider the Grassmann manifold
Gk,n+k as some submanifold of Em we 
an introdu
e to Gk,n+k a metri

dσ2, whi
h is indu
ed by ambient spa
e Em

dσ2 =
∑

i1,...<ik

(dpi1...ik)2.Let Fn be a regular submanifold in the Eu
lidean spa
e En+k with the posi-tion ve
tor r = r(u1, ..., un) and 
urvilinear 
oordinates u1, ..., un.Grassmannmap ψ : Fn → Gn−1,2n−1 
orrelates the (n-1)-dimensional spa
e N passingthrough some �xed point O ∈ E2n−1 with every point x ∈ Fn, the spa
e Nbeing parallel to normal spa
e Nx of Fn at the point x (i.e. it 
orrespondsto every point x some point of Grassmann manifold Gn−1,2n−1). The imageof this map ψ(Fn) we denote Γn. The Grassmann mapping ψ transfers 
o-ordinates from Fn onto the image Γn. So we 
an write the position ve
torof a point of Γ as a ve
tor-fun
tion
p = p(u1, ..., un).By using of the Weingarten de
omposition we 
an obtain for the metri
 dl2of the Grassmann image Γn the following expression

dl2 = dp2 =

k∑

α=1

Lα
ilL

α
jsg

lsduiduj ,where Lα
il are the 
oe�
ients of the se
ond fundamental form of Fn withrespe
t to its normal ve
tor ξα. If Fn is a regular immersion of some do-main of the Loba
hevsky spa
e Ln into E2n−1 and u1, ..., un are 
urvature
oordinates, so in these 
oordinates the metri
 of Γn is written as follows[2℄

dl2 =

n∑

i=1

cos2 σi(du
i)2,

2∑

i=1

cos2 σi = n− 1. (2)From here we obtain106



The sum of the metri
 of a Loba
hevsky spa
e and its Grassmann imageis the �at metri

ds2 + dl2 = (du1)2 + ...+ (dun)2.From the expression of dl2 it follows also that Γn is a regular n-dimensionalsubmanifold. The map for n > 2 in
reases the volume of any domain of Fnand the length of any asymptoti
 line.It is well known that does not exist lo
al isometri
 immersions of an-dimensional Riemannian spa
e with negative 
urvature into E2n−2. Mul-tidimensional analogy of the pseudosphere is an example of isometri
 im-mersion of domain of the Loba
hevsky spa
e Ln into E2n−1.Remember, that for n = 2 it has pla
e the Hilbert theorem about nonex-isten
e isometri
 immersion of 
omplete Loba
hevsky plane into E3. Multi-dimensional analogy of this theorem is open question. We 
an give answeronly under some additional 
onditions.The properties of the Grassmann image imply the following resultTheorem 1. If the Grassmann image Γn lies on a 
losed n-dimensionalmanifold and if the Grassmann map is �nite-to-one, then the immersion ofthe full spa
e Ln in E2n−1 has singularities.It is interesting to investigate di�erent 
lasses of immersions. One ofsu
h 
lasses for n = 3 arises on 
ondition that the Garssmann image ishyperplanar, i.e. Γ3 ⊂ E9.(In the general 
ase Γ3 ⊂ E10.) In this 
asethe Plü
ker 
oordinates of points of the Grassmann image satisfy the linearequation ∑

i<j

aijp
ij + α = 0,where aij and α are 
onstant numbers.The existen
e of lo
al isometri
 immersions with the hyperplanar Grass-mann image is proved. In this 
ase the author found the 
onne
tion of thetheory of isometri
 immersion with the theory of rigid body rotation with a�xed point in the 
entral �eld of gravity and the Newton Law of gravity [3℄.107



We show that the set of equations for isometri
 immersion of L3 into E5 inthis 
ase has as subset the Kir
hho� equations
dH

dt
= [FH],

dFi

dt
= Ci(FjFk − ǫHjHk), i, j, k 6=where H = {Hi}, F = {Fi} are 3-dimensional ve
tors, Ci and ǫ are
onstant,[ ] is the ve
tor produ
t in E3. We obtain some number of the�rst integrals. From existen
e of these integrals it followsEvery solution H of the system for isometri
 immersions of L3 into E5with hyperp�at Grassmann image in general 
ase is de�nite and analyti
alover all parameter spa
e u1, u2, u3.This statement does not guarantee that a 
orresponding immersion of
omplete spa
e L3 into E5 is regular be
ause there the points of Hi = 0and Hi < 0 may o

ur.In some sub
ases the theorems about nonimmersion of full Loba
hevskyspa
e are proved.The following question arises in a natural way: 
an the metri
 of theGrassmann image have a 
onstant 
urvature ? The answer to this questionfor n = 3 is given in [6℄.Theorem 2. There is no lo
al C3 isometri
 immersion of L3 into E5with 
onstant 
urvature of the metri
 of the Grassmann image.III. Se
tionOn a family of submanifolds with a 
onstant negative 
urvatureIn [10℄ we 
onsider a (n − 1)- parametri
 family of submanifolds Fn in

E2n−1 with a 
onstant negative 
urvature K0(F
n) in a ball D of the Eu-
lidean spa
e E2n−1. We suppose that this family is in
luded in some (2n-1)-orthogonal 
oordinate system u1, ..., u2n−1 as a family of 
oordinate sub-manifolds un+1 = const, ..., u2n−1 = const. The author 
alls this system theBian
hi system of 
oordinates, if the �rst n 
oe�
ients H2

i of the metri
108



form of the ambient spa
e satisfy the following 
ondition
n∑

i=1

H2
i = 1. (3)Bian
hi shows for n = 2 that the 
ondition (3) satis�ed automati
ally.The author has proved for n = 3 that for proving the next theorem it willsu�
e to demand the 
ondition (3) only on two 
oordinate 
urves u4, u5going through the 
enter of the ball D. Besides, remark that on ea
h sub-manifold Fn one 
an introdu
e the 
urvature 
oordinates, for whi
h the
ondition (3) is true. In the paper [10℄ proved isTheorem 3. Assume that a ball of radius ρ in the Eu
lidean spa
e

E2n−1 
arries a regular Bian
hi system of 
oordinates su
h that K0(F
n) ≤

−1. Then
ρ ≤ π

4
.There exists an example of a regular Bian
hi system in a ball D ⊂ E3with radius ρ = 1

2 .As Fn is the submanifold with the �at normal 
onne
tion, then on Fnthere exists a �eld ξ of normal unit ve
tors parallel translated in the normalbundle. With the help of this �eld ξ we 
onstru
t a map ϕ : Fn → S2n−2 ofthe submanifold Fn into the unit sphere S2n−2. We 
all the map ϕ spheri
aland denote its image T (ξ). The metri
 of T (ξ) has the following form:
(dξ)2 =

n∑

i=1

cos2 σi cos
2 ϕi(du

i)2, (4)where ϕi is an angle between ξ and i-th prin
ipal ve
tor of normal 
urvature
ki, i = 1, ..., n. In the general 
ase the spheri
al image 
annot be regularand, moreover, it 
an degenerate in a submanifold of lower dimension than
n. We found a 
urvature tensor of the spheri
al image and proved a saddle
hara
ter of spheri
al image, whi
h 
onsidered as a submanifold in S2n−2.109



Theorem 4. Under a spheri
al mapping the 
urvature lines are trans-lated on the 
urvature lines of the spheri
al image, the asymptoti
 lines aretranslated on the asymptoti
 lines of submanifold T (ξ) ⊂ S2n−2. The lengthof asymptoti
 lines is preserved under this mapping.IV. Se
tionSome new results with 
odimension > n-1.In 1960 E.R Rozendorn in the work [11℄ 
onstru
ts isometri
 immersion of
omplete Loba
hevsky plane L2 into E5. His method is modi�
ation of themethod of D.Blanusa, who gave the imbedding of L2 into E6(1954).I investigate extrinsi
-geometri
al properties of the Rozendorn surfa
eand proved the following theoremTheorem 5. The modul of the mean 
urvature ve
tor H on the Rozen-dorn surfa
e L2 → E5 is bounded from above
|H| ≤ const.In the work [12℄ D.V.Bolotov proved that does not exist a regular isomet-ri
 immersion of Ln into Eu
lidean spa
e En+m with �at normal 
onne
tionand with |H| ≤ const. Referen
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ACTA PHYSICA DEBRECINA XLII, 112 (2008)NON-EUCLIDEAN GEOMETRY IN OBSERVER'SMATHEMATICSD. Khots1, B. Khots2
1 3710 S. 202nd Avenue Omaha NE, 68130, USA
2 4725 121st Street Des Moines, IA 50323, USAAbstra
tThis work 
onsiders Geometri
al and Physi
al aspe
ts in asetting of arithmeti
 provided by Observer's Mathemati
s (seewww.mathrelativity.
om). We prove that Eu
lidean Geome-try works in su�
iently small neighborhood of a given line, butwhen we enlarge the neighborhood, non-Eu
lidean Geometrytakes over. We given an analog of the Lorentz Transform. Weprove that the physi
al speed is a random variable, whi
h 
an-not ex
eed some 
onstant, and this 
onstant does not dependon an inertial 
oordinate system. Certain results and 
ommu-ni
ations pertaining to these theorems are also provided.AMS Subje
t Classi�
ation: 51P05, 81T99Key Words and Phrases: Observer, Geometry, arithmeti
, derivative,Lorentz I. Introdu
tionThe following dis
ussion is based on the work introdu
ed in [1℄. Furtherinformation 
an also be found in [2℄ and [3℄. We 
onsider a �nite well-ordered system of observers, where ea
h observer sees the real numbers asthe set of all in�nite de
imal fra
tions. The observers are ordered by theirlevel of �depth�, i.e. ea
h observer has a depth number (hen
e, we have the



regular integer ordering), su
h that an observer with depth k sees that anobserver with depth n < k sees and deals (to be de�ned below) not withan in�nite set of in�nite de
imal fra
tions, but, a
tually, with a �nite set of�nite de
imal fra
tions. We 
all this set Wn, i.e. it is the set of all de
imalfra
tions, su
h that there are at most than n digits in the integer part and ndigits in the de
imal part of the fra
tion. Visually, an element in Wn lookslike _ ... _
︸ ︷︷ ︸

n

. _ ... _
︸ ︷︷ ︸

n

. Moreover, an observer with a given depth isunaware (or 
an only assume the existen
e) of observers with larger depthvalues and for his purposes, he deals with �in�nity�. These observers are
alled naive, with the observer with the lowest depth number � the mostnaive. However, if there is an observer with a higher depth number, hesees that a given observer a
tually deals with a �nite set of �nite de
imalfra
tions, and so on. Therefore, if we �x an observer, then this observersees the sets Wn1
,. . . , Wnk

with n1 < ... < nk indi
ating the depth level,and realizes that the 
orresponding observers see and deal with in�nity.When we talk about observers, we shall always have some �xed observer(
alled `us') who oversees all others and realizes that they are naive. The�Wn-observer� is the abbreviation for somebody who deals with Wn whilethinking that he deals with in�nity.The following se
tions des
ribe appli
ation of the idea of relativity inmathemati
s to various mathemati
al �elds.II. Arithmeti
We begin by de�ning setsWn whi
h 
onsist of all �nite de
imal fra
tionssu
h that there are at most n digits in the integer part and at most n digitsin the de
imal part. That is, the set Wn 
ontains all elements of the form
a = a0.a1...an where the integer part 
an be written as a0 = bn−1...b0, where
bn−1, ..., b0, a1, ...., an ∈ {0, 1, ..., 9}. If n < m, then Wn naturally embedsinto Wm by pla
ing 0's in the n+ 1st through mth de
imal pla
es. We 
allthe embedding ϕn,m : Wn → Wm. Here are some examples: let 2.34 ∈ W2and then ϕ2,4 (2.34) = 2.3400 ∈ W4. Similarly, Wm proje
ts onto Wn by
utting o� the super�uous digits on the right of the de
imal point. Let
ϕm,n : Wm → Wn be the proje
tion, then, for example, if 45.4301 ∈ W4,113



then ϕ4,2 (45.4301) = 45.43 ∈W2. If the integer part of a fra
tion 
ontainsmore than n digits, then ϕm,n is not de�ned.Now, given c = c0.c1...cn, d = d0.d1...dn ∈ Wn we endow Wn with thefollowing arithmeti
 (+n,−n,×n,÷n):De�nition 1. Addition and subtra
tion
c±n d =

{
c± d, if c± d ∈Wnnot de�ned, if c± d /∈Wnand we write ((... (c1 +n c2) ...) +n cN ) =

N∑
i=1

nci for c1, ..., cN i� the 
ontentsof any parenthesis are in Wn.De�nition 2. Multipli
ation
c×n d =

n∑
k=0

n
n−k∑
m=0

n0. 0...0︸︷︷︸
k−1

ck · 0. 0...0︸︷︷︸
m−1

dmwhere c, d ≥ 0, c0 · d0 ∈ Wn, 0. 0...0︸︷︷︸
k−1

ck · 0. 0...0︸︷︷︸
m−1

dm is the standard produ
t,and k = m = 0 means that 0. 0...0︸︷︷︸
k−1

ck = c0 and 0. 0...0︸︷︷︸
m−1

dm = d0. If either
c < 0 or d < 0, then we 
ompute |c| ×n |d| and de�ne c×n d = ± |c| ×n |d|,where the sign ± is de�ned as usual. Note, if the 
ontent of at least oneparentheses (in previous formula) is not in Wn, then c×n d is not de�ned.De�nition 3. Division

c÷n d =

{
r, if ∃! r ∈Wn r ×n d = cnot de�ned, if no su
h r exists or it is not uniqueLet n = 2, so we are in W2. Here are some examples of elementsof W2: 3.14,−99, 0.1 ∈ W2 and 0.115, 123.9,−100000 /∈ W2. Now, theexamples of arithmeti
: 2.08 +2 11.9 = 13.98; (−2.08) +2 11.9 = 9.82;

80 +2 24 = not de�ned; 21.36 −2 0.87 = 20.49; 1.36 −2 16.95 = −15.59;
1.36−2 (−99.95) = not de�ned; 11×2 8 = 88; (−5)×2 19 = −95; 11×2 12 =not de�ned; 3.41 ×2 2.64 = 8.98; 3.41 ×2 (−2.64) = −8.98; 3.41 ×2 42.64 =not de�ned; 99.41 ×2 1.64 = not de�ned; 0.85 ×2 0.02 = 0; 80 ÷2 4 = 20;
1 ÷n 0.5 = not de�ned (sin
e we get 10 di�erent r's); 1 ÷n 3 = not de�ned(sin
e no r exists).114



