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Abstract

The birth and the evolution of the BGL series of conferences
are briefly reviewed.

I. Prelude

It started in 1997. The idea of the conference, that later gave start to the
series, came during a conversation with late N.A.Chernikov in the train
Dubna - Moscow (2 hours of journey). Nikolai Alexandrovich Chernikov
was a prominent theorist working at the Bogolyubov Laboratory of The-
oretical Physics of the Joint Institute for Nuclear Research in Dubna. He
was an outstanding expert in general relativity, geometry and quantum field
theory. With his wife Natalia, they maintained close relations and scien-
tific collaboration with the Lobachevskij Kazan State University. Nikolai
Ivanovich Lobachevsky, born in Nizhni Novgorod, dedicated most of his life
to the Kazan University, where he started his studies and his work, later
becoming its rector. Both towns lie on the splendid Volga river, heart of
Russia, away from Europe’s cross-roads. The character of the people, their
mentality and their behavior bears much in common with this unique envi-
ronment.

Speaking about Lobachevsky’s life, full of drama, Chernikov said

- You, Hungarians, have an equally great man in your history! His name
is Janos Bolyai, and his life was as tragic as that of our co-patriot. We



should remember of them together!

So we decided to call for a conference under the title “Non-Euclidean
geometry in modern physics and mathematics” or, in short, BGL, after the
names of Bolyai, Gauss and Lobachevsky, where Russians and Hungarians
would join their efforts to remember the heritage of their great ancestors.
The name of Friedrich Gauss is usually cited among the creators of the
new geometry, and we are looking forward for a wider German involvement
in future BGL conferences. The ordering in the abbreviation is purely al-
phabetic. Although there are different opinions about the priority of the
discovery of the non-FEuclidean geometry, we avoided any preference at this
point. The title of the subsequent conferences slightly varied, the last pro-
posal being: “Non-Euclidean geometry and modern physics”, but the sym-
bolic abbreviation (BGL) remaining unchanged. The topics of the BGL
were settled as: history (from Euclides to the present times), mathematics
and physics, the accents depending on the interests of the organizers.

It should be stressed that, apart from its strict physics and geometric
content, the conference has also a special “human” or “cultural” aspect in
bringing together traditions of the classical science and the spirit of the Old
Continent, different from the so-called globalization. BGL is also a bridge
between East and West in this changing world. The number of the par-
ticipants is stable, varying around 50. The first conference gave start to a
series of biannial meetings at varying places of Furope.

Let us recall briefly the history of 5 previous BGL conferences, compris-
ing now a period of more that 10 years - a “quasi jubilee”.

II. Ungvar-Uzhgorod, Transcarpatia (1997)

The venue of the first BGL was chosen to be in Ungvar, Transcarpatia (now
Uzhgorod, Ukraine), where I was born and T have studied at the local univer-
sity. Transcarpatia is bordering with several countries, located between the
Western (Hungarian and German) and Eastern (Slavic) cultural environ-
ments and influence, symbolically linking the heritage of Bolyai, Gauss and
Lobachevsky and their followers. The local Institute of Electron Physics
(IEP) of the Ukrainian Academy of Sciences kindly provided hospitality
for the first BGL conference. A bust of N.I. Lobachevsky, by the known
Ukrainian sculptor V. Fedichev (Kiev) was inaugurated at the opening, and
was donated to the TEP.



The director of the IEP, member of the Ukrainian Academy and for-
eign member of the Hungarian Academy of Sciences Otto Spenik with the
scientific secretary of the Institute Zoltan Tarics consolidated the local orga-
nizing committee providing excellent working conditions for the Conference
as well as excursions with conference dinners at the villages Nagy Dobrony
and Péterfalva. It was, perhaps, for the first time since the end of the 2nd
World War that physicists and mathematicians from the neighboring Tran-
scarpatia and Transylvania, separated by less than 100 km (and a border!),
could meet and discuss the common cultural heritage. Russia was repre-
sented by two great physicists — N.I. Chernikov and A.A. Tyapkin - both
from Dubna.

Of crucial importance for the first and subsequent BGL conferences was
the support from the Hungarian Academy of Sciences and its member Pro-
fessor Istvan Lovas, who remains a central figure in the organization of all
subsequent BGL meetings. The proceedings of the first BGL conference
were published in [1].

ITI. Nyiregyhaza, Eastern Hungary (1999)

The venue of the 2nd BGL meeting, thanks to the efforts of Arpad Szabo,
former director of the Hungarian lyceum in Ungvéar (Uzhgorod), was the
Nyiregyhéza Pedagogical Institute, where A. Szabé moved in the mean-
time. The Institute provided all the necessary facilities (conference hall,
lodging and meals at low prices), enabling wide participation at the confer-
ence - both from East (Romania, Ukraine, Bielorussia, Russia) and from the
West [A. de Alfaro (Torino), M. Tonin (Padova), H. Terazawa (Tokyo), L.
Csernai (Bergen) and many others|. For the first time Transylvania, home-
land of Janos Bolyai, was represented by its leading experts on the subject,
including Samu Benkd and Tibor Tor6 (history of science). Participant was
also the outstanding, world-wide recognized expert of the Bolyai heritage,
Elemér Kiss from Marosvéasarhely, where Janos Bolyai spent most of his life.
E. Kiss became an expert on Bolyai’s manuscripts and wrote a book on the
studies of these manuscripts (being difficult to read!) where, apart from the
new geometry, Bolyai’s contribution to the number theory is also presented.
The book, besides the two Hungarian editions, was translated and printed
also in English and is now a bibliographic rarity. Two great men, followers
of Lobachevsky and Bolyai, namely N.A | Chernikov and E. Kiss, met during



BGL-2 in Nyiregyhaza - for the first and, alas!, the last time. After heavy
and long straggle against their disease, both died of cancer (in 2006).

The second BGL meeting in Nyiregyhaza reaffirmed the universal and
humanistic spirit of the BGL conferences. The social program included an
excursion to the famous Tokaj wine yards. The proceedings of the BGL
conference were published, due to the invaluable efforts of Prof. I. Lovas,
in two issues of the Acta Physica Hungarica [2].

IV. Marosvasarhely — Targu Mures (Transylvania) (2002)

2002 was the year of the widely celebrated 200-th anniversary of Jénos
Bolyai. In particular, the Hungarian Academy of Sciences organized a large
Bolyai-conference in Budapest in August. We decided to join the celebra-
tions by organizing BGL-3 in September 2002, after an “irregular”, 3-years
interval. Jénos Bolyai was born in Kolozsvar (Klausenburg, Cluj Napoca),
but he lived with his father and died in Marosvéisarhely, leaving there more
than 20,000 pages of mathematical manuscripts, that can now be found in
the Bolyai-Teleki library.

Vice-Mayor of Marosvasarhely Sandor Csegzi, together with academician
Istvan Lovas from Budapest and Debrecen were the principal organizers of
the BGL-3 conference. The Hungarian Sapientia University of Transylva-
nia, together with the Town Council as well as the Hungarian Academy
of Sciences supported the conference. Most of the participants came from
Romania, Hungary, Ukraine, Russia and Bielorussia, but there were also
participants from far away countries like Japan. The atmosphere of the
conference was dominated by the mystical presence of Bolyais — father and
son. We visited memorial places of the family, including the cemetery. A
more relaxed excursion was organized to neighboring villages, populated by
Székelys, “Hungarian cossaks”, whose unofficial capital is Marosvasarhely.
The Proceedings of BGL-3 are published in [3].

V.Nizhni Novgorod (Russia) (2004)

From Central Europe, BGL moved to North-East, to Russia. In 2004 the
Lobachevsky Nizhni Novgorod University was the host of the 4-th con-
ference (see: http://www.unn.ru/bgld/). It was organized by Prof. F.




Polotovskiy and his staff, supported by the Rector of the University, prof.
Strongin.

We enjoyed the cordial Russian hospitality and profited from the high-
level presentations, especially those in mathematical physics, the field in
which Russia has always a large number of interesting results. The partici-
pation of a considerable number of Hungarians at the conference at Russia’s
heartland, in spite of the barriers imposed by visas, high travel costs and
prejudices from mass media, was a proof of the viability and continuity of
cultural links between East and West and of the mutual respect for common
values represented by the BGL heritage. During the site-seeing, the par-
ticipants became acquainted with the memorial places of N.I.Lobachevsky.
In a boat trip along Volga, the legendary town of N. Novgorod with its
majestic Kremlin has opened its splendor. The proceedings of the BGL-4
conference [4] contain a collection of high-level papers in various fields of
mathematics and theoretical physics, as well on the history of science.

VI.Minsk (Bielorussia) (2006)

Bielorussia, in spite of its relatively modest dimensions, has a community of
physicists and mathematicians, grouped in Minsk and elsewhere. Professor
Yury Kurochkin, who participated in most of the previous BGL confer-
ences, is a known expert in geometry and theoretical physics. With his
assistant, mathematician Victor Red’kov from the Institute of Physics of
the Bielorussian Academy of Sciences, they led the organizing committee of
the 5-th BGL conference, held in the fall of 2006, in a resort, outside the
city of Minsk (http://dragon.bas-net.by/bgl5/). Similar to the previous
conference in N. Novgorod, the hosts provided reasonable low-cost accom-
modation and food, and excellent, high-level scientific presentations. The
program was dominated by contributions form Bielorussia and neighboring
countries. An enjoyable excursion to the city of Minsk was organized. A
big volume of the Proceedings was published shortly after BGL-5 [5].

VII.Future

This year the Conference returned to Central Europe, Debrecen, heartland
of Hungary. During the discussion concluding BGL-6, we heard that:



1. The biennial series should be continued. Several options for the next
conference site were mentioned, among them were Kolozsvar (Cluj-
Napoca) and Trieste. The optimal title seems to be: “Non-Euclidean
geometry in modern physics”.

2. A wider German participation, including the organization of a future
BGL conference in Germany, is highly welcome.

3. The scope of the conference is right and it should be continued; physics
and mathematics should be present in a balanced way, with some his-
tory of science, arts etc. added. Ultimately, Janos Bolyai was a poly-
histor, to use this “modern” term. He was an accomplished polyglot,
speaking nine foreign languages, including Chinese and Tibetan. He
played violin and was a skilled fencer. F. Gauss was learning Rus-
sian (to read Pushkin or Lobachevsky?). Their life and heritage are
inspiring!
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Abstract

Certain properties of torse-forming, concircular and conver-
gent vector fields on manifols with affine connection are stud-
ied. Connections of manifols in which such vector fields exist
are found. Moreover, examples of the mentioned manifols in
case they are compact and metrizable are presented.

I. Introduction

Concircular and torse-forming vector fields were introduced by K. Yano
[16] in 1944 and their properties in Riemannian spaces have been stud-
ied by various mathematicians. Their generalizations are K#hlerian torse-
forming vector fields (shortly K-torse-forming) which were introduced by
Yamaguchi [14]. Many authors, for example [2, 10], investigated K&hlerian
torse-forming vector fields which we call K-concircular vector fields.

Special types of these vector fields (covariantly constant, recurrent, con-
vergent, concircular) have been studied earlier. Riemannian spaces, on
which these fields exist, have a specific form of a metric, namely they are
warped product spaces, see for example [6, 7, 8, 12, 13, 15].

The vector fields have been studied mostly in Riemannian spaces. Their
definitions, as it is shown, depend first of all on an affine connection and
basically not on a metric, see [13].



In this paper we introduced local and global conditions of an existence of
the studied vector fields on manifolds A,, with torsion-free affine connections
and the conditions of setting the metric in A,,. Actually it is a continuation
of our previous paper, see [11].

I1. K-torse-forming vector fields

First we note definitions and some properties of torse-forming vector
fields, via them we define recurrent, convergent and concircular vector fields,
see [8].

Definition 1. A vector field & on a manifold A, with an affine connection
V s called torse-forming, if the condition Vx& = p- X + a(X) - &€ holds
for any vector field X from X(A,), p is a function on A,, a is a linear
form on A,.

A torse-forming vector field € is called

e recurrent, if p =0,

e concircular, if the form a is gradient (or locally gradient), i.e. there
exists
(locally) a function o(z) such that a = dp(x) = 0;0(z) dx’,

e convergent, if € is concircular and p(x) = const - e?(®),

Let A, be an n-dimensional manifold with affine connection V (shortly
— space with affine connection V), on which an affinor structure F is defined
(i.e. F is a tensor field of type G) on A,), we can define more generalized
vector fields.

Definition 2. A vector field & is called K-torse-forming if
Vx€=p-X+0o -FX+a(X) -£+bX)-Fg, VX eTV,, (1)

where p, o are some function, and a, b are linear forms on A,,.
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In local coordinates z it is
= pol +o F + aig" + biFlIE”,

where ¢", Fih7 a;, b; are components of €, F, a, b, and “,” denote the covariant
derivative.

These vector fields are studied on Ké&hlerian, eventually on Hermitian,
spaces from many others aspects, see for example S. Yamaguchi [3, 14], K.R.
Esenov [2], J. Mikes, G.A. Starko [10], see [7].

It is easy to prove an integral curve ¢: z = z(t) of a K-torse-forming
vector field € is F'-planar, because its tangent vector dx/dt = & satisfies a
following condition ([4, 7, 9])

Ve€ = 01(t) & + 02(t) FE,

where ¢1, 02 are functions of a parameter ¢.

An existence of K-torse-forming vector fields on spaces with affine con-
nection has two aspects — local and global. These aspects were studied for
torse-forming and concircular vector fields in [11].

The fundamental question is an existence of spaces A,, on which men-
tioned vector fields exist; for example, such global vector fields live on com-
pact spaces.

ITI. Local existence of K-torse-forming vector fields on A,

ITI.1

At first we construct all affine connections on spaces A, (locally) on
which K-torse-forming vector fields exist.

The finding of all spaces A,, with affine connection V, on which these
fields are defined, is easy from a locally aspect. It is known, that a chart
(x,U) exists on manifolds for non vanishing vector field & and it holds:

) =06t vzeU.

13



We note 57’5 = 9;¢h +§°‘I’Zi, where £" and I‘?j are components of a vector
field € and of an affine connection V on spaces A,,. We get the following
expression I’;‘j of affine connection V on spaces A,, on which K-torse-form-

ing vector spaces are defined if we substitute this to the equations (1):
Lli(2) = p(2)8) + o(2)Ff(2) + ai(2)8) + bi(2)FY (), (2)

where p(z), o(x), ai(z), b;(x) are some functions defined on U, F/*(z) are
components of a structure F' on U; the other components I’Z(x) are arbi-
trary functions defined on U.

In general case the components (2) can define a connection V with tor-
sion. If I’?j = I‘?i then this connection V is torsion-free.

An analysis of these formulas it follows that a set of manifolds A, on
which mentioned vector fields live is very broad. It is possible to verify that
the majority of manifolds A,, are not metrizable, i.e. there does not exist a
metric g, for which a connection on A, is not a Levi-Civita connection of

g.

The affinor structure F' is arbitrary. Evidently, in the event, if F' is com-
plex or almost complex structure, in general case space A,, is not K#&hlerian
or Hermitian space.

III.2
It is well-known [7] a Kdhlerian space is a Riemannian space on which there
are defined metric g and complex structure F' satisfying
F? = —1d, g(X,FY)+ g(FX,Y) =0, VF =0,

for all tangent vectors X, Y.