III. DerivativesFrom the point of view of Wn-observer (we will 
all su
h observers"naive", sin
e they "think" that they "live" in W and deal with W ) areal fun
tion y of a real variable x, y = y(x), is 
alled di�erentiable at
x = x0 (see [4℄) if there is a derivative

y′(x0) = lim
x→x0,x 6=x0

y(x) − y(x0)

x− x0What does the above statement mean from point of view ofWm-observerwith m > n? It means that
|(y(x) −n y(x0)) −n (y′(x0) ×n (x−n x0))| ≤ 0. 0 . . . 01︸ ︷︷ ︸

nwhenever
|y(x) −n y(x0)| = 0. 0 . . . 0yl︸ ︷︷ ︸

l

yl+1 . . . ynand
|(x−n x0)| = 0. 0 . . . 0xk︸ ︷︷ ︸

k

xk+1 . . . xnfor 1 ≤ k, l ≤ n, and xk - non-zero digit.We now state the main theorems.Theorem 1. From the point of view of a Wm-observer a derivative 
al
u-lated by a Wn-observer (m > n) is not de�ned uniquely.Proof. Put y′(x0) = ±a0.a1 . . . apap+1 . . . an with a0.a1 . . . apap+1 . . . an

≥ 0 and p ≤ n. Then 0. 0 . . . 0yl︸ ︷︷ ︸
l

yl+1 . . . yn = a0.a1 . . . apap+1 . . . an

×n0. 0 . . . 0xk︸ ︷︷ ︸
k

xk+1. . .xn =a0.a1 . . . apbp+1 . . . bn×n0. 0 . . . 0xk︸ ︷︷ ︸
k

xk+1 . . . xn forany digits bp+1, . . . , bn and p = n − k. Hen
e y′(x0) ∈ V = {±a0.a1 . . . ap

ap+1 . . . an|ap+1, . . . , an ∈ {0, 1, . . . , 9}} and |V | = 10k. QED. 115



Theorem 2. From the point of view of aWm-observer withm > n, |y′(x0)| ≤
C l,k

n , where C l,k
n ∈Wn is a 
onstant de�ned only by n, l, k and not dependenton y(x).Proof. We have ±0. 0 . . . 0yl︸ ︷︷ ︸

l

yl+1 . . . yn = (±a0.a1 . . . an)×n (±0. 0 . . . 0xk︸ ︷︷ ︸
k

xk+1 . . . xn) with xk - non-zero digit and a0.a1 . . . apap+1 . . . an ≥ 0. Now,if l > k then a0 = 0; if l = k then a0 ≤ 9 and if l < k then a0 < 9 × 10k−1.Hen
e
C l,k

n =





1, if l > k
10, if l = k
9 × 10k−1, if l < kQED.Theorem 3. From the point of view of a Wm-observer, when a Wn-observer(with m > n ≥ 3) 
al
ulates the se
ond derivative:

y′′(x0) = lim
x1→x0,x1 6=x0,x2→x0,x2 6=x0,x3→x1,x3 6=x1

y(x3)−y(x1)
(x3−x1)

− y(x2)−y(x0)
x2−x0

x1 − x0we get the following unequality:
(|x2 −n x0| ×n |x3 −n x1|) ×n |x1 −n x0| ≥ 0. 0 . . . 01︸ ︷︷ ︸

nprovided that y′′(x0) 6= 0.Proof. For the Wm-observer existen
e of y′′(x0) means that |((y(x3) −n

y(x1))×n (x2−nx0)−n ((y(x2)−ny(x0))×n (x2−nx0)))−ny
′′(x0)×n((|x2−n

x0| ×n |x3 −n x1|) ×n |x1 −n x0|)| ≤ 0. 0 . . . 01︸ ︷︷ ︸
n

, whenever
|(x2 −n x0)| ≤ 0.

n︷ ︸︸ ︷
0 . . . 0p︸ ︷︷ ︸

k

∗ . . . ∗and
|(x3 −n x1)| ≤ 0.

n︷ ︸︸ ︷
0 . . . 0q︸ ︷︷ ︸

l

∗ . . . ∗116



and
|(x1 −n x0)| ≤ 0.

n︷ ︸︸ ︷
0 . . . 0r︸ ︷︷ ︸

s

∗ . . . ∗where p, q, r are non-zero digits, asterisks are any digits and 3 ≤ k+l+s ≤ n.Then given y′′(x0) 6= 0 we have (|x2 −n x0| ×n |x3 −n x1|) ×n |x1 −n x0| ≥
0. 0 . . . 01︸ ︷︷ ︸

n

. QED. IV. Physi
al InterpretationThe following hypotheses illustrate possible physi
al interpretation ofprevious theorems.Hypotheses 1 Theorem 1 
ould o�er an explanation of why physi
al speed(or a

eleration) is not uniquely de�ned and, from the point of view ofa measurement system (observer), it is possible to 
onsider speed (ora

eleration) as a random variable with distribution dependend on themeasurement system. Let v be the speed with v = v0.v1 . . . vn−k+ξn,k
mwhere ξn,k

m ∈ {0. 0 . . . 0︸ ︷︷ ︸
n−k

vn−k+1 . . . vn} - random variable, m > n, andthe distribution fun
tion is Fn,k
m (x) = P (ξn,k

m < x).Hypotheses 2 Theorem 2 
ould o�er an explanation of why the speed ofany physi
al body 
annot ex
eed some 
onstant, (the speed of light,for example). Independen
e of this 
onstant on expli
it expression ofspa
e-time fun
tion 
ould o�er an explanation of why the speed oflight does not depend on an inertial 
oordinate system.Hypotheses 3 Theorem 3 
ould o�er an explantion of the various un
er-tainty prin
iples, when a produ
t of a �nite number of physi
al vari-ables has to be not less than a 
ertain 
onstant. This 
an be seen notjust from 
onsideration of se
ond derivatives, but of any derivative.Hypotheses 4 Theorems 1, 2, and 3 
ombined may provide an insight intothe 
onne
tion between 
lassi
al and quantum me
hani
s. 117



V. Nadezhda E�e
tIn this se
tion we 
onsider an open square Q 
entered at the originwith sides of length 2 lo
ated on a plane Wn × Wn. We will 
al
ulatethe distan
e D between the origin (0, 0) and any point of Q as follows.
D = ρ((0, 0), (x, y)) =

√
x2 + y2 =

√
x×n x+n y ×n y, where √

a = bmeans b×n b = a, x, y ∈ Q, i.e., |x| < 1, |y| < 1.The �gure below 
ontains an illustration of the fa
t that for some pointson Wn ×Wn the 
on
ept of distan
e from the origin does not exist; whilefor others it does exist. The illustration below is for n = 3 (Q ⊂W3 ×W3).Points with no distan
e to the origin are indi
ated by bla
k, while pointswhere distan
e from the origin exists are indi
ated in white.

This means that the distan
e D does not always exist, i.e., not everysegment on a plane has a length. This phenomenon o

urs for all n. We
all the presen
e of these "bla
k holes" as the Nadezhda E�e
t. This e�e
tgives us new possibilities for dis
overing physi
al pro
esses and developingtheir mathemati
al models.118
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ACTA PHYSICA DEBRECINA XLII, 120 (2008)POLYHEDRAL SPACE FORMS WITH HYPERBOLIC ANDOTHER METRICSE. MolnárBudapest University of Te
hnologyE
onomi
s Institute of Mathemati
s, Department of GeometryAbstra
tIn earlier works of the author, partly joint with I. Prok and J. Szirmai(e.g. [M92℄, [M97℄, [M05℄, [MPSz06℄), the proje
tive sphere PSd(R;Vd+1;
Vd+1; +) has been introdu
ed for presentation of polyhedral d-orbifolds and
d-manifolds, mainly in the homogeneous 3-spa
es

E3; S3; H3; S2×R; H2×R; S̃L2R; Nil; Sol(Thurston geometries). The main steps 
an be indi
ated as follows.1. A proje
tive simplex 
oordinate system has to be introdu
ed for thefundamental polyhedron, where the fa
e pairing generators are ex-pressed by linear mappings upto proje
tive freedom with some freeparameters.2. The de�ning relations for the symmetry groups (by the indu
ed edgeequivalen
e 
lasses) �x some parameters of the generator mappings,by matrix equations, o

asionally of high degree.3. We look for a plane-point polarity (or s
alar produ
t) for the orthog-onality of planes of a 3-dimensional proje
tive metri
 geometry fromthe eight possibilities above. This polarity (i.e. the orthogonality ofplanes) has to be invariant under the generator mappings. These leadto linear matrix equations for the symmetri
 polarity matrix.



4. The signature of polarity (s
alar produ
t, fundamental quadrati
 form),if it is not trivial, with some additional properties, provides the pos-sible Thurston geometry.5. If the signature is (0;+;+;+), then we obtain Eu
lidean 3-tiling withexa
t matri
es for the generators and the s
alar produ
t, possibly withfree parameters. Moreover, by a 
onventional 
oordinate system we
an re
ognize the 
orresponding 
rystallographi
 spa
e group as well.6. Other signatures (e.g. (+;+;+;+) to spheri
al spa
e, (−; +;+;+) tohyperboli
 or Bolyai-Loba
hevskii spa
e) lead to other realizations.Or - if only trivial polarity is possible - then either 
ertain "splittinge�e
ts" o

ur, or the famous Thurston 
onje
ture would not be true(!), 
onsidered still to be open, in general (?).Referen
es[M92℄ Molnár, E. (1992) Polyhedron 
omplexes with simply transitivegroup a
tions and their realizations. A
ta Math. Hungari
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lidean andother homogeneous spa
es, A
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ACTA PHYSICA DEBRECINA XLII, 122 (2008)ON NON-EQUIVALENT FUNCTIONAL BASES OFFIRST-ORDER DIFFERENTIAL INVARIANTS OF THENON-CONJUGATE SUBGROUPS OF THE POINCARÉGROUP P (1, 4)V. M. Fedor
huk1, V. I. Fedor
huk2

1 Pedagogi
al A
ademy, Institute of Mathemati
s, 2 Pod
hor�a»y
h Street, 30-084Kraków, Poland; Pidstryha
h Institute of Applied Problems of Me
hani
s andMathemati
s, National Ukrainian A
ademy of S
ien
es, 3b Naukova Street,79-053 L'viv, Ukraine
2 Pidstryha
h Institute of Applied Problems of Me
hani
s and Mathemati
s,National Ukrainian A
ademy of S
ien
es, 3b Naukova Street, 79-053 L'viv,UkraineAbstra
tThe fun
tional bases of the �rst-order di�erential invariantsof all non-
onjugate subgroups of the Poin
aré group P (1, 4)have been divided into 
lasses of equivalent bases. The numberof all non-equivalent fun
tional bases has been determined. Theappli
ation of the results obtained to the 
onstru
tion of 
lassesof the �rst-order di�erential equations in the spa
e M(1, 3) ×

R(u) invariant under these subgroups is dis
ussed. Amongthose 
lasses, there are some invariant under the following sub-groups of the group P (1, 4): SO(2), SO(3), E(2), E(3),
SO(1, 3), SO(4), E(4), P (1, 3), SO(1, 4), G̃(1, 3), et
.I. Introdu
tionIn many 
ases, mathemati
al models of various pro
esses 
an be de-s
ribed by means of di�erential equations (linear or nonlinear) in the spa
esof di�erent dimensions and di�erent types (Eu
lidean, non-Eu
lidean, et
.).



It is well known (see, for example, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11℄) thatthe majority of di�erential equations, whi
h are useful in theoreti
al andmathemati
al physi
s, me
hani
s, gas dynami
s have non-trivial symmetrygroups. For example, in the spa
e M(1, 3) × R(u), we have the followingequations:1. The Eikonal equation
uµuµ ≡ (u0)

2 − (u1)
2 − (u2)

2 − (u3)
2 = 1,where u = u(x), x = (x0, x1, x2, x3) ∈ M(1, 3), uµ ≡ ∂u

∂xµ
, uµ = gµνuν ,

µ, ν = 0, 1, 2, 3.2. The Euler-Lagrange-Born-Infeld equation
�u (1 − uνu

ν) + uµuνuµν = 0,where u = u(x), x = (x0, x1, x2, x3) ∈M(1, 3), uµ ≡ ∂u

∂xµ
, uµν ≡ ∂2u

∂xµ∂xν
,

uµ = gµνuν , gµν = (1,−1,−1,−1)δµν , µ, ν = 0, 1, 2, 3, � is thed'Alembert operator.3. The homogeneous Monge-Ampère equation
det (uµν) = 0,where u = u(x), x = (x0, x1, x2, x3) ∈M(1, 3), uµν ≡ ∂2u

∂xµ∂xν
,

µ, ν = 0, 1, 2, 3.4. The inhomogeneous Monge-Ampère equation
det (uµν) = λ (1 − uνu

ν)3 , λ 6= 0, 123



where u = u(x), x = (x0, x1, x2, x3) ∈M(1, 3), uµν ≡ ∂2u

∂xµ∂xν
,

uν = gναuα, uα ≡ ∂u

∂xα
, gµν = (1,−1,−1,−1)δµν , µ, ν, α = 0, 1, 2, 3.Here, and in what follows, M(1, 3) is a four-dimensional Minkowskispa
e; R(u) is a real number axis of the depended variable u.These equations are invariant under generalized Poin
aré group P (1, 4)(see, for example, [7, 12, 13℄). The group P (1, 4) is a group of rotationsand translations of the �ve-dimensional Minkowski spa
e M(1, 4). Thisgroup has many appli
ations in theoreti
al and mathemati
al physi
s (see,for example, [9, 14℄). Continuous subgroups of the group P (1, 4) have beenfound in [15, 16, 17℄. One of the nontrivial 
onsequen
es of the des
riptionof the non-
onjugate subalgebras of the Lie algebra of the group P (1, 4) isthat the Lie algebra of the group P (1, 4) 
ontains, as subalgebras, the Liealgebra of the Poin
aré group P (1, 3) and the Lie algebra of the extendedGalilei group G̃(1, 3) [9, 18℄, i.e. it naturally unites the Lie algebras of thesymmetry groups of relativisti
 and non-relativisti
 physi
s. Therefore, the
onstru
tion of the 
lasses of di�erential equations, whi
h are de�ned in thespa
e M(1, 3) × R(u) and invariant under non-
onjugate subgroups of thegroup P (1, 4), is important from di�erent points of view.In many 
ases (see, for example, [3, 5, 19℄), these 
lasses 
an be writtenin the following form:

F (J1, J2, ..., Jt) = 0, (1.1)where F is an arbitrary smooth fun
tion of its arguments, {J1, J2, ..., Jt} isfun
tional basis of di�erential invariants of the 
orresponding subgroup ofthe group P (1, 4).It should be noted that ea
h of these 
lasses is a non-singular di�erentialinvariant manifold of the 
orresponding non-
onjugate subalgebra of the Liealgebra of the group P (1, 4). More details on the manifolds of this type 
anbe found in [3, 5℄.As we see from the formula (1.1), the properties of these 
lasses essen-tially depend on the properties of the 
orresponding fun
tional bases.124



The 
onstru
tion of fun
tional bases of di�erential invariants for non-
onjugate subgroups of di�erent Lie groups has shown that there is no one-to-one 
orresponden
e between the non-
onjugate subgroups of these groupsand the 
orresponding to them fun
tional bases of di�erential invariants. Itmeans that the di�erent non-
onjugate subgroups of Lie groups 
an havethe same (equivalent) fun
tional bases of di�erential invariants.In [20, 21℄ we have presented some results, whi
h referred to the appli-
ation of equivalen
e 
riterion [20, 22℄ in order to 
onstru
t separately allnon-equivalent fun
tional bases of the �rst-order di�erential invariants ofsplitting and non-splitting subgroups of the group P (1, 4).The purpose of the present paper is to give some new results obtainedby means of equivalen
e 
riterion for fun
tional bases of the �rst-order dif-ferential invariants of all non-
onjugate subgroups of the group P (1, 4).II. The Lie algebra of the group P (1, 4) and its representation.The Lie algebra of the group P (1, 4) is given by the 15 basis elements
Mµν = −Mνµ (µ, ν = 0, 1, 2, 3, 4) and P ′

µ (µ = 0, 1, 2, 3, 4), satisfyingthe 
ommutation relations
[
P ′

µ, P
′
ν

]
= 0,

[
M ′

µν , P
′
σ

]
= gµσP

′
ν − gνσP

′
µ,

[
M ′

µν ,M
′
ρσ

]
= gµρM

′
νσ + gνσM

′
µρ − gνρM

′
µσ − gµσM

′
νρ,where g00 = −g11 = −g22 = −g33 = −g44 = 1, gµν = 0, if µ 6= ν. Here,and in what follows, M ′

µν = iMµν .In the following we will use new basis elements
G = M ′

40, L1 = M ′
32, L2 = −M ′

31, L3 = M ′
21,

Pa = M ′
4a −M ′

a0, Ca = M ′
4a +M ′

a0, (a = 1, 2, 3),

X0 =
1

2

(
P ′

0 − P ′
4

)
, Xk = P ′

k (k = 1, 2, 3), X4 =
1

2

(
P ′

0 + P ′
4

)
. 125



All non-
onjugate subalgebras of the Lie algebra of the group P (1, 4) aredivided into splitting and non-splitting ones. More details on the splittingand non-splitting subalgebras of any �nite-dimensional Lie algebra 
an befound in [23℄.Splitting subalgebras Pi,a of the Lie algebra of the group P (1, 4) 
anbe written in the following form:
Pi,a = Fi

◦
+ Nia,where Fi are subalgebras of the Lie algebra of the group O(1, 4), Nia aresubalgebras of the Lie algebra of the translation group T (5) ∈ P (1, 4).Non-splitting subalgebras P̃j,k are subalgebras, for whi
h basis 
an be
hosen in the form:

B̃k = Bk +
∑

i

ckiXi,
∑

j

drjXj ,where cki and drj are �xed real 
onstants (not equal zero simultaneously).
Bk are bases of subalgebras of the Lie algebra of the group O(1, 4), Xi arebases of subalgebras of the Lie algebra of the group T (5).Let us 
onsider the following representation of the Lie algebra of thegroup P (1, 4) :

P ′
0 =

∂

∂x0
, P ′

1 = − ∂

∂x1
, P ′

2 = − ∂

∂x2
, P ′

3 = − ∂

∂x3
,

P ′
4 = − ∂

∂u
, M ′

µν = −
(
xµP

′
ν − xνP

′
µ

)
, x4 ≡ u.It means that the group P (1, 4) a
ts on the spa
e M(1, 3)×R(u). Moredetails about the representations of this type 
an be found in [7, 12, 13℄.
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III. On non-equivalent fun
tional bases of the �rst-orderdi�erential invariants of non-
onjugatesubgroups of the group P (1, 4).In this se
tion we 
onsider the 
onstru
tion of non-equivalent fun
tionalbases of the �rst-order di�erential invariants of non-
onjugate subgroupsof the group P (1, 4), as well as the appli
ation of them in order to 
on-stru
t mathemati
al models (di�erential equations) with nontrivial symme-try groups in the spa
e M(1, 3) ×R(u).Let {J (1)
1 , J

(1)
2 , ..., J

(1)
t } and {J (2)

1 , J
(2)
2 , ..., J

(2)
t } be fun
tional bases ofthe �rst-order di�erential invariants, whi
h 
orrespond to the non-
onjugatesubalgebras L1 and L2 of the Lie algebra of the group P (1, 4).De�nition. We say that the fun
tional bases {J (1)

1 , J
(1)
2 , ..., J

(1)
t } and

{J (2)
1 , J

(2)
2 , ..., J

(2)
t } be equivalent if there exist smooth fun
tions f1, f2, ..., ftand g1, g2, ..., gt su
h that

J
(2)
1 = f1(J

(1)
1 , J

(1)
2 , ..., J

(1)
t ) J

(1)
1 = g1(J

(2)
1 , J

(2)
2 , ..., J

(2)
t )

J
(2)
2 = f2(J

(1)
1 , J

(1)
2 , ..., J

(1)
t ) J

(1)
2 = g2(J

(2)
1 , J

(2)
2 , ..., J

(2)
t )

........................................ and ............................................

J
(2)
t = ft(J

(1)
1 , J

(1)
2 , ..., J

(1)
t ) J

(1)
t = gt(J

(2)
1 , J

(2)
2 , ..., J

(2)
t ).Proposition 1. Two fun
tional bases {J (1)

1 , J
(1)
2 , ..., J

(1)
t } and {J (2)

1 , J
(2)
2 ,

..., J
(2)
t } are equivalent if and only if they satisfy the following 
onditions:

X̃
(1)
1 J

(2)
1 = 0, X̃

(1)
1 J

(2)
2 = 0, ..., X̃

(1)
r1 J

(2)
t = 0

X̃
(2)
1 J

(1)
1 = 0, X̃

(2)
1 J

(1)
2 = 0, ..., X̃

(2)
r2
J

(1)
t = 0

(3.1)where {X̃(1)
1 , X̃

(1)
2 , ..., X̃

(1)
r1

}, {X̃(2)
1 , X̃

(2)
2 , ..., X̃

(2)
r2

} are the �rst-prolongedbases operators of the Lie subalgebra L1 and L2, respe
tively; r1, r2 arethe dimensions of the subalgebras L1 and L2. 127



Proof. The Proof of this Proposition for splitting subalgebras of the Liealgebra of the group P (1, 4) 
an be found in [20℄ (see Lemma). Sin
e theproof of this Proposition for non-
onjugate subalgebras of the Lie algebraof the group P (1, 4) is quite analogi
al to the 
ase of splitting subalgebras,therefore we omit it here. The generalization of this Proposition on the fun
-tional bases of any �nite order di�erential invariants of the non-
onjugatesubgroups of lo
al Lie groups of the point transformations 
an be foundin [22℄.We have used this Proposition as the 
riterion of the equivalen
e forany two fun
tional bases of the �rst-order di�erential invariants of the non-
onjugate subgroups of the group P (1, 4).Proposition 2. There exist 494 non-equivalent fun
tional bases of the �rst-order di�erential invariants for the non-
onjugate subgroups of the group
P (1, 4).Sket
h of proof. The list of all non-
onjugate (the 
onjugation was 
on-sidered under the group P (1, 4) ) subalgebras of the Lie algebra of the group
P (1, 4) 
ontains 555 ones [4℄.As following from the 
al
ulation of the general ranks of matri
es, whi
h
ontain 
oordinates of the one-prolonged basis elements of the subalgebrasof the Lie algebra 
onsidered, and using the theorem on number of invariantsof the Lie group of the point transformations (see, for example, [5, 3℄) wemake sure that the 550 of the non-
onjugate subalgebras of the Lie algebraof the group P (1, 4) have the fun
tional bases of the �rst-order di�erentialinvariants. Thus, there are 550 fun
tional bases of the �rst-order di�erentialinvariants. Among them, there are equivalent ones. Equivalent fun
tionalbases 
an only be among those, whi
h have the same dimensions.Let L1 be a non-
onjugate subalgebra of the Lie algebra of the group
P (1, 4), whi
h has the t-dimensional fun
tional basis of the �rst-order di�er-ential invariants {J (1)

1 , J
(1)
2 , ..., J

(1)
t }. To �nd the bases, whi
h are equivalentto {J (1)

1 , J
(1)
2 , ..., J

(1)
t }, we use the Proposition 1. Let {J (2)

1 , J
(2)
2 , ..., J

(2)
t } bet-dimensional fun
tional basis of the �rst-order di�erential invariants of theother non-
onjugate subalgebra L2. Following the Proposition 1, if thesefun
tional bases satisfy the 
onditions (3.1), then, the 
onsidered bases are128



equivalent. Otherwise, the 
onsidered bases are not equivalent. In the anal-ogous manner, we 
he
k whether other t-dimensional fun
tional bases of the�rst-order di�erential invariants are equivalent to the {J (1)
1 , J

(1)
2 , ..., J

(1)
t } ornot. In this way, we obtain all t-dimensional fun
tional bases, whi
h areequivalent to {J (1)

1 , J
(1)
2 , ..., J

(1)
t }.In the analogous manner, we 
onstru
t 
lasses of the equivalent fun
-tional bases of other dimensions.The dire
t appli
ation of the mentioned above 
riterion give us 494 non-equivalent fun
tional bases of the �rst-order di�erential invariants for thenon-
onjugate subgroups of the group P (1, 4). The Proposition is proved.Taking into a

ount the non-equivalent fun
tional bases of the �rst-order di�erential invariants of the non-
onjugate subgroups of the group

P (1, 4) we 
an 
onstru
t 494 
lasses of the �rst-order di�erential equations,whi
h are de�ned in the spa
e M(1, 3)×R(u) and invariant under the non-
onjugate subgroups of this group. All these 
lasses of equations 
an bewritten in the form (1.1).It is impossible to present all these 
lasses here. Below, only for theLie algebras of some subgroups of the group P (1, 4), often appli
able intheoreti
al and mathemati
al physi
s, we write their basis elements and
orresponding 
lasses of the �rst-order di�erential equations in the spa
e
M(1, 3) ×R(u).1. 〈L3〉(∼= SO(2)),

F
(
x0, x3, (x2

1 + x2
2)

1/2, u, x1u2 − x2u1, u0, u3, u
2
1 + u2

2

)
= 0,

uµ ≡ ∂u

∂xµ
, µ = 0, 1, 2, 3;2. 〈L1, L2, L3〉(∼= SO(3)),

F
(
x0, (x2

1 + x2
2 + x2

3)
1/2, u, u0, x1u1 + x2u2 + x3u3, u

2
1 + u2

2 + u2
3

)
= 0 ;3. 〈L3, X1, X2〉(∼= E(2)),

F
(
x0, x3, u, u0, u3, u

2
1 + u2

2

)
= 0 ; 129



4. 〈L1, L2, L3, X1, X2, X3〉(∼= E(3)),

F
(
x0, u, u0, u

2
1 + u2

2 + u2
3

)
= 0 ;5. 〈L1, L2, L3, P1 − C1, P2 − C2, P3 − C3〉(∼= SO(1, 3)),

F
(
(x2

0 − x2
1 − x2

2 − x2
3)

1/2, u, x0u0 + x1u1 + x2u2 + x3u3,

u2
0 − u2

1 − u2
2 − u2

3

)
= 0 ;6. 〈L1, L2, L3, P1 + C1, P2 + C2, P3 + C3〉(∼= SO(4)),

F

(
x0, (x2

1 + x2
2 + x2

3 + u2)1/2,
x1u1 + x2u2 + x3u3 − u

u0
,

u2
1 + u2

2 + u2
3 + 1

u2
0

)
= 0 ;7. 〈L1, L2, L3, P1+C1, P2+C2, P3+C3, X1, X2, X3, X0−X4〉(∼= E(4)),

〈L1 +
1

2
(P1 + C1) , L2 +

1

2
(P2 + C2) , L3 +

1

2
(P3 + C3) , X1, X2,

X3, X0 −X4〉,

〈L1+
1

2
(P1 + C1) , L2+

1

2
(P2 + C2) , L3+

1

2
(P3 + C3) , L3−

1

2
(P3 + C3) ,

X1, X2, X3, X0 −X4〉,

F

(
x0,

u2
1 + u2

2 + u2
3 + 1

u2
0

)
= 0 ;8. 〈L1, L2, L3, P1−C1, P2−C2, P3−C3, X1,X2, X3, X0+X4〉(∼= P (1, 3)),

F
(
u, u2

0 − u2
1 − u2

2 − u2
3

)
= 0 ;9. 〈G, C1, C2, C3, L1, L2, L3, P1, P2, P3〉(∼= SO(1, 4)),

F

(
(x2

0 − x2
1 − x2

2 − x2
3 − u2)1/2,

(x0u0 + x1u1 + x2u2 + x3u3 − u)2

u2
0 − u2

1 − u2
2 − u2

3 − 1

)
= 0 ;10. 〈L1, L2, L3, P1, P2, P3, X0, X1, X2, X3, X4〉(∼= G̃(1, 3)),

〈P1, P2, P3, X0, X1, X2, X3, X4〉,
〈L3 − P3, P1, P2, X0, X1, X2, X3, X4〉,130



〈L3, P1, P2, P3, X0, X1, X2, X3, X4〉,
〈L3 −X0, P1, P2, P3, X1, X2, X3, X4〉,
〈P1, P2, P3 +X0, L3 + βX0, X1, X2, X3, X4, β < 0〉,

F

(
u2

1 + u2
2 + u2

3 + 2(u0 + 1)