In paper by J. Mikes and G.A. Starko [10] there was introduced a metric
of a Kéhlerian space and in this space there exists a K-torse-forming (or K-
concircular) vector field. In the canonical coordinate system x this metric
has a following expression:

Jab = Ja+mb+m = aabC:"i_anrmermGY, Gab+m = Ja+mb = aaberC:_anrmbC717

14



where G = G(z' + s(2?,23,..., 2™, ™2 o3 amtm) G G" # 0,

G, s € O3, are functions of mentioned arguments, a,b=1,...,m, m = n/2,
. . . at+m _ _ rpatm __
the structure F' is canonical, i.e. Fy =K., =0, F=F""=0,

and 0; = 0/0x". In this coordinate system a K-torse-forming vector field is
expressed: & = 0.

IV. Global existence of K-torse-forming vector fields on compact
Ap,

V.1

We introduce an example of a space with affine connection which is made
on n-dimensional torus.

Let A" = S1x St x-.-x 8 and 2!, 22,...,2", be the corresponding an-
gles on the circles. We have global vector fields X1 = 01, Xo = 0o, ..., X, =
On-

We define the affine connection V through its actions on these vector
fields, as follow:

VXin = p(.%')XZ + ()'(.%')}‘_ZXZ + a(XZ)Xl + b(X)FXl,

n
and for the others Vx, X; = wa]@) Xg, J#1L,
k=1

where p, o, wfj are functions and a,b are linear forms on A,, and F' is an

affinor structure on A,,.

Evidently, the space A, is compact, and € = X1 is a K-torse-forming
vector field.

The structure F' on even-dimensional A,,, for which the following condi-
tions hold

FX,=Xotm, FXorm=—Xg, Va=1,...,m, 2m=n,

is a globally complex structure. It is known, the following expression F? =
—1d holds for this structure.
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V.2

We introduce an example of a compact space with torsion-free affine
connection and covariantly constant complex structure which is made on
n-dimensional torus.

Let A" = St x St x .- x St and 2%, 22,...,2", n = 2m, be corre-
sponding angles in circles. Global vector fields are defined: X; = 0y, Xy =
O9,..., X, = 0.

We define complex structure F' and affine connection V, by actions of
these vector fields:

FXy = Xotm, FXoim=-Xa Va=1,...,m, (3)

Vx, X; = waj(x)Xk, (4)
k=1

where wfj (= wf) are functions on A,,.

It has been assumed that the functions wfj satisfies

c _ c+m __ c
Wap = Wy b+m — —Watmb+mo (5)
ct+m _ c o c+m .
Yodmbtm = Yab+m = “Yep > a,b,C— 1,2,...,m.

Then we prove that the structure F' is covariantly constant, i.e. VF = 0,
see [5].

Moreover, if

c _ ,.c+tm _  c+m __ c _ c c
Wal = Woltm = Yatm1 = “Watmil4m = ¢a51 + ¢15a,
c+m __..C _ ct+m __ C C
Watmitm = Waltm = —Wa1 = = Yatmd] — P14mIq,

where ; are functions on A, then the vector field & = X; is K-torse-for-
ming.

Lemma 1. There exists a compact manifold A, with torsion-free affine
connection and globally defined covariantly constant complex structure and
K-torse-forming vector field.

16



Furthermore we suppose that

1 1+m

_ _ 14+m
Wil = Witem

_ 1 _
=Wi{m1 = Witmiem = 1,

and the other components of w are zero. The formulas (4) and (3) define a
torsion-free affine connection V and a covariantly constant affine structure
F on A, respective. A vector field & = X7 is K-torse-forming.

Locally this connection V is calculated in terms of a metric g = diag(gi1,
922, - -, gnn), Where

911 = Jlimiim = exp(2x1), Jaa = Yatmaim =1, a=2,...,m, 2m = n.

Evidently, this metric locally generates a Kahlerian space with the structure
F.

In other hand, the constructed space A,, is not globally metrizable.

From this follows that Vgﬁ = &, and for the lenght |&] = \/g(&,&), we
have V£|£| = |£|. Because, A,, is compact, this case does not exist.

This work has been partially supported by the Council of Czech Gov-
ernment MSM 6198959214.
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Abstract

In this paper we prove that all affine connection manifolds
are locally projectively equivalent to some space with equiaffine
connection (equiaffine manifold). We found a system of linear
equations which determine all (pseudo-) Riemannian spaces ad-
mitting geodesic mappings onto an a-priori defined space with
affine connection.

I. Levi-Civita equations of geodesic mappings

As well known, a geodesic mapping is a diffeomorphism which preserves
geodesic curves, see for example [1]-[20], etc.

Beltrami [1] in 1865 began to study geodesic mappings onto Euclidean
spaces. Levi-Civita [7] obtained fundamental equations of geodesic map-
pings between Riemannian spaces. H. Weyl [19] defined geodesic mappings
between affine connection manifolds. He showed that the Levi-Civita equa-
tions are valid in this case, too.

These results were first formulated only locally. Many times it was found
that the Levi-Civita equations hold also globally (“in whole”), see [8].

Let A,, and A,, be n-dimensional affine connection manifolds with con-
nections V and V, respectively. We suppose that there exists a diffeomor-
phism f: A, — A,. Because it is very well known [3, 8, 12, 16, 19| that



an affine connection manifold is projectively equivalent to a manifold with
symmetric affine connection, we suppose that the connections V and V are
symmetric affine connections.

If U C A, is a coordinate neighborhood with coordinates = = (z!, ...,

x™), we suppose that the points M € U and M = f(M) € f(U) have
identical coordinates x. These coordinates x are called common coordinates
of the mapping f.

A diffeomorphism f: A, — A, is a geodesic mapping if and only if the
following Levi-Chivita equation holds:

Tl(x) = T7() + 075 (x) + 07y (), (1)

where I’?j and f?j are components of V and V, respectively, 1; is covector,
6l is the Kronecker symbol.

A diffeomorphism f from the manifold A, onto the (pseudo-) Rieman-
nian manifold V,, is a geodesic mapping if and only if the following Levi-
Civita equation holds:

Gijk = 2V Gij + Vi Gjx + Vj ik (2)

where g;;(z) are components of the metric tensor g of V,, “ .7 denotes the
covariant derivative with respect to the connection V on A,.

With the aid of these equations many problems of geodesic mappings of
Riemannian manifolds and affine connection manifolds were solved.

Levi-Civita [7], see [3]-[20], obtained these fundamental equations for
geodesic mappings between Riemannian manifolds. The above Levi-Civita
equations hold equally for Riemannian and for pseudo-Riemannian mani-
folds.

In the following we suppose that (see [13, 14, 16]):

Riemannian manifold = Riemannian and pseudo-Riemannian manifold.
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II. Geodesic mappings and equiaffine connection manifolds

As we have already said, affine connection manifolds are projectively
equivalent to some spaces with symmetric affine connection. Note that a
symmetric affine connection V is called equiaffine if the Ricci tensor of A,
is symmetric [12, 16].

It is known [12, 16| that the manifold A, is equiaffine (this means A,
has an equiaffine connection), if and only if on a coordinate neighborhood

U there exists a function f(z) so that I'Y (z) = %ﬁ).

We have the following theorem.

Theorem 1. An affine connection manifold is locally projectively equivalent
to an equiaffine manifold.

Proof. Let A, be a manifold with affine connection V. We can restrict
ourselves to the case that V is symmetric. We suppose that a coordinate
neighborhood U € A,, is mapped geodesically on A,, under the assumption
of the validity of the Levi-Civita equations (1).

We construct a covector 1;(x) in the following way:

Uile) = ~— T @) ®)
From (1) and (3) follows
re (x) =0. (4)

Formulae (3) and (4) hold only in the distinguished coordinate system z,
because T'?,(z) is not a covector. Condition (4) is equivalent to the sym-
metry of the Ricci tensor of A,, and the equiaffinity of A,. This property
is not dependent of coordinates.
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II1. Mikes-Berezovski equations of geodesic mappings from
equiaffine manifolds onto Riemannian manifolds

Sinyukov started from the following problem: find all Riemannian mani-
folds V,, which admit geodesic mappings onto an a priori defined Riemannian
manifolds V,,, see [8, 16].

This means we must find all metric tensors g, which are solutions of
the Levi-Civita equations (1) and (2). These equations are non-linear with
respect to the components of the metric tensor g and for their solution no
standard methods exist. Sinyukov (see [8, 16]) for this problem obtained a
set of linear equations of Cauchy type.

Mikes and Berezovski started from the generalized problem: find all
Riemannian manifolds V,, which admit geodesic mappings onto an a priori
defined affine connection manifold A, see |8, 9].

Theorem 2 (Mikes, Berezovski (8, 9|). The equiaffine manifold A, ad-
mits a geodesic mapping onto a Riemannian manifold Vy,, if and only if the
complete set of linear differential equations of Cauchy type in the covariant
derivatives in A,

(a) ai{ = XN& + N
(b) n )\ZJ. = ,u,(;; + alaRaj — aaﬁRZaﬁj; (5)
() (n—1p; = 2(n+1)ARy; + ao‘ﬁ(2Rm’75 — Rag,i)

has a solution with respect to the unknown symmetric reqular tensor a',
the vector \', and the function . The solutions of this system and (1) are
related by the equality

a” = exp(2¢) g5 N = —exp(2¢) 5, (6)
where 1; is a gradient vector of the function 1, g are components of the

dual tensor of the metric tensor of V.

Here R?jk and R;; = Ry, are components of the Riemannian and Ricci

tensors of A,, the comma “,” denotes the covariant derivative in A,,.
The first formula (5) gives the necessary and sufficient condition for the
existence of a geodesic mapping: A,, — V,,. This mapping is nontrivial if

and only if A\; Z 0.
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In this case, the set of equations (5) is linear and its solution is reduced
to the investigation of the integrability conditions and their differential pro-
longations, which are a set of algebraic (homogeneous with respect to the
unknown tensors a”/, A, and u) equations with coefficients from A, (i.e.
coefficients formed from objects defined on A,). Thus, in principle, we
can solve the following problem, if the given equiaffine manifold A,, admits
geodesic mappings onto the Riemannian manifold V;, and if the choice of
this mapping is arbitrary.

This system has not more than only one solution for initial conditions in
the point z,:

a(20) = a9, N(ao) = A plze) = f

The general solution of Eqs. (5) depends on a finite number of sub-

(n+1)(n+2)

stantial parameters r < Ny = . The number r is called the

degree of mobility of A,, with respect to geodesic mappings onto Riemannian
manifolds. From here it follows that the set of manifolds V;, onto which A,,
admits geodesic mappings, depends on a set of parameters of cardinality
not exceeding 7.

The degree of mobility of A, with respect to geodesic mappings onto V},
was investigated in [8, 9]. In this work, it was shown that the maximum

value r = w is achieved only in projective-Euclidean manifolds, and
for nonprojective-Euclidean A4,, (n > 2) it is true that r = @ + 2.

By a detailed analysis it can be shown that Theorem 2 holds for A,
€ C?, i.e. for all the components I‘Z(m) € C? of the affine connection V.

IV. Linear equations of geodesic mappings from affine
connection manifolds onto Riemannian manifolds

In the paper [9] by Mikes and Berezovski (see [8]) a system of equations
of Cauchy type for geodesic mappings from an affine connection manifold
A, onto a Riemannian manifold V,, was found. These equations are non
linear.
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From Theorem 1 and the equations (5) the existence of linear equations
follows also for this general case.

_ Assume that A, admits a geodesic mapping onto the equiaffine manifold
A,, under the condition

1

IN’Z(x) = I’Z(m) T

(67 T5a () — 03T, (2))- (7)
and A, admits a geodesic mapping onto the Riemannian manifold V,, with
the metric g.

The first formula of (5) holds
aij‘k = Opa” 4 a™T., + a®'T), = )\iéi + M6t (8)

where ¢ |7

is the covariant derivative on A,,.

By insertion of (7) into (8) we find an equation for a geodesic mapping
from A, onto Vj, in the following form

a’, = Oa” + T, + 0T, = A T + SN + 5N, (9)

+1

where

A =X+ a4,

n+1

Equations (9) are linear with respect to the unknown functions a%(x)
and A (x). These equations hold in the chosen coordinate system z. Their
solutions are tensors a™/(z) and A (z), which do not depend on the choice
of coordinates.

For each solution of the equations (9), with the aid of formulae (6), a
metric g of the Riemannian manifold V;, can be found.

Theorem 3. The manifold A, admits a geodesic mapping onto a Rieman-
nian manifold V,, if and only if there exists a solution of (9) with respect to
the unknown functions a”(x) (det||a (x)| # 0) and X(z). The metric g
of V,, satisfies the conditions (6).
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The geodesic mappings of projective Euclidean manifolds are studied in
detail in the monographs [4, 12, 16].

By a detailed analysis of the integrability conditions of equations (9)
and their first differential prolongations it can be shown that in coordinate
neighborhoods, where A,, is not projectively Euclidean, the vector A’ can
be expressed in the form

N = a(2) Gl (@), (10)
where Ggﬁ(x) is determined by objects of the affine connection of A,,.

Then the equations (9) form a closed linear system of Cauchy type with
respect to the unknown functions a(x).

Proof. Now we can prove formula (10).

Asume that A,, maps geodesicaly on a Riemannian manifold V,,. Than in
each coordinate neighbourhood U C A,, the equations (9) have a solution.

We restrict ourselves to the case, that in the coordinate neighbourhood
U(z) A, is not projectively flat, i.e. the Weyl tensor of projective curvature
is non vanishing, W’;k(az) # 0.

)

For the coordinate neighbourhood U(z) we further construct a series of
geodesicaly mapping manifolds

Ap — len - Vna
where A, is an equiaffine manifold.

Equations (9), valid in A,,, have in A,, the form (8). The integrability
condition of (8) can be written in the form

5 — A1) (11)

aa(iﬁi)kz = \| |k

[l
where RZ i is the Riemannian tensor of A,.

Because in an equiaffine manifold A,, the Weyl tensor of projective cur-
vature has the following form

~ - 1
wh h
ijk — Rijk -

1 (0 Rij — 0" Ry),

n —
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where Rij is the Ricci tensor of fln, and this tensor is an invariant of
geodesic mappings, i.e. th]k = W?jk, formula (11) can be written in the
following form
a® W], = A5 — AfS])
where Af' is a tensor and W[;k is the Weyl tensor of projective curvature
of A,,.

The covariant derivative of the last formule with respect to 2™ in A,is

aoi(i WJ) + aa(in)

m " akl akl,m

After insertion of (9) acquires the following principial form

A(iern)kl + aaﬁT(ijﬁklm = Al(fnéi) — A} 5{) + Li(cil‘m :

km

(12)

where T(ijﬁklm is an object determined by the connection V of A, and

Alhm7 Llhm are objects.

In [11] it was proved that for n > 2 when W # 0 there exists a coordinate
system z in which W3,s # 0. One by one we insert into (12):

i=1,....n, j=1, m=k=2,1=3;
1=j=k=1,1=3, m=2;
1=73=m=1,1=3, k=2;
i=j=k=1,1l=m=2

and we can see that (10) holds.