(u0 + 1)2

)
= 0 .Sin
e the Lie algebra of the group P (1, 4) 
ontains, as subalgebras,the Lie algebra of the Poin
aré group P (1, 3) and the Lie algebra of theextended Galilei group G̃(1, 3) (see also [9, 18℄), the obtained 
lasses ofdi�erential equations 
an be used in relativisti
 and non-relativisti
 physi
s.Referen
es[1℄ S. Lie, G. S
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t Solutions of Equations of Nonlinear Mathemati
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 Publishers, 1993).[8℄ W.I. Fush
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s (Reidel, Boston, 1985).[11℄ W.I. Fush
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hastitz. i atomn. yadra 11, 5(1980).[15℄ V.M. Fedor
huk, Ukr. Mat. Zh. 31, 717 (1979).[16℄ V.M. Fedor
huk, Ukr. Mat. Zh. 33, 696 (1981).[17℄ W.I. Fush
hi
h, A.F. Barannik, L.F. Barannik and V.M. Fedor
huk,J. Phys. A: Math. and Gen. 18, 2893 (1985).[18℄ W.I. Fush
hi
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huk, V.I. Fedor
huk, Universitatis Iagelloni
ae A
ta Math-emati
a 44, 21 (2006).[21℄ V.M. Fedor
huk, V.I. Fedor
huk, Annales A
ademiae Paedagogi
aeCra
oviensis Studia Mathemati
a 4, 65 (2004).[22℄ V.M. Fedor
huk, V.I. Fedor
huk, About equivalen
e of fun
tional basesof di�erential invariants of any �nite order of non-
onjugate subgroupsof lo
al Lie groups of point transformations, Modern problems of me-
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s and mathemati
s, V.3 (L'viv: Pidstryha
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ACTA PHYSICA DEBRECINA XLII, 133 (2008)ITÔ-STRATONOVITCH FORMULA FOR A FOUR ORDEROPERATOR ON A TORUSR. LéandreInstitut de Mathématiques. Université de Bourgogne. 21000. Dijon. FRANCEAbstra
tWe give an It�-Stratonovit
h formula for a semi-group gen-erated by a four order operator on a torus.I. Introdu
tionLet Bt a Brownian motion on R. By the 
elebrated It� formula ([2℄), wehave if f is a C2 fun
tion from R into R:
f(Bt) = f(B0) +

∫ t

0
f ′(Bs)δBs + 1/2

∫ t

0
f”(Bs)ds (1)where δBs is the It� di�erential.This formula 
an be 
onvert in the Stratonovit
h Cal
ulus in

f(Bt) = f(B0) +

∫ t

0
f ′(Bs)dBs (2)where dBs is the Stratonovit
h di�erential.It�-Stratonovit
h formula for di�usion pro
esses was translated in semi-group theory by Léandre ([11℄). Léandre ([3℄, [4℄, [5℄, [6℄, [7℄, [8℄, [9℄, [10℄,[11℄, [12℄, [13℄, [14℄, [15℄) has translated in semi-group theory a lot of toolsof sto
hasti
 analysis, by using the 
lassi
al relation between the theory ofsto
hasti
 pro
esses and the theory of Markovian semi-groups, su
h that



the tools of sto
hasti
 analysis be
ome algebrai
 
omptations on the semi-group, the estimates being done be
ause we get semi-groups in probabilitymeasures.It is interesting to developp this strategy when we 
onsider more generalsemi group: it is the purpose of this 
ommuni
ation to do that in a simple
ase. II. Statement of the main theoremWe 
onsider a torus Tn (x ∈ Tn) and a orthonormal basis of its Liealgebra ∂i. We 
onsider the four order ellipti
 oeparator ∆ =
∑

(∂i)
4. It issymmetri
 positive self-adjoint. It generates a (non-markovian!) semi-group

Pt on L2(Tn), the torus being endowed of its Haar measure.We 
onsider a smooth fun
tion f from Tn into R and the ve
tor �eld on
Tn × R, (x, y) ∈ Tn × R

∂f
i = ∂i + (∂if)∂y (3)and we 
onsider the degenerated operator on Tn × R

∆f =
∑

(∂f
i )4 (4)It is symmetri
 positive, and therefore has a self-adjoint extension on L2(Tn×

R), Tn × R being endowed of its Haar measure. This self-adjoint extension
∆f generates therefore a semi-group P f

t on L2(Tn × R).We 
onsider a smooth fun
tion g(., .) from Tn×R with 
ompa
t supportand the fun
tion on Tn

gf (x) = g(x, f(x)) (5)Our main theorem is:Theorem(It�-Stratonovit
h)We have the relation
Pt[g

f ](x) = P f
t [g(., .)](x, f(x)) (6)
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III. Proof of the theoremIt follows the same strategy of the proof of the It�-Stratonovit
h for-mula of [11℄, the di�
ulty being that for the estimates we 
onsider a Non-Markovian semi-group, the algebra being more at less the same.We suppose �rst of all that f is a �nite sum of trigonometri
 and that
g is a �nit sum of a produ
t of trigometri
 fun
tion in x and expression ofthe type yn exp[−ay2] a > 0. In su
h a 
ase,

Pt[g
f ](x) = gf (x) +

∑ tn

n!
(−∆)ngf (x) (7)But if we 
onsider an expression ψ whi
h depends only on x, we have

∂i(g
fψ) = (∂f

i (g(., .)ψ)(x, f(x)) (8)su
h that we re
ognize in the right hand side of (7)
g(x, f(x)) +

∑ tn

n!
(−∆f )n(g(., .))(x, f(x)) = P f

t [g(., .)](x, f(x)) (9)Sin
e the 
ontinuous semi-groups are 
ontinuous in L2, the formula (6) isvalid for all smooth g(., .) with 
ompa
t supports.The theorem 
omes then from the following lemma:LemmaIf fn as well as all its derivatives tend to f uniformly, and if gis smooth with 
ompa
t support, then
P fn

t [g(., .)](x, y) → P f
t [g(., .)](x, y) (10)uniformly and in L2(Tn × R).Proof: We remark that the ve
tor �elds ∂f

i 
ommute and that ∂y = ∂f
0
ommutes with them. Moreover if the supremum norm of the kth derivativesof f are bounded, ∂f

i , i = 0, .., n 
onstitute uniformly a basis of the tangentspa
e of Tn × R. Let (α) = (α0, .., αn) be a multiindex and (∂f )(α) be theasso
iated di�erential operator. It is enough to show that
(∂fn)(α)P fn

t [g(., .)](x, y) → (∂f )(α)P f
t [g(., .)](x, y) (11)135



uniformly and in L2. But (∂fn)(α) 
ommute with ∆fn su
h that
(∂fn)(α)P fn

t [g(., .)](x, y) = P fn

t [(∂fn)(α)g(., .)](x, y) (12)Moreover,
(∂f )(α)P f

t [g(., .)](x, y) − (∂fn)(α)P fn

t [g(., .)](x, y) (13)is solution of the problem
ϕ0 = ((∂f )(α) − (∂fn)(α))g(., .) ;

∂

∂t
ϕt = ∆fϕt + (∆f − ∆fn)ϕn

t (14)where ϕn
t = P fn

t [(∂fn)(α)g(., .)](., .). We solve this problem by the methodof variation of 
onstant. The result 
omes from the fa
t that a fun
tionwhi
h has all its derivatives in the distributional sense in L2 is a smoothfun
tion whose Ck uniform norm 
an be estimated in terms of the L2 normof his higher derivatives.♦. Referen
es[1℄ P. Aus
her, P. T
hamit
hian, Square root problems for divergen
e op-erators and related topi
s (Asterisque 249, Paris S.M.F., 1998).[2℄ C. Della
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. Indian. A
ad. S
i (Math. S
i.) 116, 507 (2006).arXiv:0707.2143v1[math.PR℄[4℄ R. Léandre, In Mathemati
al methods in engineerings (Ankara), D.Baleanu and al eds. (Springer, Heidelberg, 2007), 205.[5℄ R. Léandre, Mathematis
he Zeits
hrift 258, 893 (2008).[6℄ R. Léandre, In Simulation, Modelling and Optimization (Lisboa), A.M. Madureira C.D. 2006, 559. WSEAS transa
tions on mathemati
s5, 1205 (2006).136



[7℄ R. Léandre, In Applied mathemati
s (Dallas) K. Psarris edt.(W.S.E.A.S. press, Athens, 2007), 7.[8℄ R. Léandre, WSEAS Transa
tions on mathemati
s 6, 755 (2007).[9℄ R. Léandre, In Num. Ana. Applied. Mathemati
s.(Corfu) T. Simos edt.(A.I.P. Pro
eedings 936, Melville, 2007), 336.[10℄ R. Léandre: Malliavin Cal
ulus of Bismut type for Poisson pro
esseswithout probability. To appear in Fra
tional systems J. Sabatier andal eds Jour.Eur.Syst.Aut. 42, (.)[11℄ R. Léandre, Wentzel-Freidlin estimates in semi-group theory. To appearin Control, Automation, Roboti
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onferen
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ia-Planas and al eds. (W.S.E.A.S. press, Athens, 2008), 77.[13℄ R. Léandre, Malliavin Cal
ulus of Bismut type in semi-group theory.Far East Journal of Mathemati
al S
ien
es 26, 1 (2008).[14℄ R. Léandre, In Nonlinear S
ien
e and Complexity (Porto) M. Silva andal eds. C.D. (2008) Mittag Le�er Preprint. Fall 2007. S.P.D.E. 10.[15℄ R. Léandre, WSEAS Transa
tions on mathemati
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ACTA PHYSICA DEBRECINA XLII, 138 (2008)LORENTZ-COVARIANT THEORIES OF HIGHER-SPINFIELDS AND INSIDEV. V. DvoeglazovUniversidad de Za
ate
as, Apartado Postal 636, Su
. 3 CruzesZa
ate
as 98064, Za
., Méxi
oAbstra
tWe generalize the Stue
kelberg formalism in the (1/2, 1/2)representation of the Lorentz Group. We analize the problemof the mass generation and of the inde�nite metri
s from themodern viewpoints. Some relations to other modern-physi
smodels are found. I. Introdu
tionRe
ent advan
es in astrophysi
s [1℄ suggest the existen
e of fundamentals
alar 
osmologi
al �elds [2, 3℄. On the other hand, the (1/2, 1/2) represen-tation of the Lorentz group provides suitable frameworks for introdu
tionof the S = 0 �eld, Ref. [4℄. In a series of papers, starting from the verybeginning we propose a generalized theory in the 4-ve
tor representation,for the antisymetri
 tensor �eld of the se
ond rank as well [5℄, see also [6℄.The results 
an be useful in any theory dealing with the light phenomenaand ve
tor bosons. The plan of my talk is following:
• Ante
edents. Mapping between the Weinberg-Tu
ker-Hammer (WTH)formulation and antisymmetri
 tensor (AST) �elds of the 2nd rank.Modi�ed Bargmann-Wigner (BW) formalism. Pseudove
tor poten-tial. Parity.



• Matrix form of the general equation in the (1/2, 1/2) representation.
• Lagrangian in the matrix form. Masses.
• Standard Basis and Heli
ity Basis.
• Dynami
al invariants. Field operators. Propagators.
• The inde�nite metri
.
• The Gelfand-Tsetlin-Sokolik-type quantum �eld theory.
• The Spin-2 Framework.
• Non-
ommutativity.II. Results and Con
lusions
• The mapping exists between the Weinberg-Tu
ker-Hammer (WTH)formalism for S = 1 and the antisymmetri
 tensor �elds (AST) offour kinds (provided that the solutions of the WTH equations are ofthe de�nite parity).
• Their massless limits 
ontain additional solutions 
omparing with theMaxwell equations. This was related to the possible theoreti
al exis-ten
e of the Ogievetski��-Polubarinov-Kalb-Ramond notoph, Ref. [7℄.
• In some parti
ular 
ases (A = 0, B = 1, see ref. [5℄) the massivesolutions of di�erent parities are naturally divided into the 
lasses of
ausal and ta
hyoni
 solutions.
• If we want to take into a

ount the solutions of the WTH equations ofdi�erent parity properties, this indu
es us to generalize the Bargmann-Wigner, Pro
a and the Du�n-Kemmer formalisms.
• In the (1/2, 0)⊕ (0, 1/2), (1, 0)⊕ (0, 1) et
. representations it is possi-ble to introdu
e the parity-violating frameworks. The 
orrespondingsolutions are the mixing of various polarization states. 139



• The sum of the Klein-Gordon equation with the (S, 0) ⊕ (0, S) equa-tions may 
hange the theoreti
al 
ontent even on the free level. Forinstan
e, the higher-spin equations may a
tually des
ribe various spinand mass states.
• The mappings exists between the WTH solutions of unde�ned parityand the AST �elds, whi
h 
ontain both tensor and dual tensor. Theyare eight.
• The 4-potentials and ele
tromagneti
 �elds [8, 9℄ in the heli
ity basishave di�erent parity properties 
omparing with the standard basis ofthe polarization ve
tors.
• In the previous paper [10℄ and several talks I presented the theoryin the (1/2, 0) ⊕ (0, 1/2) representation in the heli
ity basis. Underthe spa
e inversion operation, di�erent heli
ity states transform ea
hother, Puh(−p) = −iu−h(p), Pvh(−p) = +iv−h(p).
• So, from the abovementioned (an my previous papers) it is not di�
ultto understand the importan
e of Ãµ ∼ ∂µχ term in the ele
trodynam-i
s and in the Pro
a theory, 
f. [11℄.
• The (1/2, 1/2) representation 
ontains both the spin-1 and spin-0states (
f. with the Stue
kelberg formalism).
• Unless we take into a

ount the fourth state (the �time-like" state,or the spin-0 state) the set of 4-ve
tors is not a 
omplete set in amathemati
al sense.
• We 
annot remove terms like (∂µB

∗
µ)(∂νBν) terms from the Lagrangianand dynami
al invariants unless we apply the Fermi method, i. e.,manually. The Lorentz 
ondition applies only to the spin-1 states.