This work has been partially supported by the Council of Czech Gov-
ernment MSM 6198959214.
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SOME QUESTIONS OF FINSLER- AND
DISTANCE-GEOMETRIES
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Institute of Mathematics, H-4010, Debrecen, P. O. Box 12, Hungary

1. This is a Conference on Non-Euclidean Geometry and its Applica-
tions, called also Bolyai-Gauss-Lobachevsky Conf. So I feel it pertinent to
pay respect in a few words to these scientific luminaries, and at the same
time give a reason for speaking here on Finsler geometry. I would like to
start with a few facts of the history of mathematics.

Proofs first appeared in mathematics after the penetration of the ideas
of Greek philosophy, only about in the fifth century B.C. With this the ever
steepest development started in the history of mathematics. Only one and a
half century later Euclid was able to write his famous book, the Elements, in
which he could deduce every theorem from a few axioms. Among these the
last one was the well-known parallel axiom. Nevertheless this axiom raised
problems. Many asked whether this is a real axiom, or else it can be proven.
The problem turned out to be very hard. It refused any attack through two
thousand years. Finally it was solved by Bolyai and Lobachevsky (Bolyai
found it first, and published later, Lobachevsky found it later, and pub-
lished it first). The answer affirmed the rank of the parallel axiom. The
problem was very difficult indeed, but the answer did not alter the geometry
at all. Everything remained as before. It seemed that the solution required
a really big effort, but yielded a modest result. Nevertheless they proved
their result by constructing a new geometry, and this was of the utmost sig-
nificance. The importance of this construction can be compared to the turn
from the geocentric world concept to the heliocentric one. The possibility,
the existence of another geometry was unconceivable for nearly all of the
mathematicians of the time. It became properly recognized, it gained its
right to its proper place only slowly. Gauss, who also was interested in the
problem, and who had nice partial results, was the first who understood



and accepted the idea of Lobachevsky and Bolyai. However, for some only
partially acceptable reasons, he did not want to propagate the new geom-
etry. Yet in spite of all difficulties the new geometry spread out. After
the first highly difficult steps new and new geometries appeared. In 1854
Riemann presented the basic ideas of “Riemannian geometry". This hap-
pened at his habilitation lecture under the chairmanship of the old Gauss
(next year Gauss died). That the new ideas spread but slowly is excellently
shown by the fact that Riemann’s ideas were published first only after his
death (1866) in the volume of his Collected Works (1892), and Riemann
geometry became developed in the XX-th century only. Today we have a
number of geometries, most of them with successful applications in physics,
among them also Finsler geometry. Thus Finsler geometry is the son, or at
least the grandson of Lobachevsky and Bolyai, and on this right T dare to
speak today on some problems of Finsler geometry.

2. First a few introductory words on Finsler and distance geometries.
We have two types of metrical differential geometries: i/ those built on the
arc length of curves, ii/ those built on the distance of two points. Since these
are differential geometries, in both cases everything must be differentiable
(of class C'™).

We consider first the geometries which are built on the arc length. Let
v(t) C M,a<t<b, ¥(t)+#0bea curve of a manifold M. Then

b
)= [ I3 0

is a quite natural and generally used definition for the arc length. Clearly
the tangent space T, M, p € M must be a normed vector space. What kind
of norm 7 We put three simple and very natural requirements on s, which
uniquely determine the type of the norm ||.||,, p € M. These requirements
are the following:

A) s>0

B) s is independent of any orientation-preserving parameter transforma-
tion.
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C) | .||, satisfies the triangle inequality.

It is clear that
A s>0<=|y|| >0, yeT,M, y#O0.

B): Let t=t(r), 7 =7(t), 7(a) =, 7(b) = [ be a parameter trans-
formation. This preserves the orientation if % > 0. Then s is independent
of the parameter transformation ¢t = ¢(7) iff

/ 5l dt = / @l dr = / b

Since 4(t) can be any vector of T,,M and C‘f—i may be any positive number,
B) is equivalent to

L dt

W(t)a

dt
— dt. 2
dr (2)

My = AMlyll,, veTpM,  XeRT,
where RT denotes the positive reals.

Finally C) says that

lyr +v2llp < lvillp + lvallp, w192 € T,M, y1 # py2, 1€ R.

Thus the requirements A), B), C) are equivalent to the following prop-
erties of the norm:

D llyll, >0 if y#0
) [Ayllp = A llyllp, A€ RT

D) (lyr + vallp < lyillp + llvllp, 1 # py2, y.y1,y2 € TyM, p€ R.

I), IT), ITT) characterize the Banach norm. Thus a geometry built on the
arc length satisfies the very natural requirements A), B), C) iff the norm
applied in (1) is a Banach norm, which depends on the point p € M.

It is a difference only in notation, if we introduce the function

F(,y) = llyllp-
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Then we define a Finsler space F™ = (M, F) over a manifold M by giving
a fundamental (or metric) function F(p,y) with the properties I), IT), I1I),
and we define the arc length of a curve y(t) C M by s := f; F(y(t),~(t))dt
(see [1]). Thus Finsler geometry is the most general geometry satisfying
the very natural requirements A), B), C). If the Banach norm reduces to
a Euclidean norm, then we obtain a Riemann geometry. It is easy to see
that C) or III) is equivalent to the convexity of the indicatrix (see (8)),
and this convexity is equivalent to the property that in the simplest cases
(Euclidean or Minkowski geometry) geodesics are straight lines. This is
another geometric expression of the requirement C) or III). Finsler geometry
and its numerous simple special cases offer many possibilities for physical
applications. This is so, because Finsler geometry has much more free
parameters or functions, than Riemannian geometry.

The other type of metrical differential geometries are distance spaces
D™ = (M, p) (see [2]). A distance space over M is given by a distance
function ¢ : M x M — R™ ordering to any ordered pair (p,q) of points a
non-negative real. This function can be symmetric: «) o(p,q) = o(q,p),
and it can satisfy the triangle inequality: ) o(p,q) + o(q,r) > o(p,r). If
both «) and 3) are satisfied, then D™ is called metric. If o) may fail, then
D" is called quasi-metric. In what follows we consider quasi-metric distance
spaces. Metric distance spaces are contained as a special case.

3. What is the relation between distance spaces D" = (M, p) and Finsler
spaces F = (M,F) over the same manifold M ? Any Finsler metric
determines a distance function o by

0" (p,q) = inf s(v(p, 9)), (3)

where I' means the collection of the curves from p to ¢, and s(v(p,q))
means their arc length. Then o is non-negative and satisfies the triangle
inequality. Thus

F= 9" and F"=(M,F)= D" = (M,o").

Is this relation invertible ¢ Does also F determine of'? Yes, namely

d
lim — o" ) = F 4
t—1>0+ dtg (pOag( )) (panO)a ( )
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where g(t), 0 < t < € is a geodesic of F emanating from py = ¢(0), and
Yo is its (one sided) tangent at pg : yo = ¢(0). (4) is a famous result of H.
Busemann and W. Mayer [3] (see also [1], p. 158). It can be proved easily.
If € is small, then g(t) is a “short geodesic", which minimizes the arc length
between g(0) = po and g(¢). Hence, by (3)

t
" 0.9(6)) = smu.s(0) = | Fla(r). g (r)ar @)
By (one sided) differentiation we obtain (4). This shows that
F—= ' —=F=o"...,

i.e. the relation between {F} and {0} is 1 : 1. We remark that < o' (py, g(t))
equals the directional derivative of o'

lim i

F
t—0t dtQ (

0" (po.q), q€ M.
Po,Yo

po,g(t)) = —

Now, this relation does not contain the geodesic g(t), so starting with a
distance function g of a distance space D™ = (M, p)

o(po, q) (5)
Po,Yyo

d

F(po, = —

(po, o) := —

defines a function F(p,y). One can show that this F satisfies A), B) C).

Hence this F is a fundamental function of a Finsler space I = (M, F).
Thus we obtain

0o=— F = ol". (6)

But is this of of (6) equal to the starting o? We show that in general it
is not. This can be shown by an example, where p = F = ol # o.
First let M be 1-dimensional: M = R! with canonical coordinates z. Let
us define

o(z0,2)) = In(|z — x| + 1). (7)

One can check that this g is non-negative, symmetric, and satisfies the trian-
gle inequality. So it is a distance function of a metric space D' = (R!(x), o).
By (5) it determines a Finsler metric F(p,y), which turns out to be abso-
lutely homogeneous, and independent of xy. Therefore the constructed
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F! = (R', F) is a Minkowski space with symmetric indicatrix, and because
of n =1 it is a Euclidean space. Hence

QF(9617962) = \961 - 962!-

By the integral mean theorem

x2
o(z1,22) = / o (x1,2) dr = (w2 — 1) (21, 7)|

1
r1 < x2, xo € (x1,22),

d
o (w1, @) = ——o(w1, ).
The derivative of o (given by (5)) is strictly decreasing on x> x1, and
0 (20, 2)|z, = 1. Thus ¢'(x1,20) < 1 and hence

o(x1,22) = (22 — 21)0 (21, %) |z < |21 — 23| = 07 (21, 22),
showing that o # of'.

This example can be extended to M = R™ (n > 1). In this case we define
the function z = 0(0,z), (z,2) € R"*! by the rotation of z = In(|z| + 1)
(see (7)) around the z axis, and we define p(zg,x) := (0,2 — xp). Also
other examples over M # R" can be constructed.

These show that there are many distance spaces D" = (M, g) such that
o determines by (5) the same Finsler space and the same o', but only for
one of these is o/ = p in (6).

For which distance spaces D" = (M, o) does o = F = of = o
hold? The answer needs a little more preparation. In [4] we gave necessary
and sufficient conditions for this. The basic idea is the following. In an
F" = (M, F) along a short geodesic g(t), 0 <t < T by (4’) we obtain

0" (p.g(t)) = 0" (p.g(tr)) + 0" (g(t1), (1)),

where p € g(7), 0 <7 <t; <t<T. From this

[%QF (p,g(t))} = [%QF (g9(t1), 9(1))

+
t1 ty
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for every p € g(7), 0 < 7 < t;. This means that the functions o (p, g(t)),
which measure the distance from the different p € g(7) to g(t) have the same
derivative at ¢1, and their graphs have parallel tangents at ¢;. A curve of
D™ with similar property is called “parallelity curve". In the proof we show
that the existence of such a parallelity curve between any pair of points of
a distance space D™ is necessary and sufficient for p = o’

4. We show still another interesting global result of Finsler geometry.
For the sake of simplicity we restrict ourselves to a two-dimensional abso-
lutely homogeneous Finsler space F?=(M,F). The indicatrix Z(pg) of an
F"=(M, F) is a hypersurface of the tangent space defined by

Z(po) :={y € TpoM | F(po,y) = 1}- (8)

T(po) is a generalization of the unit sphere S"~! of the Euclidean space E™.
If o : M — M is a motion of F™, then the linear mapping dy takes Z(p)
into Z(p(p)). This means that Z(p) and Z(¢(p)) must be affine equivalent.
Now suppose that

a) p1 and po are such points of F? that Z(p1) and Z(ps) are not affine
equivalent to any other Z(p) of F?

b) let F? be geodesically complete, i.e. there exists a geodesic between
any pair of points of F2

c) let the injectivity radii ¢(p1) and t(p2) be such that «(p1) + t(p2) <
o(p1,p2). In consequence of this there exist geodesic circles Sy, (1)
with radius 7 < ¢(p1), centered at pj, and Sp,(r2) with radius ro <
t(p2), centered at po

d) there exists in F'? a 1-parameter continous group of motions ¢y # id.
We claim that under these conditions there exists a diffeomorphism W :

F? — ¢ C E? where ¢ is a revolution surface, and moreover ¥ is an
isometry for the meridians and parallels of ¢ [5].

We sketch the proof. Since F? is geodesic complete there exists a geodesic g
between p; and po. Let go € g be such that o(p1,qo) < ¢(p1) and o(p2, qo) <
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t(p2). Then there exist two geodesic circles Sp,(k1), k1 = o(p1,¢)), and
Spy(k2), k2 = o(p2,q)), through go. p1 and py are fix points of ¢y, for Z(p1)
and Z(p2) are not affine equivalent to any other Z(p). Hence gy can move
only on S, (k1) by any motion ¢;. Furthermore it is easy to see that g
cannot be a fix point of 4, for in this case ¢; would be the identity. Thus gq
can be taken into any point of Sp, (k1) by an appropriate ¢;. Nevertheless
the same is true also for Sy, (k2). Therefore S, (k1) = Sp,(k2). Finally we
claim that M = By, (k1) U Bp,(k2), where By, (k1) is the closed disk of M
bounded by S, (k1), and similarly By, (kz). Namely if ¢ (# p1) is an arbi-
trary point of M, then there exists a geodesic g* through ¢, and emanating
from py. ¢* intersects Sp, (k1) and S, (k2) perpendicularly at a point ¢* and
runs further in Sy, (k2) to ps, and then further to a common point ¢** of
Sp, (k1) and Sy, (k2). Therefore ¢ must lie on g* between p; and po, and thus
in By, (k1)U By, (k2). Since both By, (k1) and B, (k2) are diffeormorphic to
a hemisphere of S C E3, B, (k1) U Bp,(ka) = M is diffeomorphic to the
unit sphere S? or to a revolution surface ¢ of E3.

We can show a little more. Let ¢ be a diffeomorphism from F? to a
revolution surface ¢ of E3. We can choose ¢ in such a way that the images
of the geodesic circles S, (), 7 < k; and S,,(r), © < kg are parallels of ¢,
and the images of the geodesics g, « € A from p; to ps are meridians of
. The radii of these parallels can be so that the Euclidean arc length of
the parallels is equal to the Finsler arc length of the corresponding geodesic
circle. Let S and S be two geodesic circles from the family {Sp.(r), m <
ki; Spo(r), 7 < ko}. S and S cut out a segment s, from each g,. The
Finsler arc length of s, is independent of «, for any two different s, are
taken into each other by a motion ;. Therefore ¢ can be chosen such that
the Finsler arc length of the geodesics g, equals the Euclidean arc length
of the corresponding meridian of ¢. Thus ¢ : F? — ¢ C E? satisfies the
announced properties.

There are several similar results. L. Green [6], M. Berger and J. L.
Kazdan [7] and C. T. Yang [8] showed that if in a Riemannian space V™ =
(M, g) the cut locus of any point p € M consists of a single other point (these
manifolds are called “Wiedersehen" manifolds) then this V™ is isometric
to the Euclidean sphere 8™ (see also J. L. Kazdan [9]]). In our case the
cut locus of p; is pa. So this property is fulfilled for one pair of points
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only, but we have another severe condition, the existence of the motions
;. In fact our result, which concerns a Finsler space is weaker. F? is only
diffeomorphic to ¢, and isometry holds only on the parallels and on the
meridians of .

In case of an n-dimensional Finsler space F™ the points p; and py of
the assumption a) must be replaced by n points p1,pa,...,p, in general
position, having similar properties as pi, pa, or in d) ¢; must be replaced
by an n — 1 parameter continuous group of motions ¢, ;, ,. In these cases
the proof is a little longer.