• We have some additional terms in the expressions of the energy-mo-mentum ve
tor (and, a

ordingly, those of the 4-
urrent and the Pauli-Lunbanski ve
tors), whi
h are the 
onsequen
e of the impossibility toapply the Lorentz 
ondition for spin-0 states.
• The heli
ity ve
tors are not the eigenve
tors of the parity operator.Meanwhile, the parity is a �good" quantum number, [P,H]− = 0 inthe Fo
k spa
e.140



• We are able to des
ribe the states of di�erent masses in any grouprepresentation from the beginning.
• Various-type �eld operators 
an be 
onstru
ted in the (1/2, 1/2) rep-resentation spa
e. For instan
e, they 
an 
ontain C, P and CP 
on-jugate states. Even if b†λ = a†λ we 
an have 
omplex 4-ve
tor �elds.We found the relations between 
reation, annihilation operators fordi�erent types of the �eld operators Bµ.
• Propagators have good behavious in the massless limit as opposed tothose of the Pro
a theory. In teh generalized Stue
kelberg theory oneshould follow the method developed in ref. [12℄.The detailed explanations of several 
laims presented in this talk aregiven in journal publi
ations. I am grateful to Profs. V. Gusynin, M.Khlopov, Y. S. Kim, M. Kir
hba
h, S. I. Kruglov, D. J. Cirilo-Lombardo,N. Manko
-Borstnik, H. B. Nielsen, W. Rodrigues, R. Yamaleev, and par-ti
ipants of the re
ent 
onferen
es for useful dis
ussions.Referen
es[1℄ T. Matos et al., The S
alar Field Dark Matter Model. Le
t.Notes Phys.646, 401-420 (2004) � Pro
eedings of the 5th Mexi
an S
hool "TheEarly Universe and Observational Cosmology". Playa del Carmen, Nov.24-29, 2002.[2℄ V. V. Dvoeglazov, Generalized Maxwell Equations from the EinsteinPostulate. J. Phys. A33, 5011 (2000).[3℄ V. V. Dvoeglazov, Generalized Maxwell and Weyl Equations for Mass-less Parti
les. Rev. Mex. Fis. Supl. 49, S1, 99 (2003) � Pro
eedings ofthe Huatul
o DGFM S
hool, 2000, math-ph/0102001.[4℄ S. Weinberg, The Quantum Theory of Fields. Vol. I. Foundations.(Cambridge University Press, Cambridge, 1995).[5℄ V. V. Dvoeglazov, Antisymmetri
 Tensor Fields, 4-Potentials and In-de�nite Metri
s. Hadroni
 J. Suppl. 18, 239 (2003). 141



[6℄ V. V. Dvoeglazov et al. (Eds.), Spe
ial Issue of Ann. Fond. Broglie,dedi
ated to Yang and Mills, 29, Hors Serie No. 2, 873-1066 (2004).[7℄ V. I. Ogievetski�� and I. V. Polubarinov, Yadern. Fiz. 4, 216 (1966)[English translation: Sov. J. Nu
l. Phys. 4, 156 (1967)℄; K. Hayashi,Phys. Lett. B44, 497 (1973); M. Kalb and P. Ramond, Phys. Rev. D9,2273 (1974).[8℄ V. V. Dvoeglazov, Generalizations of the Dira
 Equations and the Mod-i�ed Bargmann-Wigner Formalism. Hadroni
 J., 26, 299 (2003), hep-th/0208159.[9℄ H. M. Rü
k y W. Greiner, J. Phys. G: Nu
l. Phys. 3, 657 (1977).[10℄ V. V. Dvoeglazov, Heli
ity Basis and Parity. Int. J. Theor. Phys. 43,1287 (2004), math-ph/0309002.[11℄ R. A. Berg, Nuovo Cim. A XLII, 148 (1966); D. V. Ahluwalia andM. Kir
hba
h, Mod. Phys. Lett. A16, 1377 (2001).[12℄ V. V. Dvoeglazov, The Weinberg Propagators. Helv. Phys. A
ta, 70,697 (1997); hep-th/9408176.
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ACTA PHYSICA DEBRECINA XLII, 143 (2008)FINITE CHARGE AND MASS RENORMALIZATION INQUANTUM ELECTRODYNAMICSI. D. Feran
huk , S. I. Feran
hukBelarusian State University, 220030 Minsk, BelarusAbstra
tThe self-lo
alized quasi-parti
le ex
itation of the ele
tron-positron �eld is found for the �rst time in the framework of astandard form of the quantum ele
trodynami
s. This state isinterpreted as the "physi
al" ele
tron (positron) and it leads tothe perturbation theory being free from the ultraviolet diver-gen
e. I. Introdu
tionIt is no doubt at present that the Standard Model is the fundamental ba-sis for the theory of the ele
tro-weak intera
tion [1℄. It means that thequantum ele
trodynami
s (QED) is a
tually the part of the general gaugetheory. Nevertheless, QED 
onsidered by itself as the isolated system re-mains the most su

essful quantum �eld model that allows one to 
al
ulatethe observed 
hara
teristi
s of the ele
tromagneti
 pro
esses with a uniquea

ura
y (for example, [2℄ ). It is well known that these 
al
ulations arebased on the series of rules 
onne
ted with the perturbation theory in the ob-served 
harge e of the "physi
al" ele
tron and the renormalization propertyof QED. The latter one means that the "primary" parameters of the theory(the 
harge e0 and the mass m0 of the "bare" ele
tron), that are de�ned bythe divergent integrals, 
an be ex
luded from the observed values. However,even the 
reators of the present form of QED were not satis�ed with theserules [3℄(§81), [4℄. It is also very essential that the dynami
al des
ription



of the internal stru
ture of the "physi
al" ele
tron gives the fundamentalpossibility to 
onsider muon as an ex
ited state of the ele
tron-positron �eldas it has been shown by Dira
 [5℄.The relation between the "primary" 
oupling 
onstant e0 and the 
harge
e is undetermined in the present form of QED. Therefore it is possiblethat the value e0 is large in spite the observed renormalized 
harge is small
e << 1. Our main goal is to �nd su
h a form of the renormalization thatwould be logi
ally 
onsistent but the 
al
ulation possibilities of QED forthe observed values would be preserved.II. Constru
tion of the self-lo
alized stateIt is well known that the spatially lo
alized states are very important for alot of quantum �eld models. Let us now 
onsider the nonperturbative anal-ysis of the spe
trum of the one-parti
le ex
itations of the QED Hamiltonianthat is de�ned by the following form (for example, [6℄) :

Ĥ =

∫
d~r : {ψ̂∗(~r)[~α(~p+ e0 ~̂A(~r)) + βm0]ψ̂(~r) + e0ϕ̂(~r)ρ̂(~r) −

−1

2
(~∇ϕ̂(~r))2} : +

∑

~kλ

ω(~k)n̂~kλ; ρ̂(~r) =
1

2
[ψ̂∗(~r)ψ̂(~r) − ψ̂(~r)ψ̂∗(~r)]. (1)We suppose here that the �eld operators are given in the S
hrödinger rep-resentation, the spinor 
omponents of the ele
tron-positron operators beingde�ned in the standard way [6℄.In these formulas ~ = c = 1; the primary 
harge (−e0), e0 > 0 and m0are 
onsidered as the parameters of the model; the symbol : Ĥ : meansthe normal ordering of the operators ex
luding the va
uum energy [3℄; ~α, βare Dira
 matrixes; a~ps(a

+
~ps) and b~ps(b

+
~ps) are the annihilation (
reation)operators for the "bare" ele
trons and positrons in the 
orresponding states.The �eld operator ~̂A(~r) and the operator of the photon number n̂~kλ

arerelated to the transversal ele
tromagneti
 �eld.For the variational des
ription of the self-
onsistent ex
itation let us
hoose the trial state ve
tor |Φ1 > in the general form of the wave pa
ketformed by the one-parti
le ex
itations of the "bare" ele
tron-positron �eld144



depending on the set of variational 
lassi
al fun
tions U~qs;V~qs;ϕ(~r). Be-sides, the e�e
t of polarization and the appearan
e of the ele
trostati
 �eld
ϕ(~r) should be taken into a

ount, so we 
onsider |Φ1 > to be the eigenve
-tor for the operator of the s
alar �eld:
|Φ1 >≃ |Φ(0)

1 (U~qs;V~qs;ϕ(~r)) >=

∫
d~q{U~qsa

+
~qs + V~qsb

+
~qs}|0; 0;ϕ(~r) > . (2)The ground state of the system is |Φ0 >= |0; 0; 0 >, if we use the samenotation. It 
orresponds to the va
uum of both intera
ting �elds.Firstly, let's 
onsider the ex
itation with the zero total momentum. Thenthe 
onstru
ted trial ve
tor should satisfy the normalized 
onditions result-ing from the de�nition of the total momentum ~P and the observed 
harge

e of the "physi
al" parti
le:
< Φ

(0)
1 | ~̂P |Φ(0)

1 >=
∑

s

d~q~q[|U~qs|2 + |V~qs|2] = ~P = 0;

∑

s

d~q[|Uqs|2 + |Vqs|2] = 1;

< Φ
(0)
1 |Q̂|Φ(0)

1 >= e0
∑

s

d~q[|Vqs|2 − |Uqs|2] = e. (3)The last equation de�nes the observed 
harge of the "physi
al" parti
le atthe given value e0 of the initial 
harge of the "bare" parti
le. The trial ve
tor
|Φ1 > is a
tually the 
olle
tive ex
itation of the system and in this respe
tthe variational approa
h di�ers greatly from the perturbation theory. wherethe zero approximation for a one-parti
le state 
orrespond to one-parti
leex
itations determined by the 
harge e0 of the "bare" ele
tron and the �eld
ϕ(~r) = 0.Thus, the following variational estimation for the energy E1(0)=E1(~P=0)of the state 
orresponding to the "physi
al" quasi-parti
le ex
itation of thewhole system :

E1(0) ≃ E
(0)
1 [Uqs;Vqs;ϕ(~r)] =< Φ

(0)
1 |Ĥ|Φ(0)

1 >, (4)where the average is 
al
ulated with the full Hamiltonian (1) and the fun
-tions Uqs;Vqs;ϕ(~r) are to be found as the solutions of variational equationswith the additional 
onditions (3) . 145



The average value in Eq. (4) is 
al
ulated negle
ting the 
lassi
al 
om-ponents of the ve
tor �eld. They are appeared in the high-order 
orre
tionsthat are de�ned by the renormalized 
harge el1 and 
an be 
onsidered bymeans of the 
anoni
al perturbation theory. It should be noted that thepossibility of 
onstru
ting self-
onsistently the renormalized QED at thenon-zero va
uum value of the s
alar �eld operator was 
onsidered before [7℄but the solution of the 
orresponding equations was not dis
ussed.In order to vary the introdu
ed fun
tional let us de�ne the spinor wavefun
tions (not operators) whi
h des
ribe the 
oordinate representation forthe ele
tron and positron wave pa
kets in the state ve
tor |Φ(0)
1 >:

Ψν(~r) =

∫
d~q

(2π)3/2

∑

s

Uqsu~qsνe
i~q~r; Ψc

ν(~r) =

∫
d~q

(2π)3/2

∑

s

V ∗
qsv~qsνe

i~q~r. (5)Varying the fun
tional (4) by the wave fun
tions Ψ(~r) and Ψc(~r) taking intoa

ount their normalization 
onditions one 
an �nd the equivalent Dira
equations des
ribing the ele
tron (positron) motion in the �eld of potential
ϕ(~r):

{(−i~α~∇ + βm0) + e0ϕ(~r)}Ψ(~r) = 0;

{(−i~α~∇ + βm0) + e0ϕ(~r)}Ψc(~r) = 0,

ϕ(~r) =
e0
4π

∫
d~r′

|~r − ~r′| [Ψ
+(~r′)Ψ(~r′) − Ψ+c(~r′)Ψc(~r′)]. (6)But it is important that in spite of the normalization 
ondition (3) for thetotal state ve
tor (5) ea
h of its 
omponents 
ould be normalized di�erently

∫
d~rΨ+(~r)Ψ(~r) =

1

1 + C
;

∫
d~rΨ+c(~r)Ψc(~r) =

C

1 + C
. (7)The 
onstant C is an arbitrary value up to now. It de�nes the ratio of two
harge states in the 
onsidered wave pa
ket. As a result the self-
onsistentpotential ϕ(~r) of the s
alar �eld depends on C.Sin
e the 
onsidered physi
al system has no preferred ve
tors if ~P = 0, itis natural to regard the self-
onsistent potential as spheri
ally symmetri
al.Then the variable separation for the Dira
 equation is realized on the basis146



of the well known spheri
al bispinors [2℄. Then the unknown radial fun
tions
f, g satisfy the following system of the equations:

d(rg)

dr
− 1

r
(rg) − (m0 − e0ϕ(r))(rf) = 0;

d(rf)

dr
+

1

r
(rf)− (m0 + e0ϕ(r))(rg) = 0. (8)The equations for the radial wave fun
tions f1, g1 of the positron 
ompo-nents:

d(rg1)

dr
+

1

r
(rg1) − (m0 + e0ϕ(r))(rf1) = 0;

d(rf1)

dr
− 1

r
(rf1) − (m0 − e0ϕ(r))(rg1) = 0. (9)The equation for the self-
onsistent potential follows from the de�nition of

ϕ(r) taking into a

ount the normalization of the spheri
al spinors [2℄:
d2ϕ

dr2
+

2

r

dϕ

dr
= − e0

4π
[f2 + g2 − f2

1 − g2
1 ]. (10)The boundary 
ondition for the potential de�nes the 
harge e of the "phys-i
al" ele
tron (positron)

ϕ(r)|r→∞ =
e

4πr
=

e0
4πr

∫ ∞

0
r21dr1[f

2(r1) + g2(r1) − f2
1 (r1) − g2

1(r1)]. (11)The stru
ture of the equation (6) shows that the 
onsidered variationalmethod is 
onsistent with the gauge symmetry of the initial Hamiltonian.One 
an show that the Hamiltonian (1) 
ould be 
hosen in an arbitraryLorentz gauge with the 
lassi
al 
omponents both for the s
alar �eld ϕ(~r)and for the longitudinal �eld ~Al(~r) [8℄.Dimensionless variables and new fun
tions 
an be introdu
ed
x = rm0;E = ǫm0; e0ϕ(r) = m0ϕ(x);

e20
4π

= α0;u(x)
√
m0 = rg(r);

v(x)
√
m0 = rf(r);u1(x)

√
m0 = rg1(r); v1(x)

√
m0 = rf1(r). (12)147



As a result the system of equations for des
ribing the radial wave fun
tionsof the one-parti
le ex
itation of the ele
tron-positron �eld and the self-
onsistent potential of the va
uum polarization 
an be obtained:
u, v =

√
1

1 + C
u0, v0;u1, v1 =

√
C

1 + C
v0, u0;

∫ ∞

0
dx[u2

0(x) + v2
0(x)] = 1; ρ0(x) = u2

0(x) + v2
0(x);

du0

dx
− 1

x
u0 − (1 − ϕ(x))v0 = 0;

dv0
dx

+
1

x
v0 − (1 + ϕ(x))u0 = 0;

ϕ(x) = α0
1 − C

1 + C
ϕ0(x);ϕ0(x) = [

∫ ∞

x
dy
ρ0(y)

y
+

1

x

∫ x

0
dyρ0(y)]. (13)The energy of the system 
an also be 
al
ulated with these fun
tions:

E1(0) ≡ E(0) = m0
1 − C

1 + C
[T +

1

2
α0

1 − C

1 + C
Π];

T =

∫ ∞

0
dx[(u′0v0 − v′0u0) − 2

u0v0
x

+ (u2
0 − v2

0)];

Π =

∫ ∞

0
dxϕ0(x)(u

2
0 + v2

0). (14)and Eq.(13) 
an be obtained when varying of the fun
tional (14).The value a = α0(1 −C)/(1 +C) is the free parameter of the equations(13) and it plays a role of the eigenvalue when the nontrivial normalizedsolution exists.The method for the numeri
al solution of the nonlinear self-
onsistentsystem of the equations (13) was des
ribed in detail in the paper [8℄. Onlythe numeri
al results for the lo
alized wave fun
tions and for the s
alarpotential are des
ribed in the present work. The numeri
al value for theparameter a depends on the a

ura
y of the �nite-di�eren
e approximationfor the di�erential operators and was as a = a0 ≈ −3.531.The solutions u0, v0 for the ele
tron and positron 
omponents and theself-
onsistent potential were drawn in Ref. [8℄. All these fun
tions arelo
alized in the domain with the linear size of ∼ m−1
0 . The potential getsover the Coulomb potential of the "physi
al" 
harge e for r > r0 = m−1

0 .148



It is important that the 
hara
teristi
 size of this ex
itation r0 is the sameorder as the 
lassi
al radius of the ele
tron re = α/m, namely r0 = re

2|a0|
≈

0.15re.The stationary lo
alized 
olle
tive ex
itation of the ele
tron-positron�eld des
ribed above is of great interest by itself as the eigenve
tor of thewell known QED Hamiltonian that 
an't be 
al
ulated by means of the per-turbation theory and has not be 
onsidered before. It is naturally to supposethat this lo
alized state des
ribes the "physi
al" ele
tron (positron) with theobserved 
harge e. The integral 
harge of the 
onsidered one-parti
le ex
i-tation is de�ned by the boundary 
ondition (11) and this supposition leadsto e0(1 − C)/(1 + C) = e. In the result one 
an �nd the following relationbetween the "primary" 
oupling 
onstant α0 = e20/4π and the observedvalue of the �ne stru
ture 
onstant α = e2/4π

α0 =
a2

0

α
≈ 1708.1. (15)This formula de�nes the renormalization of the 
harge in the 
onsideredapproximation and shows self-
onsisten
y of the initial supposition thatthe intera
tion between the "primary" ele
tron-positron and s
alar �elds isstrong.Then the total energy of the ex
itation with zero momentum is:

E(0) = −m0

α0

Ta0

2
= −m0α

T

2a0
> 0. (16)This value de�nes the minimal energy of the one-parti
le ex
itation of theele
tron-positron �eld and its positive sign 
orresponds to the "bottom" ofthe "physi
al" ele
tron zone in the renormalized QED. It was also shown in[8℄ that E(0) 
an be 
onsidered as the "physi
al" ele
tron mass me be
auseit de�nes the spe
trum of the ex
itation with non zero total momentum ~Pby Lorentz invariant way:

E(~P ) =
√
P 2 + E2(0); E(0) ≡ me = −m0α

T

2a0
;

m0 = me
2|a0|
α

≈ 1291.7me. (17)As it was shown by Dira
 [5℄, investigation of the "physi
al" ele
tron withthe distributed 
harge gives the possibility to interpret the "physi
al" muon149



as the ex
ited state of su
h system. The variational approa
h 
onsidered inthe present paper allows one to analyze the one-parti
le ex
itation di�eredfrom the "physi
al" ele
tron without in
lusion of any additional parame-ters.This approa
h leads to a quite reasonable estimation [8℄ for muon mass
(mµ/me) ≈ 191 instead of the experimental value (mµ/me)exp ≈ 206.It was also shown in [8℄ that the intera
tion between the 
onsidered"physi
al" ele
tron and the transversal ele
tromagneti
 �eld 
orresponds tothe perturbation theory relatively to the "physi
al" 
harge el1 but withoutthe divergent integrals. Referen
es[1℄ Weinberg S., Uni�ed theories of elementary parti
le intera
tions, S
i-enti�
 Ameri
an 231, 50 (1974).[2℄ Akhiezer A.I. and Bereste
kii V.B. , Quantum ele
trodynami
s, (Nauka,Mos
ow, 1969); Bogoliubov N.N. and Shirkov D.V. , Introdu
tion to thetheory of quantum �elds, (Nauka, Mos
ow, 1973).[3℄ Dira
 P.A.M., The Prin
iples of quantum me
hani
s, (The ClarendonPress, Oxford, 1958).[4℄ Feynman R.P., Nobel le
ture S
ien
e 153, 699 (1966).[5℄ P.A.M. Dira
. Pro
. Roy. So
. London 268, 57 (1962).[6℄ Heitler W., The quantum theory of radiation, (The Clarendon Press,Oxford, 1954).[7℄ Fradkin E.S., Renormalization in quantum ele
trodynami
s with self-
onsistent �eld, Pro
eedings of Fiz. Inst. of Soviet A
ademy of S
ien
e29, 1 (1965).[8℄ I.D. Feran
huk and S.I. Feran
huk. SIGMA 3, 117, (2007); arXiv:math-ph/0605028; /07121107
150



ACTA PHYSICA DEBRECINA XLII, 151 (2008)SINGULAR LOCALIZED STATES, EXACTLY SOLVABLEAND QUASI-EXACTLY SOLVABLE PROBLEMS INSTOCHASTIC DYNAMICSG. KrylovPhysi
s Department, Belarusian State University, 4 Nezavisimosti av., Minsk,220030 BelarusAbstra
tBased on SUSY QM approa
h to sto
hasti
 problems the
onstru
tion of exa
tly solvable and quasi-exa
tly solvable prob-lems is 
onsidered. The possibility of existen
e of singular lo-
alized eigenstates for linear Fokker-Plan
k equation has beenexpli
itly demonstrated.I. Introdu
tionThe problem of 
onstru
tion of new exa
tly solvable problems 
ontinues tobe very attra
tive. Even for 
ases of the most developed one dimensionalquantum me
hani
s, where there are about 50 known solvable potentials(see, e.g. [1℄) as well as a large number of quasi-exa
tly solvable ones, newpapers atta
king the problem appears every month.At the same time only few examples of solvable Fokker-Plan
k equationsare known. One of the goals of the paper will be to 
onsider the problemof solubility of the last equation based on SUSY QM approa
h.Another interesting question in the �eld is related to the so 
alled "blowup regimes" for some nonlinear equations. One of the �rst report of thisphenomenon for quasi-linear heat transfer equation has been written in themiddle of 80-th by A. Samarski et al. [2℄. They found that for the equation
∂tf(x, t) = ∂x(D(f)∂xf(x, t)) + U(f, x, t) (1)



with a nonlinear heat transfer 
oe�
ient D depending on temperature (f)as D(f) ∼ fσ, σ > 1 and for sour
e fun
tions of the form U(f, x, t) = bfρ,the existen
e of new regimes is possible (the so 
alled "blowup", "heat ex-plosion" and "heat lo
alization" regimes) when singularity of f is produ
edwithin the �nite time interval. Later su
h regimes have attra
ted mu
hattention in di�erent �elds see e.g., [3℄ and bibliography therein.It is 
ommonly a

epted that singular lo
alization is an inevitably non-linear e�e
t, typi
ally originated from the existen
e of some generalizedsymmetry and therefore some self-similar solutions.The se
ond goal of the paper is to demonstrate that singular lo
alizedsolutions (eigenstates) 
an naturally appear in some linear problems for theFokker-Plan
k (F-P) equation in an external �eld.The paper is organized as follows. In the se
ond se
tion we shortly out-line the 
orresponden
e between Shrödinger and Fokker-Plan
k equationsarisen within the framework of supersymmetri
 quantum me
hani
s (SUSYQM) to sto
hasti
 problems [4, 6℄ and 
onstru
t a series of solvable po-tentials. In the third se
tion we use one quantum quasi-exa
tly solvableproblem and 
onstru
t the appropriate F-P problem with singular lo
alizedeigenfun
tions.II. Corresponden
e between the Shrödinger and Fokker-PlankequationsOne dimensional di�usion equation for the distribution fun
tion f(x, t)for a system in an external �eld with a potential U(x) reads
∂f(x, t)

∂t
= D

∂2f(x, t)

∂x2
+ a

∂

∂x

(
f(x, t)

dU(x, t)

dx

)
, (2)where D is the di�usion 
oe�
ient, a is the 
oupling 
onstant for intera
tionof a parti
le with an external potential U(x). In subsequent we in
orporateit dire
tly to the potential putting a = 1.In the literature it is 
ommonly a

epted that the only di�eren
e ofdi�usion equation and S
hrödinger's one is in imaginary time on respe
t to152



real time (Vi
k's rotation). Though it is evidently true for the 
ase of a freeparti
le, for the problem in an external �eld the only sight on the se
ondequation
i~
∂ψ(x, t)

∂t
= − ~2

2m

∂2ψ(x, t)

∂x2
+ U(x)ψ(x, t) (3)immediately demonstrates that the external �eld is in
orporated into theequation (3) in a di�erent way with respe
t to that in the di�usion 
ase (2).The prominent feature of the eq.(2) is the existen
e of zero-mode (sta-tionary or steady-state) solution fs(x), whi
h simply 
orresponds to theknown Boltzmann distribution fs(x) = C exp (−U(x)) .In opposite, for the S
hrödinger equation (3) the ground state is typi
allyunknown and of most interest.This, as we will see, is due to the fa
t that after transformation of thedi�usion equation into the form of the S
hrödinger one, we obtain the lastin the supersymmetri
 quantum me
hani
s ( SUSY) form dire
tly and theproper partner Hamiltonian is just H− [5℄.Let us shortly outline this way [4, 6℄. We assume the units' 
hoi
e issu
h that ~ = 1,m = 1,D = 1/2. It is worth to note that the steady statesolution reads fs(x) = exp(−2U(x)) with this units' 
hoi
e.Then, after substitution f(x) = exp {−U(x) − Et}ψ(x) into

∂f(x, t)

∂t
=

1

2

∂2f(x, t)

∂t2
+

∂

∂x

(
f(x, t)U ′(x)

) (4)we get the S
hrödinger equation in the form
1

2
ψ′′(x) + (E − Vq(x))ψ(x) = 0 (5)with a "quantum potential" Vq(x) given by
Vq(x) =

1

2
U ′(x)

2 − 1

2
U ′′(x). (6)The last equation is just in the form of SUSY QM approa
h with the super-potential given by W (x) = U ′(x) [4℄ and the Hamiltonian operator having153



the fa
torized form
Ĥ− = Â†Â =

1√
2

(
− d

dx
+ U ′(x)

)
1√
2

(
d

dx
+ U ′(x)

)
. (7)It is evident from the (5) and (7) that the state E = 0 is the eigenstate of

H−.One 
an exploit the supersymmetri
 form dire
tly by the 
onstru
tion ofsolvable 
ases for 1-D di�usion equation, 
onsidering known shape-invariantpartner potentials [4℄.There is another way, namely to 
onstru
t the superpotential W (x) =
U ′(x) that leads to exa
tly-solvable potentials for eq.(5). Denoting a solv-able quantum potential in (5) by Vs(x), we 
onsider eq.(6) as the Ri
attiequation for the superpotential W (x)

W ′(x) −W (x)2 = −2 Vs(x). (8)Here it is worth to point out that we 
an split the energy parameter E in(5) as E = E1 + E2 that leads to the appearan
e of a term e.g., E2 in theright side of (8) and 
an be 
onvenient in subsequent.Based on the known 
orresponden
e of Ri
atti and S
hrödinger equationswe make substitution
W (x) = −Ψ′(x)/Ψ(x)) (9)and rewrite (8) in the form of the S
hrödinger equation for the fun
tion

Ψ(x)

1

2
Ψ′′(x) + (E2 − Vs(x)) Ψ(x) = 0. (10)The last equation means that every eigenstate Ψn(x) of a quantum solvablepotential Vs(x) gives a superpotential through the relation (9) that afterintegration gives the di�usion equation potential U(x) in the form

Un(x) = U0 + log |Ψn(x)| . (11)It is interesting that the set Un(x) leads to the same S
hrödinger equation(5) (with di�erent splitting of the 
onstant E).154



The i-th eigenstate for the exa
tly solvable di�usion problem with thepotential Un(x) reads
fi(x, t) = Ψn(x) exp (−(Ei+n −En)t)Ψi+n(x), i = 0, 1, ... (12)where Ei is eigenenergy of the appropriate quantum potential).We 
an 
onstru
t examples of exa
tly-solvable di�usion potential usingeq.(11) and, e.g., known solutions for the quantum harmoni
 os
illator. Itspotential is Vs(x) = x2/2, the eigenfun
tions read (omitting normalizationfa
tor)

Ψn(x) = Hn(x) exp(−x2/2) n = 0, 1... (13)where Hn(x) are Hermite polynomials and eigenenergies are given by En =
n+ 1/2. The di�usion 
ase (potential,ground eigenstate and the F-P equa-tion) readsn = 0

U0(x) =
x2

2
, f0(x) = e−x2

∂f(x, t)

∂t
=

1

2

∂2f(x, t)

∂x2
+ x

∂f(x, t)

∂x
+ f(x, t),n = 1

U1(x) =
x2

2
− log |x|, f0(x) = x2 e−x2

∂f(x, t)

∂t
=

1

2

∂2f(x, t)

∂x2
+

(
x− 1

x

)
∂f(x, t)

∂x
+

(
1 +

1

x2

)
f(x, t),n = 3

U3(x) =
x2

2
− log |x(2x2 − 3)|, f0(x) = x2 (2x2 − 3)2e−x2

∂f(x, t)

∂t
=

1

2
∂2f(x, t)∂x2 +

(
x− 1

x
− 4x

2x2 − 3

)
∂f(x, t)

∂x
+ 155



(
1 +

1

x2
+

16x2

(2x2 − 3)2
− 4

2x2 − 3

)
f(x, t).We demonstrate the di�usion potential and �rst two eigenstates for the
ase n = 3 in two adjoined wells, (x ∈ [0,

√
3/2] and x ∈ [

√
3/2,∞]) inFig. 1.