There are many interesting results on isometries of Finsler spaces, such
as in [10] by S. Deng and Z Hou, or in [11] by L. Kozma and P. Radu. I
mention here extra a result of S. Deng [12]. He showed that if the connected
sets V; C M of a Finsler space F" = (M, F) consist of the zeros of a Killing
vector field &, then V; are totally geodesic submanifolds of F™. This can
be related to the affine equivalence of the indicatrices considered in our
talk. If in a Finsler space F" = (M, F) no indicatrix Z(p), p € M is affine
equivalent to an Z(p;1), then p; must be a zero of any Killing vector field
¢ Thus if pg € M, f € A are such points as pi, and {pg} = V is a
submanifold, then this V is totally geodesic in F™. Also the other results
of Deng hold on such submanifolds V' = {ps}.
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Abstract

Metrization problem means: given a manifold endowed with
a (symmetric) linear connection, decide whether the connection
arises from some metric tensor as its Levi-Civita connection.
Compatibility conditions for a metric are given by a system of
ordinary differential equations, and the classical approach is to
analyze the system of integrability conditions. Let us present
more geometric solution procedure using parallel transport, em-
phasize the role of holonomy groups and holonomy algebras.
The problem is of some interest in itself (e.g. [6]; S.B. Edgar, J.
Math. Phys. 33, 3716 (1992); 7], 8], [9]); we propose one ap-
plication: for a particular type of second order system of ODEs,
coefficients give rise to a connection; provided it is metrizable,
components of the compatible metric play the role of variational
multipliers for the Inverse Problem and yield (one of) the La-
grangian(s).
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I. Metrization as a kind of inverse problem

Let (M,g) be a pseudo-Riemannian manifold*. A (pseudo-)Riemannian
metric g on M determines uniquely a canonical linear (= affine) connection
V on M, called the Lewvi-Civita connection of (M,g), the characterizing
properties of which are T =0 (F;k = I’};j) and Vg = 0. The inverse prob-
lem called Metrization Problem (MP) is: Given a manifold (M,V) with a
linear symmetric connection, is there a metric on M the Levi-Civita con-
nection of which is just V2 Tt belongs probably to the oldest and in a way
difficult problems of classical differential geometry. A similar problem can
be posed for a linear connection in an arbitrary vector bundle, particularly
in the tangent bundle of a manifold, or in Finsler spaces ([1], L. Tamassy,
Balkan J. of Geom. and Appl. 1 (1996) etc). Related problems are: If there
are more such metrics, how much may they differ from each other? (The an-
swer is closely related to the concept of the de Rham - Wu decomposition.)
Given (M, g), find all metrics with the same Levi-Civita connection. All
multiples rg, » € R, have this property, and if there are no others we speak
about uniqueness of the metric. But if the manifold admits the de Rham -
Wu decomposition there might be the so-called alternative metrics, [8]. MP
is related to the theory of geodesic mappings’. An equivalent formulation
of MP is: given (M, V), find all possible geodesic mappings f:M—M of
(M, V) onto (pseudo-)Riemannian manifolds (M, g). Hence tensor methods
developed! in the theory of geodesic mappings may be used. Our problem
is also related to the Calculus of Variations. The so-called Inverse Problem
(IP) of the calculus of variations (still open) is: if a system &’ = fi(t, 2%, 2*)
of SODEs? is given, decide whether it represents Euler-Lagrange equations
of some Lagrangian, i.e. findY Lagrangian functions L(t, 2*, #¥) and a multi-

plier matrix g;;(t, z*, &%) such that gij (@ —f1) = % (%) - ggfi- Complete so-

*M is an n-dimensional manifold of a “sufficiently high" class of differentiability, and
g is a non-degenerate metric, that is, a symmetric type (0, 2) tensor field on M with local
componens g;; satisfying det(g;;) # 0, not necessarily positive definite.

"Recall that if we are given two manifolds with linear connection (M, V) and (M, V),
respectively, a (smooth or C”-differentiable, » > 1) bijection f : M — M is called a
geodesic mapping if any (canonically parametrized) geodesic « of (M, V) is mapped onto
an unparametrized (= arbitrarily parametrized) geodesic 7 of (M, V).

IN.S. Sinyukov, Geodesic Mappings of Riemannian Spaces, Moscow, 1979.

$second order differential equations; i,k =1,...,n.

Ysufficiently differentiable
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lution is known only for n = 2 (J. Douglass, 1941). Hence MP can be viewed
as a particular casel of IP, where fi = —F;k(x)ijik, when the multipliers
are time- and velocities-independent; then kinetic energy L = %gij(x)a'cijcj
(comming from MP) is one of the Lagrangians solving IP (there might more
general ones). Also the metric uniqueness problem was related to the ge-
neral inverse problem of Lagrangian dynamics™. During the time, various
methods used for solving MP (eventually under some constraints) were sug-
gested and developed by various authors, from most straightforward ones,
[2], based on analysis of integrability conditions for ODEs, to more sophis-
ticated ones, [6], [4], [5], [11] and the references therein, based either on
tensor methods, or employing parallel transport induced by connection, or
their combinations, etc. Low-dimensional cases have been discussed sepa-
rately e.g. in [7], [10] (n = 2), [9] (n = 3). Positive definite metrics for a
symmetric connection with regular curvature were constructed in [4]. Exis-
tence of positive definite metrics for an analytic connection on an analytic
manifold is decided in [5] by means of an algorithm based on properties
of de Rham decomposition and the fact that in the analytic case, the Lie
“holonomy" algebra is spanned by the curvature tensor and its covariant
derivatives (Ambrose-Singer Theorem); in the affirmative case, all compat-
ible Riemannian metrics are effectively constructed, [11].

II. Classical approach - differential equations

The (pseudo-)Riemannian connection of (M, g) is uniquely determined
by zero torsion and the condition Vg = 0, telling in an elegant way that
the parallel transport induced by the connection should preserve the scalar
pruduct. If (M,V) is given, Vg = 0 represents the system of ODEs for
unknowns g;;

dgi;

S goTi — 9T =0 (1
which should be discussed under the assumption det(g;;) # 0. In simple
cases, the system (1) can be solved directly. Note that a solution of (1) might

not be a metric, if non-degeneracy condition det g;; # 0 is not satisfied; the

In fact, provided det g;; # 0, the system #' + F;k (x)#?E" = 0 is equivalent to the
system gmi (3 + Iy (2)d72%) =0, 4,m =1,...,n.
**G. Marmo, C. Rubano, G. Thompson, Class. Quantum Grav.7, 2155 (1990).
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solution depends on n. The integrability conditions for (1) (necessary for
metrizability) read, in coordinate-free form,

g(V'R(X, Y Zy5.. 3 2, )(Z2), W) + g(Z, V" R(X, Y Zy;...5 Z,)(W)) = 0

for all X,Y,Z, W, Zy,...,Z, € X(M), 0 < r < oo, which is in fact an
infinite homogeneous system of linear equations in g;; with coefficients being
functions in I'Vs and their partial derivatives. For a metrizable connection,
the above linear conditions must stabilize for some positive integer r = N,
i.e. from the (N —i—l)th stage, the conditions must be algebraic consequences
of the previous ones. We get no conditions for a flat connection (R = 0),
which is always metrizable (the system has %n(n—i— 1)-parametrical solution).
For n = 2, R # 0 (regular), the answer is relatively easy: Local neces-
sary and sufficient condition for a nowhere-flat symmetric connection V on
Mo be metrizable are: the Ricci tensor Ric of V should be non-degenerate
(det R;; # 0), symmetric (R;j; = Rj;) and recurrent, VRic = w ® Ric
where w is some one-form. If w is exact, w = df for some function f, then
compatible metrics exist globally, one of the representants being g = e~/ Ric,
the other differ upto a scalar multiple (i.e. g is “unique”). If My is simply
connected, a compatible g exists globally.

If both kinds of points, flat (R(z) = 0) and non-flat (R(z) # 0) are
present, we may expect complications. For any n > 2, there exist non-
metrizable n-dimensional affine spaces. A classical algorithm, which brings
a prescriptive solution (not in a closed form), was known already since 1920’,
[2]. The result can be formulated as follows (a free paraphrase):

Theorem 4. A manifold (M,V) with a linear connection V and the cur-
vature tensor R 1s metrizable if and only if the homogeneous equations

9sj Ripe + 9is Ry = 0 (2)

are “algebraically consistent” (more precisely, the system has at least one-
dimensional solution space of non-degenerate metrics), and any solution of

(2) satisfies
gSijkZ;m + giSRjkf;m = O, i,j, k,g, m € {1, . ,n}. (3)
The proof is instructive, yields a method for finding compatible metrics

using several steps from the proof (and can be implemented to a com-
puter). Suppose that (2) is solvable, and that any solution of (2) satisfies
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(3). Choose a basis (G, ..., GP) of the solution space. Any solution g can
be now written in the form g =2 _, 0@ G@ with coefficients (@) which
are at most functions of coordinates (x%) on M. Due to (3), covariant deriva-

(@) (08) G

tives G(O-‘)m satisfy (2), too, hence G} = B 1 My . Since second

covariant derivatives satisfy the Ricci indentity we get GEJ LE — GE;X)% =0,
and consequently

o o™ (@),00) _ (o), 68)
o2l oat +;< %) =0 W

If Vg = 0 should hold, ¢’s must satisfy

ool 2
épxk —i—ng a=1,...,p. (5)

But according to (4), the system (5) is completely integrable, hence there
exist functions ¢, ... p® which determine a compatible (pseudo-)Rie-
mannian metric. Let us demonstrate the method presented above on a
simple example.

Example 1. The system #+22-2/(2% +1) = 0, j+9%-y/(y*> + 1) = 0 gives
rise to a symmetric linear connection V on R? with non-zero components
'YL =a/(z*+1), T3, = y/(y* +1); R = 0 (the connection is flat hence
metrizable). The solution space is a span of independent (global analytic)
type (0,2) symmetric tensor fields G = dz ® dz, G® = dy @ dy, G®) =
dxr ® dy + dy ® dr. Their covariant derivatives must be combinations of

the generators, ngl)l = — QQLGS), G(1)2 = G( ) =0, ng)l = —yQLG( ),
GE_?,)I = x2+1G£§’)7 GE?)Q = _y :lilGEj)? we ha‘ve /‘g 1) = _Igil’ 1UJ§22) =
—yg_?il, ,ug?’g) = — Mgg?’) = —y;ﬂrl, zero otherwise. All compatible
metrics are g = NGM + pAGR) + ,B)GB) where functions ¢'s solve
(5); M) = —257 ete.  All compatible metrics g are of the form g =

WG 4 PG 4+ pBGE) We get

(g17) = 2by (2% + 1) biva? +1y/y? + 1
94 WV L IVRF1 2b3(y2 + 1)
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with parameters by, by, b3 € R. In tensor notation, g = 2bs(z? + 1)x ® x +

biva? + 1y + 1x @y + hiva? + 1y + ly @ x + 2b3(y? + y®y, or
classically, ds? = 2by(2? +1)dx?42b1vV 22 + 1/y? + ldady +2b3(y*+1)dy>.
For admissible Riemannian metrics, b; should be chosen so that g be positive
definite.

ITI. Geometric approach - Parallel Transport

The “classical” method mentioned above works, but gives little insight into
a geometric meaning of the integrability conditions and their consequences
for the given connection. To make things more transparent and geometric
let us realize what follows. The holonomy of (M,V) at x € M around a
piecewise-differentiable loop u (i.e. closed curve with x as starting point as
well as endpoint; the class C! is sufficient, [3, T, p. 85, Th. 7.2.]; loops are
taken with usual composition, [3]) is an automorphism 7, of the tangent
space T, M which is given by parallel propagation of vectors along the given
loop. Due to properties of the parallel transport along curves (7,1 = T L
Ty © Ty = Tyu), all holonomies at x together with composition form the
so-called (full linear) holonomy group HolY of (M, V) at x, which is a Lie
transformation group; using local coordinates about z, it identifies with a
subgroup of GL(n,R). Its component of unit is the restricted holonomy
group Holg; it is obtained by a similar construction if we take loops homo-
topic to zero only; h(x) = HolY denotes a common Lie algebra. According
to the Ambrose-Singer Theorem, [3], if the connection is smooth (C°), the
so-called infinitesimal holonomy algebra h'(x) C h(z) is a span of the lin-
ear maps VFR(X,Y:;Zy,.... Zy), X,Y, Zy,...,Z), from T,M, 0 < k < oo.
The above inclusion might be sharp, but in particular cases, the Lie alge-
bras coincide. For a real analytic connection on a real analytic manifold,
b/ (x) = h(x) holds, hence h(x) can be calculated from the curvature tensor
and its covariant derivatives, and Holg can be retrieved. If the underlying
manifold M is connected, holonomy groups of the connection in different
points are isomorphic, HolY ~ Holyv, x,y € M, so let us write HolV. If M
is connected, simply connected then HolV is a connected Lie subgroup of
the automorphism transformation group GL(T,M) of the fibre; hence it is
uniquely determined by its Lie algebra h = HolV.

If the connection is metrizable then the parallel transport preserves scalar
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product, holonomies are isometries in each tangent space; the holonomy
group preserves the metric tensor, and identifies with a subgroup of O(p, q),
p+q = n, according to the signature of g; Hol" identifies with a subgroup of
the special orthogonal group SO(p, q). The idea of making use of holomomy
groups for solution of metrization problem for linear connections was dis-
cussed e.g. in [6], [1]. The holonomy group “decides" whether a connection is
metrizable or not: obviously, a connection can only be a pseudo-Riemannian
connection of a metric g, if the (restricted) holonomy group is a subgroup of
the (special) generalized orthogonal group corresponding to the signature.
Another formulation: (M, V) is metrizable if and only if the bundle of all
frames is reducible to the orthogonal group O(p,q). In a way, the condition
is also sufficient; if Holg is a subgroup of the special orthogonal group of
the fibre at one point then the compatible metric can be found:

Theorem 5. (|1, Th. 3.1., p. 282|, a free paraphrase) Let (M,V) be an
affine manifold with M connected. Let there be a point xg € M such that
the (restricted) holonomy group is contained in the (special) generalized or-
thogonal group of T,,. Then V is metrizable.

Proof. Fixing a chart around xg € M, we may assume that the tangent
space Ty, M is isomorphic to (R", (,)) where (, ) denotes the standard scalar
product of the corresponding signature. Since M is connected, any point
x € M can be connected with zg by a curve in M, and the holonomy groups
HOIX, Holxvo are isomorphic via parallel transport. We can use parallel
propagation to pull the scalar product back.

IV. Riemannian metrics

For Riemannian metrics the following tells that no ambiguity arises in
the regular case:

Theorem 6. [4, p. 133] Let M be a connected manifold with dim M > 3. Let
R be the curvature of (M, g), where g is a Riemannian metric on M, and let
the subset D of all reqular points of R be dense in M. Then g is determined
on D by its curvature tensor R uniquely upto scaling by constants.

If (M,g) is a (pseudo-)Riemannian manifold with curvature R then at
any point x € M, we have a linear map R, : A2(T, M) — End (T, M) such
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that if w = >, ¢;X; AY; € A2(T,M) then Ry(w)(Z2) = 3, ¢;R(X;,Y:)Z
for Z € T, M. Let us generalize properties of the Riemannian curvature R
as follows. Let G be a positive definite symmetric bilinear form in 7, M.
A linear map ¢ : A?(T,M) — End (T, M) will be called a curvature struc-
ture with respect to G if the following holds: (i) G(o(X ANY)(Z),W) +
G(Z,o(X NY)W) =0; (ii) G(o(X AY)Z, W) = G(o(Z N\W)X,Y) for any
XY, ZW € T,M. In (T,M,qg), o = R, is a natural example. A linear
map o : A2(T, M) — End (T,,M) will be called regular if o(w) # 0 whenever
w # 0, and singular otherwise. Particularly, the subset of all regular points
of the Riemannian curvature R of (M, g) is open in M.