1 2 3 4 5
x

-2

2

4

6

Figure 1: Di�usion equation potential U3(x) (bold solid line) and �rst twoeigenstates f0(x), f1(x) (solid, and dashed lines, non-normalized) in twoadjoined in�nite barrier wells.The 
onstru
ted solvable potentials are logarithmi
ally singular, so thequestion arises either they 
orrespond to non-penetrable multi-wall di�usionproblem, or di�usion takes pla
e in all spa
e. The question needs more deepinvestigation but �rst 
on
lusion is that su
h walls are partially penetrablewithin the ordinary di�usion model that ignores parti
le momentums (andwe 
an see e.g., non-zero slopes for higher eigenstates fun
tions in Fig. 1).156



III. Singular lo
alized eigenstates for the F-P equationIn fa
t, the method outlined in the previous se
tion is not restri
ted tothe 
onstru
tion of exa
tly solvable di�usion models only, it 
ould be alsoused and for the quasi-exa
tly solvable ones. The last are su
h systemsthat allow algebrai
 
onstru
tion of only a �nite number of eigenstates (seee.g., [7℄ for more detail and ref. therein). Let us use it for the expli
it
onstru
tion of singular lo
alized eigenstates for the F-P equation.In the paper [8, 9℄ the method has been proposed for the 
onstru
tion of1D solvable and quasi-solvable potential families in QM based on polynomialAnsatz for the wave fun
tion.The general form of the se
ond order linear di�erential equations allowingpolynomial solutions at some spe
i�
ally 
hosen values of their 
oe�
ientsreads [8℄̂
Lky(x) = Pk+2(x)y

′′(x) +Qk+1(x)y
′(x) +Rk(x)y(x) = 0. (14)It is easily understood that di�erential operator L̂k maps the spa
e of the n-th order polynomials Fn[x] into the spa
e Fn+k[x]. As both spa
es are �nitedimensional, the 
ondition of non-trivial kernel KerL̂ 6= 0 leads simply toa linear algebrai
 problem for operator representation in this spa
e plus kadditional 
onditions imposed on the 
oe�
ients of 
oe�
ient fun
tions.One example we dis
ussed in [9℄ was

x3y′′(x) + α(x2 − 1)y′(x) + (βx+ γ)y(x) = 0. (15)The S
hrödinger equation
Y ′′(u) + (ε− V (u))Y (u) = 0 (16)for this 
ase has the potential V (u) of the form

V (u) =
A

u2
+Bu2 + Cu4 +Du6. (17)Expli
it formulae for the 
oe�
ients A,B,C,D 
an be found it [9℄. 157



Polynomial Ansatz for n = 1 leads to two eigenstates with the energies
ǫ = ±α and eigenfun
tions given as

Y (0)(u) = exp

{
αu4

64

}(
4

u2
+ 1

)
u

3−2 α
2 , (18)

Y (1)(u) = exp

{
αu4

64

}(
4

u2
− 1

)
u

3−2 α
2 . (19)The "admissible region" for the parameter α is given by α ≤ −1/4 (sothat the eigenfun
tion is square integrable and non-singular). Then the
onstru
ted eigenstates represent the ground and the �rst ex
ited states forthe potential

V (u) =
α2u6

256
− α (α− 3) u2

8
+

4α2 + 24α + 35

4u2
. (20)If one 
onsiders the region −1/4 ≤ α < 0, it is easily 
he
ked that theeigenfun
tions in (18,19) have integrable singularity at x = 0.The substitution of the expli
it formula (18) gives for the di�usion po-tential

U(x) = U0 + −αx4 log
(
x−1/2−α

(
4 + x2

))
, (21)for the steady state eigenfun
tion

f0(x, t) =
(
Y (0)(u)

)2
=

(
exp

{
αu4

64

}(
4

u2
+ 1

)
u

3−2 α
2

)2 (22)and the �rst ex
ited state eigenfun
tion
f1(x, t) = Y (0)(x)Y (1)(x) = e2 αx4−αt

(
1 − 16

x4

)
x3−2 α. (23)In Fig. 2 we demonstrate the quantum and di�usion potential and groundand the �rst ex
ited eigenstates for α = −1/4 with evident singularity at

x = 0.158
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Figure 2: Quantum and di�usion potentials (bold and solid lines), steadystate and the �rst ex
ited state (dotted and dashed lines) for α = −1/4.The obtained result allows us to say that we indeed 
onstru
ted singularlo
alized states for the Fokker-Plan
k (di�usion) equation, that 
an be 
on-sidered as linear analogs of "heat lo
alization" regimes known in the theoryof quasi-linear equations. A
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ACTA PHYSICA DEBRECINA XLII, 161 (2008)SECONDARY QUANTIZED PROBLEM OF PAIRCREATION: PROJECTION OPERATOR TECHNIQUEH. V. KrylovaPhysi
s department, Belarusan State University4 Nezavisimosti Ave., 220030 Minsk, the Republi
 of BelarusAbstra
tIn the work a se
ondary quantized wave fun
tion of manyfermion systems has been found in terms of one-parti
le fermion
reation (annihilation) operators and two-parti
le 
reation (an-nihilation) operators. A Green fun
tion method developed hasbeen applied for the quantum �eld des
ription of the problemon pair 
reation. I. Introdu
tionIt is known that fermion pair 
reation appears in a large number of phys-i
al situations des
ribed in 
ondensed matter, atomi
, nu
lear, elementaryparti
le physi
s, astrophysi
s, and 
osmology. Therefore, the problem ofpair produ
tion from ele
tri
 �elds has been the subje
t of 
onsiderable the-oreti
al interest [1℄. A Dira
 problem of pair produ
tion in a homogeneousele
tri
 �eld ~E rotating in plane has been 
onsidered in [2℄. Symmetry ofthis Dira
 problem is des
ribed by the group SO(4) [2℄. The Dira
 equationdes
ribes a 
lassi
al fermion �eld. However the Dira
 operator has unphys-i
al states that leads to Klein paradox in a problem of ele
tron s
atteringon a potential barrier [3℄. The Dira
 equation des
ribes a motion of an ele
-tron, and its Dira
 
onjugation des
ribes motion of a positron. Thereforethat fa
t is surprising that the states belonging to the energy gap of theDira
 operator, des
ribe a fermion pair arising in a homogeneous ele
tri




�eld rotating in the plane. In the se
ondary quantized Dira
 problem ofpair produ
tion in the homogeneous ele
tri
 �eld ~E a se
ondary quantizedfermion �eld is represented as a set of ele
trons and positrons, des
ribed by
omplex spinor whi
h real 
omponents are ele
troni
 ones, and imaginary
omponents are positroni
 ones [4℄. An intera
tion Hamiltonian of thisproblem 
an be 
onstru
ted on generators of the algebra of group SO(4)whi
h is lo
ally isomorphi
 to the group SU(2)×SU(2) [5℄. To date, ananalyti
 formalism that su

essfully addresses the general problem of �eldswhi
h vary arbitrarily in both time and spa
e has not been developed. Thegoal of the work is to o�er a proje
tion operator te
hnique for a se
ondaryquantized problem of pair 
reation.II. Se
ondary quantized problem of pair produ
tion in ahomogeneous ele
tri
 �eld rotating in the planeWe 
an de�ne an operator of ele
tron 
reation ϕ̂1
+ as quantized positivelyfrequen
y part ϕ1

+ of �eld fun
tion ϕ1 , and an operator of positron 
re-ation ϕ̂†
1

+ as quantized positively frequen
y part ϕ†+
1 of Hermitian 
onju-gate �eld fun
tion ϕ†

1 . A

ordingly, the operator of ele
tron annihilation
ϕ̂†

1

− is de�ned as quantized negatively frequen
y part ϕ†−
1 of Hermitian
onjugate �eld fun
tion ϕ†

1 , and the operator of positron annihilation ϕ̂1
−quantized as negatively frequen
y part ϕ−

1 of �eld fun
tion ϕ1 . Now we 
ande�ne annihilation operators (Φ̂†
pair

)− and 
reation operators (Φ̂pair

)+ offermion pairs as
(
Φ̂
†
pair

)−
= Φ− = ϕ̂1

− ϕ̂†
1

−
, (1)

(
Φ̂pair

)+
= Φ+ = ϕ̂†

1

+
ϕ̂1

+, (2)and an operator
(
Φ̂
†
pair

)0
= Φ0 =

1

2

(
ϕ̂1

+ ϕ̂†
1

−
− ϕ̂1

− ϕ̂†
1

+
)
. (3)Substituting into invariant Casimir operator C2 for algebra SU(2)

C2 =
1

2
(Φ+Φ− + Φ−Φ+) + Φ2

0 (4)162



the expli
it expressions for Φ±,Φ0 (1) - (3), we �nd the Casimir operatoras
C2 =

3

4

(
1 −

(
ϕ̂1

+ ϕ̂†
1

−
− ϕ̂†

1

+
ϕ̂1

−

)2
)
. (5)One get a wave fun
tion Ψ(~r1, ~r2) of fermion pair with additional 
oupledele
tron by an a
tion of the operator ϕ̂1

+ and (Φ̂pair

)+ on a va
uum ve
tor
| 0〉 as

Ψ(~r1, ~r2) =
〈
~r1 |Ψ̂|~r2

〉
=
〈
~r1 | ϕ̂1

+ |0
〉〈

0|
(
Φ̂pair

)+
|~r2
〉
, (6)where ~r1 is a radius - ve
tor of ele
tron with spin "up", ~r2 is a radius -ve
tor of ele
tron with spin "down". Sin
e by virtue of state orthogonalityit is possible to add the proje
tion operator |0 >< 0| in 
al
ulations up to

Î, the expression (6) 
an be transformed to the form
| Ψ〉 = Ψ̂| 0〉 = ϕ̂1

+ Î
(
Φ̂pair

)+
| 0〉 . (7)Negle
ting 
orrelations, the va
uum ve
tor | 0〉 
an be presented as a prod-u
t of va
uum ve
tors | 0 ↑〉 and | 0 ↓〉 for states with spin "up" and "down".Hen
e, the expression (7) 
an be rewritten as

| Ψ〉 = Ψ̂| 0〉 = ϕ̂1
+ | 0 ↑〉

(
Φ̂pair

)+
| 0 ↓〉 ≡ | 1, 0〉 | 1, 1〉 , (8)where | 1, 0〉 is a state with one ele
tron, | 1, 1〉 is a state with one ele
tronand one positron. Sin
e, as shown above, ket-ve
tors | 1, 0〉 and | 1, 1〉 aretransformed on a representation of the symmetry group SU(2), the wavefun
tion | Ψ〉 is transformed on representation of the symmetry group SO(4).Let us evaluate a value whi
h is a

epted a Casimir operator C4 of groupSO (4) on the ve
tor | 1, 0〉 | 1, 1〉 of Fo
k spa
e:

C4(| 1, 0〉 | 1, 1〉) = (C2| 1, 0〉) | 1, 1〉 + | 1, 0〉 (C2| 1, 1〉) . (9)Values of the Casimir operator C4 (9) are eigenvalues of the operaror ofsquared angular momentum Ĵ
2 of the state | 1, 0〉 | 1, 1〉 des
ribing the sys-tem from one ele
tron and one pair of parti
le - antiparti
le. We see that163



operators ϕ̂1
+ ϕ̂†

1

− and ϕ̂†
1

+
ϕ̂1

− are operators of o

upation numbers forfermions n̂− and antifermions n̂+ :
n̂− = ϕ̂1

+ ϕ̂†
1

−
, n̂+ = ϕ̂†

1

+
ϕ̂1

− . (10)Substituting the expressions (5) and (10) in the formula (9) we get C4 = 3
4as for the state | 1, 1〉 we have

C2| 1, 1〉 =
3

4
[1 − (n̂− | 1, 1〉 − n̂+ | 1, 1〉)] =

3

4
, (11)and for the state | 1, 0〉 C2 = 0 owing to identity

C2| 1, 0〉 =
3

4
(1 − n̂− | 1, 0〉 + n̂+ | 1, 0〉) = 0. (12)It means that the state | 1, 0〉 | 1, 1〉 is transformed on a spinor representationof the group SU(2). This result is an appearan
e of a 
y
li
 symmetryof many fermion systems, meaning, that by virtue of identity of ele
tronsthere are 
on�gurations whi
h are produ
ed by a 
y
li
 permutation froma 
on�guration with one unpaired ele
tron in
luding a 
on�guration with a"hole" - positron and ele
tron with spin "down". Further we shall develop ate
hnique of proje
tion operators allowing the se
ondary quantization of asystem with variable number of parti
les and pairs of parti
le - antiparti
le.III. Se
ondary quantized wave fun
tion of a system with variablenumber of ele
tron and fermioni
 pairsLet us 
onsider a quantum system 
onsisting of variable (very large) number

N of identi
al intera
ting parti
les N → ∞. Its des
ription will be 
ompleteif one knows a

urate within phase multiplier exp(ıθ) a ve
tor of state |ϕ1 >for one parti
le, a two-dimensional ve
tor of state |ϕ1, ϕ2 > for a subsystemfrom two parti
les, a three-dimensional ve
tor of state |ϕ1, ϕ2, ϕ3 > for asubsystem from three parti
les, et
. A wave fun
tion |ϕ̂ > of all many par-ti
le system is des
ribed by ve
tors with 
oordinates < ϕ̂|ϕ0, ϕ1, . . . , ϕn >[6℄: 


< ϕ̂|ϕ0 >< ϕ0|
< ϕ̂|ϕ0, ϕ1 >< ϕ0, ϕ1|

. . .
< ϕ̂|ϕ0, ϕ1, . . . , ϕn−1 >< ϕ0, ϕ1, . . . , ϕn−1|
< ϕ̂|ϕ0, ϕ1, . . . , ϕn >< ϕ0, ϕ1, . . . , ϕn|



. (13)164



Here |ϕ0, ϕ1, . . . , ϕn > is 
alled a ve
tor of state in ve
tor Fo
k spa
e,
ϕ0, ϕ1, . . . , ϕn are parameters of parti
les, for example, 
oordinates, mo-mentum, energy. The se
ondary quantized fun
tion |ϕ̂ > 
onsists of thesum of its proje
tions:
< ϕ̂| =

∞∑

n=0

∫ . . . ∫ dϕ0 . . . dϕn < ϕ̂|ϕ0, ϕ1, . . . , ϕn >< ϕ0, ϕ1, . . . , ϕn| (14)where the following identity holds for a va
uum state ϕ0:
∫ dϕ0 ≡ 1. (15)Let us assume that the wave fun
tion |ϕ̂ > of many parti
le system isprodu
ed by an a
tion of proje
tion operator ϕ̂ on a ve
tor |ϕ >:

|ϕ̂ >= ϕ̂|ϕ > . (16)Sin
e the operator ϕ̂ is a proje
tor it possesses a property of self-adjointness.Hen
e, after taking into a

ount the expression 
onjugated to (16) in (14)the obtained relationship 
an be transformed to the following form
< ϕ| ϕ̂† =