Lemma 1. Let G be a positive definite symmetric bilinear form on T, M,
and o its curvature structure. Then for any G-orthogonal pair X,Y € T, M,
X # 0, there is a bivector w € A?(T,M) such that o(w)X =Y. If there
erists a reqular curvature structure o with respect to G then H, is one-
dimensional.

Theorem 7. Let (M,V) be an affine manifold with a torsion-free linear
connection V, let the curvature R be regular on M, and let HO(M) =
Usen Hr, be the bundle corresponding to the curvature tensor. Then V
s a Riemannian connection of a positive-definite metric g if and only if the
following conditions hold:

(1) HO(M) is the line bundle (i.e. all fibres are one-dimensional),

(2) the bundle H°(M) is metric in the Riemannian sense (that is, there is
a positive definite symmetric biliear form (on T,M ) in each H%(z)),

(3) any Riemannian metric h M — HY(M) is recurrent, Vh = w ® h, and
the 1-form w is exact on M, i.e. w = df for a function f.

Proof. If h : M — H°(M) is a Riemannian metric such that Vh =
—2df ® h then we easily check that ¢ = e2fh is a metric compatible with
V since Vg = 0 holds. To prove that the conditions are necessary is a bit
more complicated, [4].

As already mentioned, in general we can not calculate the holonomy
group from the curvature tensor (and its covariant derivatives), it might be
even difficult to find the holonomy group at all, as well as a quadratic form
invariant under it. The real analytic case on a connected simply connected
manifold is more favourable, [5]. To translate invariance of a symmetric
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bilinear (quadratic) form relative to holonomy group into the language of
holonomy Lie algebra we use the Lemma telling how the assumptions on
HolV can be reformulated as assumptions on h:

Lemma 2. Let (M,V) be a simply connected smooth manifold with ¥V tor-
ston-free, © € M a fized point. Given a symmetric bilinear form G on T, M
then the following holds: G is invariant by HolV if and only if

GAX,)Y)+G(X,AY) =0 forall Ac h(x), X,Y € T, M. (6)

Proof. We check here that elements of the holonomy algebra satisfy (6).
The other implication also holds but the proof is not so trivial. If A €
h(x) consider the corresponding one-parameter subgroup s4: R — HolV,
t + sA(t) uniquely determined by the initial data s(0) = 1, (s4)'(0) :=
(%)tzo s4(t) = A. Let G be invariant under the holonomy group, G(7X,7Y")
— G(X,Y) for any 7 € HolV. Then we get G(s*(t)X,s4(t)Y) = G(X,Y)
for X, Y € T,.M. Differentiating with respect to ¢, making use of the for-
mula for scalar product, and considering t — 0 we get (6),

G((s1)(0)(X), 1 (0)(Y)) + G(sH(0)(X), (s1) (0)(Y) = 0.

The above gives us a quite natural motivation for introducing the vector
subspace H(x) = {G, € S*(T:M)|G.(AX,Y) + G.(X,AY) = 0, A €
h(z) for XY € T,M}, x € M.

Theorem 8. Let (M,V) be connected and let there exist Gy, € H(x)
(i.e. Gy, is invariant under HolV ). Then V is the Levi-Civita connection
of a metric on M which has the same signature as Gy, .

If V is Riemannian (comes from a positive definite metric) then for ev-
ery € M, H(z) includes a positive definite form; under additional as-
sumptions, the converse also holds: ([5, Prop. 1|, [6]) Given a connected
simply connected (M,V) and © € M, let there be a positive definite form
Gz, € H(x). Then V is Riemannian.

It might be difficult to check whether there is a positive definite form in
H (x); no direct decision algorithm based on linear algebra only is available.
An effective algorithm (deciding Riemannian metrizability in real analytic
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case) using geometric properties of the Levi-Civita conection and the de
Rham decomposition of the tangent space T, M of a Riemannian manifold
(M, g) was developed [5], [11], together with an effective prescription how
to construct all compatible Riemannian metrics. Note that for indefinite
metrics, the situation is more complicated.
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Abstract

We introduced the notion of rigid geometry. Foliations (M, F)
with transverse rigid geometries were investigated. An invariant
go of (M, F), where gg is a Lie algebra, was constructed. We
proved that gg = 0 is a sufficient condition for the unique ex-
istence of a Lie group structure in the full basic automorphism
group of this foliation. Some estimates of the dimension of this
group depending on the transverse geometry were founded. Ex-
amples, illustrating the main results, are constructed.

I. Introduction

One of the basic objects associated with a geometric structure on a
smooth manifold is its automorphism group. Among the central problems,
there is the question whether the automorphism group can be endowed with
a (finite-dimensional) Lie group structure [1].

In the theory of foliations with transverse geometries, automorphisms are
understood as diffeomorphisms mapping leaves onto leaves and preserving
transverse geometries. The group of all automorphisms of a foliation (M, F')
with transverse geometry is denoted by A(M, F). Let Ar(M, F) be the
normal subgroup of A(M, F') formed by automorphisms mapping each leaf
onto itself. The quotient group A(M, F)/Ar(M, F) is called the full basic
automorphism group and is denoted by Ag(M, F).



In the investigation of foliations (M, F') with transverse geometry it is
naturally to ask the above problem about the existence of a Lie group
structure for the full group Ag(M, F) of basic automorphisms of (M, F).

Leslie [2] was first who solved a similar problem for smooth foliations
on compact manifolds. For foliations with complete transversal projectable
affine connection this problem was studied by Belko [3].

The leaf space M/ F of the foliation is a diffeological space, and the group
Ap(M, F) can be considered as a subgroup of the diffeological Lie group
Diff(M/F). For Lie foliations with dense leaves on a compact manifold, the
diffeological Lie groups Diff(M/F') are computed by Hector and Macias-
Virgos [4].

In this work we introduce a notion of a rigid structure. Cartan geomet-
ries [1] and rigid geometric structures in the sense of Gromov [5] are rigid
structures in our sense. A manifold equipped with a rigid structure is called
a rigid geometry.

We investigate foliations admitting rigid geometries as transverse structu-
res and call them by foliations with transverse rigid geometries (TRG).
Cartan foliations [6, 7], foliations admitting a transverse systems of diffe-
rential equations in the sense of Wolak [8] and G-foliations, where G is a
Lie group of finite type, are foliations with TRG. In particular, Rieman-
nian [9], pseudo-Riemannian, Lorenz, projective and conformal foliations
belong to the class of foliations under investigation. The category of folia-
tions with TRG is denoted by Frrg. The group Ap(M, F) is an invariant
of (M, F) in the category §rra. We always assume that the foliations under
consideration are complete and transverse rigid geometries are effective.

We constructed a foliated bundle for a foliation (M, F') with TRG and
reduced problems on the automorphism groups and the basic automorphism
groups of (M, F) to the analogous problems for e-foliations (Theorems 3
and 6).

For any foliation (M, F') with TRG we defined the structure Lie algebra
go(M, F) and showed that go(M, F') is an invariant of this foliation in the
category §Tra (Proposition 3). One of the main results of this work is the
theorem asserting that if go(M, F') is zero, then there exists a unique Lie
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group structure on Ag(M, F'). We obtained some estimates of the dimen-
sions of these Lie groups depending on the transverse geometries (Theo-
rem 7). We gave different interpretations of holonomy groups of foliations
with TRG (Theorem 5) and found some other sufficient conditions for the
existence of a Lie group structure on Ag(M, F') (Theorem 8).

Recall that a foliation is said to be proper if each its leaf is an embedded
submanifold of the foliated manifold. In particular, the structure Lie algebra
of any proper foliation with TRG is zero, and Ag(M, F) is a Lie group
(Corollary 1).

Examples of computations of the basic automorphism group of a foliation
with TRG were constructed. Examples 1 and 2 also show that the group
Ap(M, F) depends on the transverse rigid geometry of the foliation (M, F').

II. Rigid geometries

Parallelizable manifolds Recall that a manifold admitted an e-structure
is called parallelizable. In other words, a parallelizable manifold is a pair
(P,w), where P is a smooth manifold and w is a smooth non-degenerate
R™-valued 1-form w on P, i. e., wy,: T, P — R™ is an isomorphism of the
vector spaces for each v € P. Here m = dim P.

Rigid structures Denote by P(N, H) a principal H-bundle with the pro-
jection p: P — N. Suppose that the action of H on P is a right action and
R, is the diffeomorphism of P, corresponding to an element a € H.

Two principal bundles P(N, H) and P(N,H) are called isomorphic if
H = H and there exists a diffeomorphism I': P — P such that I'o R, =
R,ol', Va € H.

Definition 1. Let P(N, H) be a principal H-bundle and (P,w) be a par-
allelizable manifold satisfying the following condition:

(S) there is an inclusion h C R™ of the vector space of the Lie algebra
b of the Lie group H into vector space R™ such that w(A*) = A, VA € b,
where A* is the fundamental vector field on P corresponding to A.

Then § = (P(N, H),w) is called a rigid structure on the manifold N. A
pair (N, ¢) is called a rigid geometry.
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Definition 2. Let ¢ = (P(N,H),w) and £ = (P(N,H),®) be two rigid
structures. An isomorphism I': P — P of the principal bundles P(N,H)
and P(N, H) satisfying the equality [*& = w is called an isomorphism of
the rigid structures € and €. Any isomorphism I' of rigid structures ¢ and
¢ defines a map v: N — N such that poI’ = v o p, and v is a diffeomor-
phism from N to N. The projection ~ is called an isomorphism of the rigid
geometries (N, €) and (N, €).

Induced rigid geometries Let & = (P(N,H),w) be a rigid structure
on a manifold N with the projection p: P — N. Let V be an arbitrary
open subset of the manifold N, let Py := p~}(V) and wy := w|p,. Then
&v = (Py(V, H),wy) is also a rigid structure.

Definition 3. The pair (V,&y) defined above is called an induced rigid
geometry on the open subset V of N.

Effectiveness of rigid geometries Let A(£) be the group of all auto-
morphisms of a rigid structure £ = (P(N, H),w). It is a Lie group as a
closed subgroup of the group A(P, w) of all automorphism of a parallelizable
manifold (P,w). Denote by A(N, ) the group of all automorphisms of the
geometry (N, §), 1. e., A(N,§) :={y € Diff(N) | 3T € A(§) : poI' =yop}.
Consider the natural group epimorphism y: A(§) — A(N,€): I’ — ~, where
v is the projection of I' with respect to p: P — N.

Definition 4. Let £ = (P(N, H),w) be a rigid structure on a manifold N
with the projection p: P — N. The group Gauge(§) := {I' € A(§) |pol' =
p} is called a group of gauge transformations of the rigid structure &.

Remark that Gauge(§) is a closed normal Lie subgroup of the Lie group
A(€), because it is the kernel of the group epimorphism x: A(¢) — A(N,§).

Definition 5. A rigid structure £ = (P(N, H),w) is called effective if for an
arbitrary open subset V in N the induced rigid structure
& = (Pv(V,H),wy) has the trivial group of gauge transformations, i. e.,
Gauge(&y) = {idp, }. A rigid geometry (N,€) is said to be effective if £ is
an effective structure.

Pseudogroup of local automorphisms Let (N,¢) be a rigid geometry.
For arbitrary open subsets V, V/ € N an isomorphism V — V' of the
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induced rigid geometries (V, &y ) and (V’, &) is called a local automorphism
of (N, §). The family H of all local automorphisms of a rigid geometry (N, &)
forms a pseudogroup of local automorphisms. Denote it by H = H(N,§).
Recall that a pseudogroup H of local diffeomorphisms of manifold N is
called quasi-analytic if the existence of an open subset V' C N and an
element 7 € H such that v|y = idy implies that ’Y‘D(«/) = idp(y) In the
entire (connected) domain D(v) on which ~ is defined.

Proposition 1. The pseudogroup H = H(N,§) of all local automorphisms
of an effective rigid geometry (N, &) is quasi-analytic.

III1. Foliations with transverse rigid geometries. Foliated bundles

Foliations with transverse rigid geometries (TRG) A foliation (M, F)
of codimension g on an n-manifold M has a transverse rigid geometry (N, &),
where N is a g-manifold, if (M, F') is defined by a cocycle n = {Uj, fi, {ij }}
modeled on (N, ¢), i. e.,

1) {U;} is an open covering of M;
2) fi: U; — N are submersions with connected fibres;

with ~;; is a local automorphism of (N, ). The topological space N is not
assumed to be connected.

Without loss of generality, we will suppose that N = U;c;f;(U;) and the
family {(U;, f;)} is maximal as it is generally used in manifold theory.

Definition 6. The rigid geometry (NN, ) mentioned above is called a trans-
verse geometry of the foliation (M, F'). The cocycle n modelled on (N, ¢) is
said to be an (N, §)-cocycle.

Assumptions In this work we will assume that each rigid geometry is
effective and all the foliations under consideration are modeled on effective
rigid geometries.

Notations We denote by X(NN) the Lie algebra of smooth vector fields on
a manifold N. If Q) is a smooth distribution on M, then Xg(M) = {X €
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X(M) | Xy € Qu, Yu € M}. If Q is an integrable distribution and defines a
foliation F, where Q = T'F, we also use notation Xp(M) for Xg(M).

Foliated bundles We constructed a foliated bundle for a foliation with TRG
and studied its properties.

Theorem 1. Let (M, F) be a foliation with a transverse rigid geometry
(N,§), where & = (P(N,H),w). Then there exist a principal H-bundle
m: R — M, an H-invariant foliation (R,F) whose leaves are projected
by m onto the leaves of (M, F) and an R"™-valued 1-form & on R, where
m = dim P, that satisfy the following conditions:

(1) the map @, : T,(R) — R™, Yu € R, is surjective; moreover, ker w, =
TuF;

(i) there is an inclusion h C R™ of the vector space of the Lie algebra b
of the Lie group H into R™ such that ©(A*) = A, VA € by, where A* is the
fundamental vector field on R corresponding to A;

(i11) the foliation (R,F) is an e-foliation;

(1v) the restriction wp on an arbitrary leaf L of the foliation (R,F) is a
regular covering map onto a leaf of (M, F), and the subgroup H(L) := {a €
H | R,(L) = L} of the Lie group H 1is the group of deck transformations.

Definition 7. A principal H-bundle R(M, H) with an H-invariant foliation
(R, F) satisfying the statement of Theorem 1 is called a foliated bundle for
the foliation (M, F) with transverse rigid geometry (N,&) and (R,F) is
called a lifted foliation.

If H is disconnected, R may be also disconnected. In this case all the
connected components of R are mutually diffeomorphic, and we will con-
sider one of them. Thus, we assume that the space of the foliated bundle
R is connected.

IV. Completeness and a structure Lie algebra
of a foliation with TRG

Completeness of foliations with TRG Let (M, F) be an arbitrary
smooth foliation on a manifold M and T'F be the distribution on M formed
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by the vector spaces tangent to the leaves of the foliation F. The vector quo-
tient bundle TM/TF is called the transverse vector bundle of the foliation
(M, F). Let us identify TM/TF with an arbitrary smooth distribution 9t
on M that is transverse to the foliation (M, F), i. e., TM = TF & M.

Let (M, F) be a foliation with TRG and (R,F) be the lifted foliation.
It is natural to identify the transverse vector bundle TR /TF with a distri-
bution M = 7*M on R, i. e., with a distribution defined by the equality
M, = {X, € LR | mXy €M}, where x = 7(u) and u € R.

Definition 8. A foliation (M, F') with transverse rigid geometry is said to
be M-complete if any vector field X € Xg3(R) such that ©(X) = const is
complete. A foliation (M, F') with TRG of arbitrary codimension ¢ is said
to be complete if there exists a smooth ¢g-dimensional transverse distribution
M on M such that (M, F) is 9M-complete.

In other words, (M, F') is an 9-complete foliation iff the lifted e-foliation
(R,F) is complete with respect to the distribution 9 in the sense of Con-
lon [10]. Remark that complete e-foliation in the sense of Conlon is also
complete in the sense of Molino [9].

Proposition 2. If (M, F) is an 9M-complete foliation with TRG, then M
15 an Ehresmann connection for this foliation in sense of Blumenthal and

Hebda [11].

It is well known [10, 9] that for a complete e-foliation (R,F) all leaves
are mutually diffeomorphic.

Structure Lie algebra We applied the relevant results of Molino [9] on
complete e-foliations and obtained the following theorem.

Theorem 2. Let (M, F) be a complete foliation with TRG and (R,F) be
its lifted e-foliation. Then:

(1) the closure of the leaves of the foliation F are fibers of a certain locally
trivial fibration m,: R — W

(i1) the foliation (C,F|z) induced on the closure L is a Lie foliation
with dense leaves with the structure Lie algebra go, that is the same for

any L € F.
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Definition 9. The structure Lie algebra g of the Lie foliation (£, F|;) is
called a structure Lie algebra of the complete foliation (M, F') and is denoted

by go = go(M, F).

If (M, F) is a Riemannian foliation on a compact manifold, this notion
coincides with the notion of a structure Lie algebra in sense of Molino [9].

V. Category of foliations with TRG

Category of foliations Denote by Fol the category of foliations, objects
of which are foliations, morphisms of two arbitrary foliations (M, F') and
(M’ F’") are smooth maps M — M’ mapping leaves of the foliation (M, F)
into leaves of the foliation (M’, F'); a composition of morphisms coincides
with the composition of maps.

Category of foliations with TRG Let (M, F) and (M’, F) are foliations
with transverse rigid geometries (N, &) and (N’,¢’) defined by an (NV,§)-
cocycle 51 = {Us, fi, {3s}} and an (W%, €')-coeycle 1f = (UL, f1, {atH} e
spectively. Let f: M — M’ be a morphism which is a local isomorphism in
the category Fol. Hence for any x € M and y := f(x) there exist neighbor-
hoods Uy, 5  and U}, 5 y from 7 and 7’ respectively and a diffeomorphism
X: Vi — V!, where Vi, := fi(Uy) and V{ := fL(U]), satisfying the relations
f(Ug) =UL and Ao fr = flo fluy,. We will say that f preserves transverse
rigid structure if the diffeomorphism \: Vi, — V! is an isomorphism of the
induced rigid geometries (V4, &y, ) and (V/ ,5{/5,).

This notion is well defined, i. e., it does not depend of the choice of
neighborhoods Uy, and U}, from the cocycles n and 7.

By a TRG-morphism of two foliations (M, F) and (M', F') with trans-
verse rigid geometries we mean a morphism f: M — M’ in the category
Sol which preserves transverse rigid structure. The category §rrg objects
of which are foliations with TRG, morphisms are TRG-morphisms, is called
the category of foliations with transverse rigid geometries.

The following statement shows that the structure Lie algebra go(M, F')
of a foliation (M, F') with TRG is an invariant in the category §rrq-

Proposition 3. Let (M, F) and (M',F’) be two foliations with TRG iso-
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morphic in the category Frra. Then their structure Lie algebras go(M, F')
and go(M', F') are isomorphic.

Automorphism groups of foliations with TRG Let (M, F)) be a foli-
ation with a fixed transverse rigid structure (V, ). Denote by A(M, F') the
group of all automorphisms of (M, F') in the category §rrc. We say also
that A(M, F) is the full group of automorphisms.

Theorem 3. Let (M, F) be a foliation with TRG. Let (R,F) be the lifted
foliation and AH(R,F) ={f € AR, F)| foRy = Roof, Vac H}. Then
the map p: AH(R,F) — A(M,F): f — f, where f is the projection of
f € A(R,F) with respect to m: R — M, is a natural group isomorphism.

VI. Different interpretations of holonomy groups

Equivalent approaches to the notion of holonomy groups Denote
by I'(L, z) the germ holonomy group of a leaf L of a smooth foliation (M, F')
which is generally used in foliation theory.

Blumenthal and Hebda [11] introduced a notion of a holonomy group of
the leaf L of the foliation (M, F') with the Ehresmann connection 9. This
group is called an 9-holonomy group and is denoted by Hon(L,z), x € L
[12]. The following assertion is a direct consequence of Theorem 7 proved
by the author in [12].

Theorem 4. Let (M, F) be a foliation with an Ehresmann connection .
The natural group epimorphism §: Hon(L,x) — T'(L,x) is an isomorphism
if and only if the holonomy pseudogroup of the foliation (M, F) is quasi-
analytic.

We applied Theorems 1 and 4 and proved the following statement about
different interpretations of holonomy groups of complete foliations with
transverse rigid geometries.

Theorem 5. Let (M, F) be an M-complete foliation with TRG defined by
an (N, §&)-cocycle {Uj, fi,{7ij}}. Let L = L(x), x € M, be an arbitrary leaf
of this foliation and £ = L(u), u € 7~ (x), be the corresponding leaf of the
lifted foliation (R,F). Then the germ holonomy group T'(L,x) of the leaf L
s isomorphic to each of the following five groups:
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(i) the 9M-holonomy group Hen(L,x);

(ii) the group H, formed by germs of local diffeomorphisms belonging to
the isotropy subpseudogroup of the holonomy pseudogroup H of local auto-
morphisms of the transverse rigid geometry (N, &) at point v = f;i(z), where
x € Uj;

(113) the group of deck transformations of the regular covering map
T|g: L — L;

(i) the subgroup H(L) ={a € H | Ry(L) = L} of the Lie group H;

(v) the holonomy group ®(u) of the integrable connection T(F|-1(ry) in
the principal H-bundle with the projection 7| -1 (r): 7 Y(L) — L.

VII. The groups of basic automorphisms of foliations with TRG

Let A(M, F') be the full automorphism group of a foliation (M, F') with
TRG. We denote by u: A# (R, F) — A(M, F) the group isomorphism de-
fined in Theorem 3.

Definition 10. The quotient group Ag(M, F) := A(M,F)/AL(M,F) is
called the basic automorphism group of the foliation (M, F') with TRG.

Emphasize that the basic automorphism group Apg(M, F) of a foliation
(M, F) with TRG is an invariant of this foliation in the category §rrq-

Theorem 6. Let (M, F) be a foliation with TRG and (R,F) be the lifted
foliation. Denote by AR(R,F) the quotient group A" (R,F)/AH(R,F).
There ezists a natural group isomorphism x: AZ(R,F) — Ag(M, F) sat-
isfying the equality s o pu = x or, where r: AH(R,F) — AL(R,F) and
s: AM,F) — Ag(M, F) are the associated group epimorphisms onto the
quotient groups.

IX. Conditions guarantee that Ap(M, F) is a Lie group
The case go(M,F) = 0 A leaf L of a foliation (M, F) is called closed if

L is a closed subset in the topology of the manifold M. Further we use the
term “a closed leaf” only in this sense.
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Theorem 7. Let (M,F) be a complete foliation with a transverse rigid
geometry (N,§), where & = (P(N,H),w). Suppose that the structure Lie
algebra go(M, F) is zero. Then:

(i) the full basic automorphism group Ap(M,F) admits a Lie group
structure with the following estimate of its dimension:

dim Ag(M, F) < dim P; (1)

(i) if there exists an isolated closed leaf L of the foliation (M, F'), then
dim Ag(M, F) < dim H; (2)

(1) there exists a unique topology and a unique smooth structure on the
full group Ag(M, F) of basic automorphisms of the foliation (M, F'), making
Ap(M, F) into a Lie group.

Theorem 7 does not exclude the triviality of the full group Ag(M, F).

Remark 1. The main result of the work [3] by Belko is the theorem
asserting that if there exists a closed leaf of a foliation (M, F') with complete
transversally projectable affine connection, then the group Ag(M, F) is a
Lie group. This statement is not correct. It’s proof essentially uses the
fact that existence of a closed leaf of this foliation implies that the lifted
foliation is simple. It is not true, in general. Let us consider a foliation
(M, F) from Example 3 (in Section X), when r = 1/7, as affine foliation. It
has a compact leaf, but go(M, F) = R! # 0, hence the lifted foliation is not
simple. Thus the foliation (M, F') is a Lie foliation with non-zero structure
Lie algebra go(M, F'). Hence the group Apg(M, F) is not a Lie group.

Discrete holonomy groups of leaves Let (M, F) be a foliation with
TRG. Let m: R — M be the projection of the foliated bundle over (M, F).

Definition 11. We say that the holonomy group of a leaf L 5 x of the
foliation (M, F) is discrete if there exists a point u € 7~1(z) such that the
group H(L):={a € H | R,(L) =L, L= L(u) € F} is a discrete subgroup
of the Lie group H.

Let ' € 77 1(x) and u ¢ L' = £'(«'). In this case the subgroup H(L')
is conjugate to the subgroup H(L) in the Lie group H. Hence H(L) is a
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discrete subgroup of H if and only if H(L') is a discrete subgroup of H.
Thus, according to Theorem 5 the notion of discrete holonomy group of leaf
L is well defined.

Recall that a leaf L of a foliation (M, F') is said to be proper if L is an
embedded submanifold in M. A foliation (M, F') is called proper if each its
leaf is proper.

Let (M, F) be a complete foliation with TRG. We proved that the ex-
istence a proper leaf L with a discrete holonomy group implies that the
structure Lie algebra go(M, F) is zero. In view of this fact and Theorem 7
we got the following statement.

Theorem 8. Let (M, F) be a complete foliation with transverse rigid ge-
ometry (N,§), where & = (P(N,H),w). If at least one of the following
conditions holds:

(i) there exists a proper leaf L with discrete holonomy group;
(1) there is a closed leaf L with discrete holonomy group;
(111) there exists a proper leaf L with finite holonomy group;
(1v) there is a closed leaf L with finite holonomy group,

then the basic automorphism group Ag(M, F) admits a Lie group structure
of dimension at most dim P, and this structure is unique.

It is well known that any foliation has leaves without holonomy. Hence
the following statement is a consequence of Theorem 8.

Corollary 1. For any proper complete foliation (M, F) with TRG the basic
automorphism group Ag(M, F) admits a unique Lie group structure.

X. Examples

Suspended foliations The suspension of a homomorphism was suggested
by Haefliger. This method of construction examples is widely used in foli-
ation theory.

Let p: m(B,by) — Diff(T)) be a homomorphism of the fundamental
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group of a manifold B > by into the group of diffeomorphisms of a ¢-
dimensional manifold 7', and let p: B — B be the universal covering map-
ping. Then we have a right action of the group II := m1(B,by) on B by
deck transformations. The equality

(@,t) - g:= (z-g,pg~)(1), V(x,t)eBxT, Vgell,

defines a free right properly discontinuous smooth action of the group II
on the product of manifolds B x T'; therefore the quotient manifold M :=
B xp T is defined. Let x: B x T — M be the natural projection. Then
F = {k(B x {t}) | t € T} is a foliation of codimension ¢ on M; in this
case, it is said that the foliation (M, F') is obtained by suspension of the
homomorphism p. For this foliation we will use the notation (M, F) :=
Sus(T, B, p). The image ¥ := imp is the global holonomy group of (M, F).

Transversally similar and transversally homothetic foliations Let
G be the similarity group of the Euclidean space E4, ¢ > 1, and RT be
the multiplicative group of positive real numbers. Then G = CO(q) X R?
is the semidirect product of the conformal group CO(q) = RT - O(q) and
the group RY. Let H = CO(q) and p: G — G/H = E? be the canonical
principal H-bundle. Let g be the Lie algebra of the Lie group G, and w
be the Maurer-Cartan g-valued 1-form on G. Then ¢ = (G(E?, H),w) is an
effective rigid geometry. Foliations with this transverse geometry (E?,§) are
called transversally similarity foliations [7].

Denote by E the neutral element of the group O(q). If G = (RT-E) AR,
H =R".FE, and w is the Maurer-Cartan g-valued 1-form on the Lie group
G, then foliations with the transverse effective rigid geometry (E?,¢), where
¢ = (G(EY,RT - E),w), are called transversally homothetic foliations [7].

Example 1. Let B be a smooth p-dimensional manifold whose fundamen-
tal group m1(B,b) contains an element « of infinite order. For an arbitrary
natural number ¢ > 1, denote by E? a g-dimensional Euclidean space. De-
fine a homomorphism p: II := 71(B,b) — Diff(E?) by setting p(a) = 1,
where 1 is the homothetic transformation of the Euclidean space E? with
the coefficient A # 1, i. e. ¢(x) = Az, Vz € E9, and p(f) = idg. for
any element 3 € m(B,b) such that 3 # of with some integer k. Then
(M,F) = Sus(EY, B, p) is a proper transversally similar foliation with a
unique closed leaf diffeomorphic to B.
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According to Corollary 1, the full basic automorphism group Apg(M, F')
of this foliation (M, F') admits a unique Lie group structure. The group A(¢)
is equal to the group of left translations of the Lie group G = CO(q) A RY,
hence we can identify A(E9, &) = A(&) with G. In this case it is not difficult
to show that the full group of basic automorphisms Apg(M, F') is isomorphic
to the quotient group N(¥)/¥, where N (¥) is the normalizer of ¥ in the Lie
group G. In our case ¥ = (1)) and N(¥) = R"-O(q), therefore Ag(M, F) =
U(1)xO(q), where U(1) = (RT-E)/V is the compact 1-dimensional abelian
group.

If ¢ =1, then O(q) = Zg and Ag(M,F) = U(1) X Zs.

Example 2. Consider the foliation (M, F') constructed in Example 1 as
a transversally homothetic foliation, i. e., with a different transverse rigid
geometry. In this case the Lie group Apg(M, F') is isomorphic to the quotient
Lie group N(¥)/¥, where N(¥) is the normalizer of ¥ in the Lie group
(RT - E) KR%. Since N(¥) =R* - E, so Ag(M, F) = U(1).

Remark 2. In both examples 1 and 2 the foliation (M, F') has a unique
closed leaf and, in Theorem 7, the equality is achieved in the estimate (ii)
of the dimension of Ag(M, F).

Example 3. Let ¢ be the rotation of the plane E? about the point 0 € E?
through the angle § = 2mr. Consider an Euclidean metric g on E2. Denote
by Iso(E2,g) the full isometry group of (E2, g). Let p: m(S',b) & Z —
Iso(E2,g) be defined by the equality p(1) := ¢, 1 € Z. Then we have
a suspended Riemannian foliation (M, F) := Sus(E?, S, p). This foliation
has a unique closed (compact) leaf.