∞∑

n=0

∫ . . . ∫ dϕ0 . . . dϕn < ϕ|ϕ̂ϕ0, ϕ1, . . . , ϕn >< ϕ0, ϕ1, . . . , ϕn|.(17)The multidimensional ve
tor |ϕ1, . . . , ϕn > belongs to a tensor produ
t ofve
tor spa
es V1 ⊗ V2 ⊗ . . . ⊗ Vn:
|ϕ0, ϕ1, . . . , ϕn >=

1√
n!
|ϕ0 > |ϕ1 > . . . |ϕn > . (18)Sin
e ϕ0 is a va
uum state, the proje
tion ϕ̂|ϕ0 > of the ve
tor of va
uumstate |ϕ0 > is also the va
uum state

ϕ̂|ϕ0 >= |ϕ0 > . (19)Substituting (19) in (17) and multiplying the obtained expression at the leftby a ket - ve
tor |ϕ > we get
|ϕ >< ϕ̂| ≡ |ϕ >< ϕ| ϕ̂†

=
∞∑

n=0

∫ . . . ∫ dϕ0 . . . dϕn|ϕ >< ϕ|Î|ϕ0, ϕ1, . . . , ϕn >< ϕ0, ϕ1, . . . , ϕn|. (20)165



We see that the n-dimensional ve
tor |ϕ0, ϕ1, . . . , ϕn > belongs to a sumof tensor produ
ts of ve
tor spa
e V on the n − 1 -dimensional spa
e V1 ⊗
V2 ⊗ . . . ⊗ Vn−1:

|ϕ0, ϕ1, . . . , ϕn >∈ V1 ⊗ V n−1
1 ⊕ V2 ⊗ V n−1

2 ⊕ . . .⊕ Vn ⊗ V n−1
n , (21)where the (n− 1)-dimensional ve
tor spa
es V n−1

k are tensor produ
ts as
V n−1

k = V0 ⊗ V1 ⊗ . . .⊗ Vk−1 ⊗ Vk+1 ⊗ . . .⊗ Vn. (22)Therefore, using (21) and taking into a

ount antisymmetry of the wavefun
tion we 
an rewrite formula (18) as
|ϕ0, ϕ1, . . . , ϕn >=

1√
n

(|ϕ0, ϕ1 > |ϕ2, . . . , ϕn > +(−1)

×|ϕ0, ϕ2 > |ϕ1, ϕ3, . . . , ϕn > + . . .+ (−1)n−1|ϕ0, ϕn > |ϕ1, . . . , ϕn−1 >)(23)where the multiplier (−1)k has arisen be
ause of antisymmetry of the manyele
tron wave fun
tion with respe
t to permutation of parti
les. Assumingorthonormality of the ve
tors |ϕi >: < ϕk|ϕi >= δ(ϕk − ϕi), substituting(23) in the formula (20), and taking into a

ount de
omposition (18) weobtain
|ϕ >< ϕ| ϕ̂† =

∞∑

n=0

∫ . . . ∫ dϕ0 . . . dϕn
1√
n

∞∑

i=1

∑

k

|ϕ >< ϕ|ϕi >

×(−1)k−1δ(ϕk − ϕi)|ϕ0, ϕ1, . . . , ϕk−1, ϕk+1, . . . , ϕn >< ϕ0, ϕ1, . . . , ϕn|.(24)Integrating with a

ount of presen
e of δ - fun
tions and taking into a

ountidentity of parti
les, we transform the expression (24) to the following form
|ϕ >< ϕ| ϕ̂† =

∞∑

n=1

∫ . . . ∫ dϕ0 . . . dϕn−1

√
n

n∑

i=1

(−1)i−1

×|ϕ >< ϕ|Î |ϕi > |ϕ0, ϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕn >< ϕ0, ϕ1, . . . , ϕn|. (25)From expression (25) we �nd the expansion of the proje
tor ϕ̂:
ϕ̂† =

n∑

k=1

|ϕk > ϕ̂′
k

†
. (26)166



where the operator ϕ̂′
k is de�ned by the following expression:
ϕ̂′

k

†
= (−1)k−1

∞∑

n=1

∫ dϕ0 . . . dϕn−1

√
n

×|ϕ0, ϕ1, . . . , ϕk−1, ϕk+1, . . . , ϕn >< ϕ0, ϕ1, . . . , ϕn|. (27)We 
onstru
t a basis set of operators on whi
h then we expand the se
-ondary quantized fun
tion < ϕ| ϕ̂†. From the expressions (25), (27) andde
omposition of operator unity Î =
∑

i |ϕi >< ϕi| we �nd
< ϕ| ϕ̂† =

n∑

i,k=1

< ϕ|Î |ϕk > Î|ϕi >< ϕi|Î ϕ̂′
k

†
=

n∑

i,k=1

ak(ϕ)|ϕi >< ϕi|Î ϕ̂′
k

†(28)where fa
tors ak(ϕ) are de�ned by the expression ak(ϕ) =< ϕ|Î |ϕk >.Obviously, the 
onstru
ted se
ondary quantized wave fun
tions
|ϕi >< ϕi| ϕ̂′

k

†, i, k = 1, 2, . . . 
an be 
onsidered as a basis set for theexpansion of se
ondary quantized fun
tion < ϕ| ϕ̂† in a series (28). Takinginto a

ount identity of parti
les we 
an de�ne the one-parti
le annihilationoperator ϕ̂′
1(ϕα) as [7℄

ϕ̂′
1(ϕα) ≡ ϕ̂′

k=1

†
∣∣∣∣
ϕn→ϕα

= |ϕ0 >< ϕα| +
√

2 ∫ dϕ1|ϕ0, ϕ1 >< ϕ0, ϕ1, ϕα|

+
√

3 ∫ dϕ1dϕ2|ϕ0, ϕ1, ϕ2 >< ϕ0, ϕ1, ϕ2, ϕα| + . . .(29)and express two-parti
le operators Φ̂
†

pair and Φ̂pair (1), (2) des
ribing pairsof parti
les through these one-parti
le operators. The se
ondary quan-tized wave fun
tion (28) 
ontains entangled states and 
onsequently thepositroni
 
ontribution at the o�ered way of quantization.IV. Method of the Green fun
tionsLet us utilize the te
hnique of proje
tion operators for the des
ription of aGreen fun
tion [8℄
Ĝ(z) = Î

2
Ĝ(z) = ∫ ∫ d~rd~r ′|~r ′ >< ~r ′|Ĝ(z)|~r >< ~r|

= ∫ ∫ d~rd~r′|~r′ > G(~r,~r′; z) < ~r|. (30)167



Let us de�ne the Green fun
tion G for N -dimensional problem as a solutionof the following equation:
[
ı~
∂

∂t
− Ĥ0 − ĤN (~r1, ~r2, . . . , ~rN )

]
G(~r1, ~r

′
1;~r2, ~r

′
2; . . . ;~rN , ~r

′
N ; t, t′)

= δ(~r1 −~r ′
1) . . . δ(~rN −~r ′

N )δ(t − t′). (31)Here Ĥ0 is the kineti
 energy of parti
les, ĤN (~r1, ~r2, . . . , ~rN ) is an intera
-tion operator determined as
ĤN (~r1, ~r2, . . . , ~rN ) =

N∑

i<j

Ĥ1(|~ri −~rj |). (32)We 
an des
ribe the Green fun
tion of N-dimensional problem as
ĜN (t1 − t0) = Ĝ

(0)
N (t1 − t0)

+ ∫ Ĝ(0)
N (t1 − ti) ĤN (~r1(ti), ~r2(ti), . . . , ~rN (ti)) Ĝ

(0)
N (ti − t0)dti + ∫ dti

×∫ dtk Ĝ
(0)
N (t1 − ti) ĤN (~r1(ti), ~r2(ti), . . . , ~rN (ti)) Ĝ

(0)
N (ti − tk)

× ĤN (~r1(tk), ~r2(tk), . . . , ~rN (tk)) Ĝ
(0)
N (tk − t0) + . . . = Ĝ

(0)
N (t1 − t0)

+ ∫ dti Ĝ
(0)
N (t1 − ti) ĤN (~r1(ti), ~r2(ti), . . . , ~rN (ti))

[
Ĝ

(0)
N (ti − t0)

+ ∫ dtk Ĝ
(0)
N (ti − tk) ĤN (~r1(tk), ~r2(tk), . . . , ~rN (tk)) Ĝ

(0)
N (tk − t0) + . . .

]

= Ĝ
(0)
N (t1 − t0)

+ ∫ dti Ĝ
(0)
N (t1 − ti) ĤN (~r1(ti), ~r2(ti), . . . , ~rN (ti)) ĜN (ti − t0) (33)where the proje
tion N -parti
le Green fun
tion is de�ned by the followingexpression:

ĜN (t) = ∫ d~r1~r2 . . . ~rNd~r ′
1d~r

′
2 . . . d~r

′
N

×|~r ′
1, ~r

′
2, . . . , ~r

′
N >< ~r1, ~r2, . . . , ~rN |

×Ĝ(t)|~r ′
1, ~r

′
2, . . . , ~r

′
N >< ~r1, ~r2, . . . , ~rN | ≡ ∫ d~r1 . . . ~rNd~r ′

1 . . . d~r
′
N

|~r ′
1, . . . , ~r

′
N >< G(~r1, . . . , ~rN , ~r

′
1, . . . , ~r

′
N ; t) >< ~r1, . . . , ~rN | (34)and the intera
tion is determined by a proje
tor

ĤN = Î
2
Ĥ1 = ∫ d~r1 . . . ~rN d~r ′

1 . . . d~r
′
N

×|~r ′
1, . . . , ~r

′
N >< ~r ′

1, . . . , ~r
′
N | Ĥ1 |~r1, . . . , ~rN >< ~r1, . . . , ~rN |. (35)168



In the se
ondary quantized 
ase the operators ĜN , ĤN be
ome produ
ts ofproje
tion operators:
ĜN (t′1 −t1, . . . , t′N −tN)

= ∫ d~r1 . . . ~rN d~r ′
1 . . . d~r

′
N ϕ+(~r ′

1, t1) . . . ϕ
+(~r ′

N , tN )|0 >
×G(~r1, t1; . . . , ~rN , tN ;~r ′

1, t1; . . . , ~r
′
N , tN ) < 0|ϕ−(~r1, t1) . . . ϕ

−(~rN , tN ), (36)
ĤN =

1

2

∑

i,j

∫ d~ri ~rj d~r
′
i d~r

′
j ϕ

+(~r ′
i)ϕ

+(~r ′
j)|0 >

× < ~r ′
i, ~r

′
j | Ĥ1 |~ri, ~rj > δ(~ri −~r ′

i)δ(~rj −~r ′
j) < 0|ϕ−(~ri)ϕ

−(~rj)

=
1

2

∑

i,j

∫ d~ri ~rj dtjϕ
+(~ri, ti)ϕ

+(~rj , tj)|0 >

× Ĥ1(|~ri −~rj |)δ(ti − tj) < 0|ϕ−(~ri, ti)ϕ
−(~rj, tj) (37)where the time ti(t′i) , i = 1, . . . , N is de�ned as ti = t + εi(t
′
i = t′ + ε′i),

εi(ε
′
i) → 0 and in this sense the equality of the se
ondary quantized wavefun
tions (28) ϕ+(~ri, ti) = ϕ+(~ri(t)) (ϕ−(~ri, ti) = ϕ−(~ri(t))) is understood.Knowing unperturbed Green fun
tion, the perturbed two-parti
le operatorGreen fun
tion 
an be found from the equation

( ̂̃G2)
ns′ms def

== ϕ+(n)ϕ+(s′)ϕ−(m)ϕ−(s) = (ϕ(0))+(n)(ϕ(0))+(s′)

×(ϕ(0))−(m)(ϕ(0))−(s) +
1

2
∫ dtidtjd~ri ~rj d~r

′
i d~r

′
j

×δ(~ri −~r ′
i)δ(~rj −~r ′

j)
[
(ϕ(0))+(j′)(ϕ(0))+(s′)(ϕ(0))−(m)(ϕ(0))−(i′)

×ϕ+(~r ′
j, t

′
j)ϕ

+(~r ′
i, t

′
i) Ĥ1(|~ri −~rj |)δ(ti − tj)ϕ

−(~ri, ti)ϕ
−(~rj , tj)

×ϕ+(n)ϕ+(i)ϕ−(j)ϕ−(s) + (ϕ(0))+(j′)(ϕ(0))+(s′)(ϕ(0))−(m)(ϕ(0))−(i′)

×ϕ+(~r ′
i, t

′
i)ϕ

+(~r ′
j, t

′
j) Ĥ1(|~ri −~rj |)δ(ti − tj)ϕ

−(~rj , tj)ϕ
−(~ri, ti)

×ϕ+(n)ϕ+(i)ϕ−(j)ϕ−(s)
]
.(38)V. Dis
ussion and 
on
lusionWe observe that the 
ontributions from parti
les and parti
le-antiparti
lepairs are not represented by superposition due to anti
ommutators thatare not equal to zero. In this sense these 
ontributions are nonseparable.169



For one-parti
le Dira
 problem the se
ondary quantized wave fun
tion isexpressed only through one-parti
le 
reation operators for parti
les and an-tiparti
les. In this 
ase one 
an negle
t the nonseparability of 
ontributionsfrom parti
les and parti
le-antiparti
le pairs. Therefore instead of operatortwo-parti
le Green fun
tion ( ̂̃G2)
ns′ms one 
an introdu
e an operator Greenfun
tion (Ĝ2)

ms′sn obtained from it by even permutations of the 
reationand annihilation operators:
(Ĝ2)

ms′sn = ϕ−(m)ϕ+(s′)ϕ−(s)ϕ+(n) for tm > ts′ , ts > tn. (39)By rewriting eq. (38) for the Green fun
tion (39) and summation over in-dexes s, s′ it is possible to obtain a Dyson equation des
ribing one-parti
leGreen fun
tion. Finally, we have shown that in the 
ase of variable numberof ele
tron and fermioni
 pairs it is ne
essary to utilize more general equa-tion for the Green fun
tions whi
h allows to des
ribe any 
ombination ofparti
les and pairs. Referen
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