There exists a group isomorphism between Ap(M, F') and the quotient
group N(VU)/¥, where ¥ = (¢)) and N(¥) is the normalizer of ¥ in the
Lie group Iso(E2,g) identified with O(2) £ R2. Since N(¥) = O(2), so
Ap(M,F) = 0(2)/V. Hence Ag(M, F) admits a Lie group structure if and
only if W is a closed subgroup of O(2) or, equivalent, when = 277 for some
rational number r. If § = 27, where r is a nonzero rational number, then

Ap(M,F) =2 O(2).

This work was supported by the Russian Foundation for Basic Research,
project no. 06-01-00331-a.
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Abstract

The existence of gravitational waves is proved by astronom-
ical observations. The belief that the gravitational waves are
quantized is almost hundred years old. Nevertheless up till now
there are neither theoretical, nor observational proof of this be-
lief. In this note we suggest to measure the fluctuations of the
gravitational waves. If the fluctuations are correlated with the
phase of the gravitational wave, in other words, if the gravita-
tional wave is squeezed, then it is quantized.

I. Introduction

The Einstein-equations of the general relativity can be reduced to wave
equations in linear approximation. It was taken as granted that the solu-
tions of these equations describe gravitational waves, which exist in nature.
Moreover it was assumed already before the middle of the last century that
these waves are quantized, i.e. they are associated with gravitons having
energy of hv and spin of 2h/(27), where the Planck-constant is denoted by
h and the frequency by v. The existence of the gravitational waves, how-
ever, was proved only in the second part of the XX-th century by Hulse and



Taylor [1]. They observed the pulsar radiation of a neutron star which is
moving around another neutron star. It was possible to observe that the
periastron is shifted in a similar way as in the case of the Mercury mov-
ing around the Sun, furthermore it was seen that the energy of the system
is decreasing continuously. Both phenomena were perfectly described by
the Einstein-equations if the possibility of gravitational wave emission was
taken into account.

Recently a binary system of huge black holes has been observed in the
J 287 quasar [2]. A very spectacular outburst is produced by the smaller
black hole when it collides with the accretion disc of the bigger black hole.
A great number of outbursts were observed and interpreted correctly. If
the emission of the gravitational waves were neglected from the analysis
the beautiful agreement was destroyed. Thus one may conclude that the
motion of the binary system with mass 17 billion Sun mass can be described
perfectly well by the Einstein-equations, and the gravitational waves really
exist in nature. Since now we are convinced about the existence of the
gravitational waves it is justified to hope that they can be observed sooner
or later on the surface of the Earth, as well.

The question of the quantized character of the gravitational waves is
a more complicated issue. Up till now the quantization of the theory of
gravitation is an unresolved problem in spite of the tremendous amount of
efforts. Consequently the theoretical proof of the quantized character of
the gravitational waves is missing. The experimental proof of the quantized
character is missing either.

In this note we try to find a possibility to observe the quantized char-
acter of the gravitational waves. We assume that the basic features of the
quantization of the gravitation are similar to that of the electromagnetism.
Therefore we look for genuine, observable signatures of the quantization in
the realm of electromagnetism. The energy quantum hv belongs to this
category, however it can not be used in the case of the gravitation because
of the extremely low values of the frequency v. It was proved by Glauber [3]
in the framework of the quantum electrodynamics that the phenomenon of
the squeezing is a genuine signature of the quantized nature. The existence
of the squeezing was proved by experiments, that is, definite correlation has
been found between the phase of the wave and the quantum fluctuations.
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Here we assume that something similar is true in the case of the gravita-
tional waves, as well. It was pointed out by Grishchuk [4] that the quantum
noise is correlated with the phase of the gravitational wave if it is gener-
ated by the non-linear gravitational background. He focused the attention
to those gravitational waves which were generated in the time of the Big
Bang. Here we want to emphasize that those existing and working GW
detectors which will be able to detect the arrival of the gravitational waves
will be able to detect also the quantum fluctuations. If some correlation can
be observed between the phase of the wave and the quantum fluctuations
then this can be considered as a proof for the quantized character of the
gravitational waves [5]. If no correlation can be found then we are not able
to draw any kind of conclusion.

II. Analysis of the signal arriving from the interferometer type
gravitational wave detector

We assume that the light signal L(t) arriving from the interferometer
type gravitational wave detector at time ¢ can be described by the following
sum:

L(t) = Ct,v) + Q(t, v, ¢) + B(t); (1)

where the frequency of the wave is denoted by v, the contribution of the
“classical wave” by C(t,v), the contribution of the “quantum fluctuation” by
Q(t,v, ) and the contribution of the external random background by B(t).
In the first step of the analysis we neglect Q(¢, v, ¢), and we determine from
the observed data the quantities v, C(¢,v), and B(t). By the way, this is
the original task of the gravitational wave detector! As a second step of
the analysis we calculate from the observed data the contribution of the
quantum fluctuations Q(t, v, »)Q, using the values of v, C(t,v), and B(t),
obtained in the first step of the analysis.

III. The Energy Flux of the Gravitational Waves

We consider a gravitational plane wave far away from its source having
frequency v and amplitude a. The energy flux F' of such a wave, i.e. the
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energy per unit area, per sampling (with sampling frequency vg) can be
expressed in the following form:

7TCSI/26L2

F=Sa (2)

The energy arriving into the detector per sampling is given by:
E =FA, (3)
where A is the cross sectional area of the detector.

The expectation value of the number of the gravitons arriving into the
detector per sampling is given by:
E  7mAcv?ad?
N)y=—=——7—7"7—. 4
(V) hv hGug (4)
The fluctuation of the graviton number may be approximated by the fol-
lowing expression | 6 | :

(AN?) = (N) [eﬁs cos? <g — 6) + €9 sin? (g - 6’)} . (5)

Here 6 is the phase of the wave at time ¢: 0 = vt + 6.

The squeezing parameters are denoted by S and . The lack of squeezing
is characterised by S = 0. In this case the number of gravitons is described
by the Poisson-distribution:

(AN?) = (N). (6)

If the measured values of the signal are stored together with a time stamp
by a Field Programmable Gate Array (FPGA) [7], then the evaluation of
the measurement can be done off line. The evaluation can be performed as
an iterative procedure when the stored values can be used repeatedly. It
is worth while to point out that by using an FPGA the comparison of the
signals of parallel detectors can be done also off line. If the noise/signal ratio
is not too large then the frequency v, the squeezing parameters S and ¢, and
the value of the random noise can be obtained from the measurements. If
the value of the squeezing parameter S turns out to be significantly different
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from zero then, it is proved that the gravitational waves are quantized! The
success of such an experiment depends first of all on the distance of the
source of the gravitational waves. It must be confessed that if the signal
contains more then one frequency with non-negligible amplitudes then the
analysis will be rather tedious.
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Abstract

A certain resemblance between properties of the states space
in non-classical Physics and the events space in classical Physics
is recognized.

It is noted that in the absence of thermal influence or, cor-
respondingly, of gravitation there are the simplest Riemannian
structures with a diagonal metric and zero curvature in both
cases. Either the square of the half of the Planck’s constant or
the square of the electrodynamics constant are the invariants,
limiting the minimal values of corresponding quantities. These
minimal limitations are initially intrinsic to the object environ-
ment only in the form of "cold" vacuum. It is proposed the
concepts of "self-action" and "equilibrium shell".

In view of gravitation in the object environment or the change
of "cold" vacuum to "warm" one lead to cardinal new prop-
erties. First of all, the non-trivial Riemannian structures appear
so that the metrics becomes non-diagonal. Second, in both cases
the curvature of space becomes not equal to zero.
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One may consider all these circumstances as first steps to
join both spaces of matter existence.
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I. Introduction

The main aim of our investigation is to exhaust the maximal physical in-
formation from the analysis of geometrical properties of the non-classical
states space. Under the term non-classical we understand all situations
when an object is under a stochastic influence - both quantum ("cold"
vacuum in Quantum Mechanics - QM) and thermal one (thermostat in Sta-
tistical Thermodynamics — ST).

In the most general case an object is affected by both types of the influ-
ence simultaneously. As a result the characteristics of the object fluctuates.
They are said to be quantum-thermal fluctuations. Our study is based on
the Cauchy-Bunjakovsky-Schwarz unequality (hereafter noted CBSU) used
in the states space.

I1. Fluctuation states submanifold of coordinate and momentum

From the Hilbert manifold of arbitrary states | > for a micro-object let us
select a submanifold of fluctuations states. For this goal let us introduce
first of all the operators of coordinate and momentum fluctuations Ag and
AD respectively in such a manner:

Ag=q—{ql) (1)
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Ap=p—(Ipl)- (2)

One can get the submanifold, that is of interest to us, as a result of the
operators Ag and Ap acting upon an arbitrary state | >:

|Agq) = Aq| ); (3)

|Ap) = AP ). (4)

We call it the submanifold of fluctuation states of the coordinate and the
momentum. As it is well known, in an arbitrary Hilbert space a bilinear
hermitian form is defined. Usually it is treated as a scalar product of state
vectors < (U >.

In the selected submanifold of fluctuations states it is:
Ry, = (Ap|Ag) = (|ApAG]) (5)
or equivalently

o~ n o~ 1, PN
Ry, = S (|ApAg +Aqu|>+§<|ApAq—Aqu|>- (6)

DO | =

As at the same time the scalar product is a complex quantity, it is convenient
to write this expression in a different way

Rpg = 0pq+icpg, (7)

where its imaginary part

(I.a30 = 0

Cpq

DN |

characterizes a symplectic structure on the selected states submanifold |[Ap >,
|Ag > in the Hilbert space.

However, the subject of our subsequent interest will be mainly the real
term

090 = 5 ({25, AT} Q

In the quasi-classical limit the operators Ap and Ag can be changed by
c-numbers. In this case the quantity op, is in close connection with the
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standard definition of a correlator in the probability theory. This fact allows
us to call oy, a correlator of quantum or (in more general case) quantum-
thermal fluctuations of coordinate and momentum, or, a quantum correla-
tor.

If the quantity o,, includes the two identical operators Ag or Ap it
takes the form either o,, = (Aq|Aq) = (|(A7)?|) or o, = (Ap|Ap) =
(|(Ap)?|) where o4y and oy, are dispersions of coordinate and momentum.
All the three quantities 0,4, 0pp, and o4y together describe the Riemannian
structure on the submanifold of states under study.

Now let us make some remark following Caianiello and Noce [1]. In
the frame of ST they supposed that one can interpret the correlator of
thermal fluctuations of a conjugated macroparameter pair a and b as a
"scalar product" of conventional "vectors" da and b in the Riemannian
space of the thermal fluctuations

ol, = (AaAb) = da - 6b. (10)

Then dispersions of random quantities a and b are

oT, = (Ba)? = (sa)”. (11)

oy = (Ab)? = (5b)°

and have a sense of norms of the "vectors". We once more emphasise that
all the three quantities ng, af{a, and Ugb describe the Riemannian space of
thermal fluctuations.

This fact allows us to use this idea in our case. For this goal we introduce
the two-dimensional Riemannian space and on this ground we assume that
the three quantities, i.e. the quantum correlator o,, and the dispersions
04q,0pp Can be interpreted as a conventional "scalar product" and norms of
peculiar vectors dq and dp in this space:

Opg = (0pq), opp = (6p)?, Ogq = (69)%. (12)

Some additional reason for identifying the quantum correlator with a "scalar
product" of conventional "vectors" is the similar behavior of the quantum
correlator in the high temperature limit and that of the thermal correlator.
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In this case the quantum correlator o,, is in close connection with the
thermal correlator
S —
Opgq — 0. (ApAg). (13)

pq

III. Schroedinger uncertainty relation

Let us consider some peculiarities of the states submanifold |Ap >, |[Ag >.
Our starting point is the CBSU. We note that in many kinds of manifolds
it plays a role of some limiter for the corresponding geometrical structures.

Thus for the given submanifold we have the CBSU in the form which
physicists call the Schroedinger uncertainty relation (SUR):

(0p)*(09)° = [Rpy|* = 03y + ¢ (14)

Let us remember that R,, is the transition amplitude from the state |Agq)
to the state |[Ap). Thus we see that the squared transition amplitude can
not be more then "vector" norms product (dp)?(5q)?.

Note, that the transition amplitude has two terms. The second of it ¢y,
reflects a type of correlation between momentum and coordinate related to
the non-commutativity of the corresponding operators. At the same time
the first of it 0, in the general case corresponds to another correlation type
somewhat analogous to correlation one in the classical probability theory.

Below we restrict ourselves to the analysis of states for which SUR trans-
forms into the strict equality

(69)2(50)% = 02, + . (15)

In Physics such SUR is usually said to be saturated.
IV. A model of “quantum oscillator”

In the given model the saturated SUR has importance in the two cases:

- in the basic state (its wave function is real, ¢, = 0). This state belongs
to the family of coherent states (CS);

- in other states with complex wave functions that satisfy the important
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condition ¢y, # 0. We call such states correlated-coherent states (CCS).
Note, that to pass from CS to CCS for the quantum oscillator it is necessary
to use (u,v)- Bogoliubov transformations generating the Lie group SU(1.1).

Among many kinds of CCS there are states that are especially interest-
ing for physicists because they are more close to the real Nature. These
are thermal CCS (TCCS) that were first introduced by Umezawa [2] in the
frame of his thermofield dynamics (TFD). Complex wave functions describ-
ing TCCS for quantum oscillator in a thermostat suppose both quantum
and thermal stochastic influence of environment simultaneously [3]. These
functions must have a temperature-dependent amplitude and phase.

To study the fluctuations of Riemannian space of momentum and coor-
dinate for quantum oscillator in TCCS in more detail we use SUR below in
the saturated form (15). Earlier in the paper [3] we obtained a formula for
the wave function for the quantum oscillator in the thermostat:

2
— 2n(Ag)2] Y exp { ——T 1—1a)p, 16
¥(q) = [2m(Aq)?] p 4(Aq)2( ) (16)
where
-1
o= [sinh QkBT} .
From it one can calculate dispersions of momentum and coordinate at any
temperature:
hmw hw
2
= th 1
(39)* = 5 coth 72 (1)
h hw
(69)* = coth (18)

2mw 2kpT’
We emphasise that these quantities depending on the wave function am-
plitude are functions of the temperature. From the formula for the wave
function we can obtain also the quantum correlator

f fiw }1. (19)

Opg = 5 [sinh kT

It depends on the wave function phase and, what is the most important, it
is a function of the temperature, too.
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In the frame of our Riemannian space we can assume that the expression

Opq (20)

v Opp \/Tqq

is a quantity somewhat analogous to the function cos ¢ for the usual scalar
product in the Euclidian space. We note that using all these formulas and
recall (12) as

(69) = 04q;  (6D)* = app (21)
one can easily obtain the conventional cos .

For the "angle" between "vectors" in the Riemannian space this quantity
is equal to

(22)

-1
h .
[cos QkBT]

As a result we obtain that "lengths of vectors" rise while the "angle"
between them decreases with increasing temperature. So the conventional
cos ¢ changes in the region from 0 to 1 as it is necessary. Thus if no cor-
relation exists between fluctuations (o, = 0) the "vectors" ép and dq are
"orthogonal"(at 7" = 0). In the general case ( when the correlator o,, # 0
) the "vectors" have an arbitrary mutual orientation. It maximally approx-
imates collinearity when their scalar product gets the maximal value.

V. Some interesting geometrical characteristics

For convenience of further calculations we make a slight change of variables:

(6p)* = mw(6p)*; (23)

1
6q)* = —(6q)*. 24
(60 = —(60) (24)
At the same time the scalar product does not change

Tpg = Opq: (25)
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Taking new variables 0p and dq as basic vectors in the Riemannian space
we get the SUR for the quantum oscillator in TCCS

h? hw
SN20850N2 2 _
(6p)*(6q)" = 1 coth kT (26)
[ hw 172 B2
— 2 _) = — 1 —_
(g + 4)— 4 [Smh QkBT} T

So we have introduced a fluctuation space of momentum and coordinate
with the basic vectors dp and dg dependent on the temperature. For its anal-
ysis we have two possibilities, based on the saturated SUR for the quantum
oscillator in a thermostat.

The first solution is as follows. Let us rearrange the term agq to the left
side of SUR. Now we can consider the combination

(69)*(0)* — g (27)

as an entire quantity. From geometrical point of view it is a non-degenerate
determinant of some two-dimensional metric tensor g;z:

(5ﬁ)2 Opq

Opq (0g)%| (28)

Det g, = ‘

Taking into account the actual values of quantities (6¢)?, (6p)?, and oy, one
can rewrite this determinant in the form

-1
p2|| cothgfer  [sinh i)

Det g = . MB —1 BM (29)
|:SlIlh W} COth W

We can see the following. Although all its components are temperature
dependent, Det g; = (h/2)? is obviously independent on the quantity 7.
In the limit T"— 0: g;1 — 1 and g¢o2 — 1, g12 — 0 and go; — 0. This
fact corresponds to the orthogonality condition of the "vectors" dp and dq.

In the limit (1/7) — 0  Det g; does not change. So we can claim the
determinant is invariant under Bogoliubov (u,v) - transformations. One
may expect that a scalar curvature of corresponding space is not equal to
zero at T' % 0 but at 7" — 0 it reduces to zero.
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We can also assume that the equality of values (cp,)? and Det g
is not by chance. We suppose it reflects a peculiar interference between
Riemannian and symplectic structures on the submanifold of fluctuation
states of coordinate and momentum. At the same time it can serve as an
initial criterion of belonging one or another state to the NNS family.

The second possibility of analysis is connected with the interpretation
of the right side of SUR itself. It is common practice to consider the term
dpdq as an entire mathematical quantity, named uncertainty product (UP)
hereafter noted

UP) = bpéq. (30)

Earlier we supposed a new theory - Quantum Generalization of equilibrium
Statistical Thermodynamics (QGST)[4]. In the case of the quantum oscil-
lator in a thermostat we found the physical sense of dpdq. For this goal
we introduced a new macro-parameter - the effective action as an adiabatic
invariant

:, (31)
where according to Planck
hw hw
= — coth —— 2
£=gcothgl 7 (32)

is the energy of the quantum oscillator in a thermostat. According to SUR

UP) = J = (33)

K

In the limit 7" — 0 the quantity J has the meaningful property: it come up
to its minimal value

& h
(D)min = Jo = o (34)
where g¢ is the energy of the oscillator basic state. So Jy has a fundamental
sense of the internal or self action that the object has initially due to the

quantum stochastic influence of the "cold" vacuum.

Considering this fact we obtain from SUR

J?=Ji 4+ J2. (35)
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Here

(36)

can be interpreted as an effect induced by the thermal stochastic influence
of the environment.

Analogically we can rewrite SUR in another form

£ =& + &, (37)
where )
hw hw |~
= — 1 h
Er 5 |:Sln 21{:BT} (38)

is the energy induced by a thermal stochastic influence of the environment.

Now let us compare the two formulas (35) and (37) with the formula for
full relativistic energy in the Special Relativity Theory (SRT)

E2=p’+m?=E2+ & (39)

(we put the light velocity ¢ = 1). Here the quantity & = m is the self
energy, initially belonged to an object and associated with its mass, but
&, = pis an energy induced by motion of the object and associated with its
momentum.

Considering this resemblance we claim that (£,&,) and (€,&r) are two
time-like vectors in the corresponding 2-dimensional pseudo-FEuclidean spaces.
Accordingly & = m? and £ = (hw/2)? are their squared lengths, i.e. in-
variants.

Now one can realize a new interpretation for the sense of the saturated
SUR. We know that the formula (39) is usually considered as a definition of a
mass-shell in the pseudo-Euclidean momentum space. This fact corresponds
to the characteristics of real particles. But for virtual particles we have the
unequality in this formula. It means they exit from the mass- shell.

From this point of view one can claim that the equality in SUR answers
the choice of some real states for which the vector (£,&r) is on a certain
"frequency shell". Such states are the thermal NNS describing a thermal
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equilibrium. All different states have the sense of virtual states for which
the same vector is out of the "frequency- shell" or "equilibrium - shell".
Probably, they correspond to non-equilibrium.

As some remark we remind that the group Lie SU (1,1) of the Bogoli-
ubov (u,v)-transformations is local isomorphic to the Lorentz-group in 2-
dimensional space-time. At the same time there exists an analogy between
the pairs of parameters: on the one hand

1 v
y=—— B=1, (40)

i3

and on the other hand

hw
Yr = coth m, (41)
hw 171
Br = [coth QkBT] . (42)

It is not difficult to see that the limit behavior of the corresponding qualities
is similar:

at T —0 pfr—0(atv—0 [ —0)and

at T — o0 fr—1(atv—c [—1).

VI. Consequences

Summarizing all the results obtained above we can recognize a certain re-
semblance between properties of the states space in non-classical Physics
and the events space in classical Physics. We collect them in Table 1.

One can see that in the absence of thermal influence (at kg = 0 as in
QM) or, correspondingly of gravitation (at G = 0 as in SRT) there are the
simplest Riemannian structures with a diagonal metric and zero curvature.
At the same time the role of invariants, limiting the minimal values of
corresponding quantities that are possible in Nature, plays either the self-
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space The Metric Curvature Structure
theories Riemannian | symplectic

es QM Nondegenerate, | 0 i Y% h
of stat (h =0, |diagonal
ky=0) fth)
-l %h

Nondegenerate, a 1/e?

nts l/c #0 | diagonal,
feve S f(1}gc)

o

Table 1.

action squared - (h/2)? or the electrodynamics constant squared - (1/c).
These minimal limitations are initially intrinsic to the object environment
in the form of "cold" vacuum.

The presence in the object environment of a matter that is subject to
gravitation (at G # 0 as in General Relativity Theory - GRT) or the change
of "cold" vacuum to "warm" one (at kg # 0 as in QST) leads to cardinal
new properties. First of all, the non-trivial Riemannian structures appear so
that the metrics become non-diagonal. Second, in both cases the curvature
of space becomes not equal to zero. One can respect these geometrical
properties as an indicator of some external effects characterized either by
the constant G or by the constant kp. All these circumstances may be
considered as first steps to join both spaces of matter existence.

The last question that arises here is connected with the notion of sym-
plectic structure. In non-classical Physics the modulus of corresponding
quantity is an invariant too that is temperature independ and equal to
(R/2)%. On this ground we have a reason to say some hypothesis. We can
suppose that there is a symplectic structure in the events space. Its invari-
ant characteristic must be a quantity that is equal to (1/c)?. We have the
opinion that in the future it will be desirable to modify the description of
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the events space. On this way the presence of symplectic structure could
follow from the fundamental space-time theory.
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simultaneously generated by quantum and thermal stochastic
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sense of thermal correlated - coherent states (TCCS). Earlier we
found a wave function in the TCCS that has a temperature de-
pendent amplitude and phase. Under the suitable parametriza-
tion it generates a Riemannian structure on the states space.
The last circumstance allows us to calculate the Gaussian cur-
vature in the space and to make a comparative study of the
geometrical properties for different TCCS in all the tempera-
ture range.
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I. Introduction

Recently it became apparent that our knowledge of matter structure was
very approximate. Under these conditions the significance of universal non-
model theories like Geometry and Thermodynamics essentially increases.
Within the frame of classical (deterministic) Physics the main interest at-
tracts Geometry of events space , i.e. four-dimensional space-time. It is the
subject of many papers.

However, in non-classical (stochastic) Physics such as Quantum mechan-
ics (QM), Statistical thermodynamics (ST), and their generalizations Ge-
ometry does not appear to be the subject of systematical study. As is well
known, the concept of states space is the central one in these theories.

The results of Provost and Vallee [1] and Ruppeiner [2] have shown
that in QM and ST one can introduce the Riemannian structure in the
corresponding states spaces. Its typical features can be expressed in terms
of dispersions of the system random characteristics and their correlators.

In this paper some geometrical properties of the generalized states space
simultaneously generated by quantum and thermal stochastic influence of
environment are studied. As a model we choose a quantum oscillator (QO)
in the thermostat. In another words, QO locates in the thermofield vacuum
and its states have a sense of thermal correlated-coherent states (TCCS)[3].

We assume that a wave function in the TCCS has a temperature - depen-
dent amplitude and phase. Under the suitable parameterization it generates
a Riemannian structure on the states space. The last circumstance allows
us to introduce a gauge-invariant metric tensor and calculate the Gaussian
curvature in the space. The latter fact gives us a possibility to make a
comparative study of the geometrical properties for different TCCS in the
entire temperature range.
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II. Geometrical interpretation of the wave function in the TCCS
space

The starting point of our study is the Schroedinger uncertainty relation for
the variables "coordinate-momentum". In the case of equality it is known
as the saturated one. In another words, it has a form of equality:

2 2
G B = a8l = [eoth g ()

For QO in the thermostat we found [4] the wave function in TCCS satisfying
this relation has the form

2

b(g) = [2n (B exp {—4 i z'a>} , 2)

where the coefficient o and the coordinate dispersion are

chw 17
o= [smh 2]{:31& ; (3)
(Ag)? = coth o (4)

2mw 2kpT’

We will interpret 1/(q) as some surface in the Hilbert space of TCCS. To this
end we consider the parameters as some effective coordinates in the two-
dimensional Riemannian space. The choice of parameters being non-unique,
we review only one possible variant.

Let us represent ¢(q) as a ray in the projective Hilbert space putting

P(q) = ¥(s152) = 51 exp{—P¢°(s] — is)}. (5)
Here s1, so are effective coordinates of the Riemannian space
hew 114
= |coth ; 6
s1 [co QkBT] ; (6)
-1
S9 = [COSh kBT] (7)
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and constants are

—1/4
= [ e ®)
Following [1]let us introduce the gauge-invariant metric tensor
ik = Vit — BiBk, (9)
where .
=% (G| S8, (10
B =i (7] 22, (1)

8sk

III. Some geometrical characteristics of TCCS space

Knowing the wave function (s, s2) we can first of all calculate the com-
ponents of the gauge-invariant metric tensor g;; using the formulas above.
Neglecting the details of the calculations we get

1 _
B1=0; (o= 1814; (12)
g11 = Y11 = 287 % (13)
g12 =921 = n12 =0; (14)
3 _
T2 = g 51 5; (15)
9 1 g
g22 = Y22 — 35 = 35 - (16)

Now we calculate the Riemannian metric on the studied surface in the TCCS
space
di* = gix(si, sg)dsidsy, (17)

where dl stands for the elementary length of a curve on the surface ¥ (s, $2).

At last the determinant of the metric tensor g;; is determined by the
formula

1 _
g = Z 51 10’ (18)
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where the tensor g is a diagonal one.

Correspondingly we can get the characteristics of symplectic structure

Ay~ | 9
. = — = —_—
Oik Oki ~5 < 881‘ 38k> (19)

In the given case

1
O12 = =0 = —3 8] b (20)
It is interesting that
9= g11922 = |o12]? (21)

Note that the main property of all these quantities is the dependence on
the parameter (s1)~! in the form (6).

One can note that under the temperature variation in the range 0<7T'<oo
the parameter (s1)~!, where s has the form (6), takes values in the range

2%kpT\*

We underline that the dependence on the temperature is the significant
peculiarity of the TCCS space. It should be also recalled that the coordinate
dispersion (4) so the quantities g11, 922, and o2 can be expressed through
the coordinate dispersion of QO as follows

_ 2mw
st = 2 (A (23)
Thus we establish the relation between features of the TCCS space and

fluctuations of physical characteristics in non-classical Physics.
IV. Connection coefficients and the Riemann-Christoffel tensor

To calculate a curvature in 2-dimensional Riemannian space under the cho-
sen parameterization let us first calculate connection coefficients. Because
the metric is non-degenerate, i.e. det g;; # 0, there exists a unique connec-
tion that is symmetric and consistent with metric g;;.
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It is defined as follows [5,6]:

=g (G - ). 21
In our case only three connection coefficients are not trivial:
INTRE %%L;ll =257 (25)
[ooq = — %889_8212 = %nga (26)
Fop = %%Ljf = —%31_9- (27)

They depend on the temperature through the expressions (6) for coordinate
s1 of effective Riemannian space and (4) for coordinate dispersion QO in
the thermostat.

Knowing the quantities I';; ;. one can calculate components of the Riemann-
Christoffel tensor

A ari.  ore A .
Rk = gmiRig; = gmi (Wk] - lef + 0Ly — Tl ) (28)

where it is necessary to take into account the expression
Likt = gimDj1- (29)

In the 2-dimensional case from the symmetry of the Riemann-Christoffel
tensor follows that its unique component is
Ol'122

o 11,092,597 +T12,12,59" . (30)

Roj19 = —

If one inserts the obtained quantities in this formula one gets

Ol129
Roj12 = — 8317 — T35 g™ 4+ Tigol10, 672 (31)
Taking into account that g'' = 1/g11 and g% = 1/go2 one can finally obtain
9 w0, 1 10 —10 _ _o.—10
Roi10 = 5 s+ 5 s+ 281 = 281 , (32)
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where the dependence on temperature appears again through coordinate
dispersion.

Finally, from the formulas above one can calculate the Gaussian scalar
curvature K:

R
K==222 _ g (33)

9

It should be underlined that the curvature of the TCCS space at the point
associated with the normalized state in the projective Hilbert space is con-
stant and negative. This metric corresponds to geometrical features of hy-
perboloid.

V. Conclusion

Let us summarize our geometric results and make some physical comments.

If we fix some set of the wave function characteristics for QO in ther-
mostat, we can use its geometrical interpretation as a surface in the TCCS
space.

In this case such features of the space as metric tensor components,
connection coefficients, and components of the Riemann-Christoffel tensor
depend on coordinate dispersion associated with the thermostat tempera-
ture.

The Gaussian scalar curvature of the surface associated with the wave
function is constant and negative. We claim that this result shows resem-
blance to that obtained earlier [1] for the same case by group-theoretical
method.

We hope that our results will be useful for establishing of similarity
between the properties of events space in classical and those of the states
space in non-classical Physics.
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GEOMETRICAL MODEL WITH TWO EXPONENTS FOR
DESCRIBING THE PROTON-PROTON SCATTERING AT
HIGH ENERGIES

Z. Tarics

Institute of Electron Physics, Ukrainian National Academy of Sciences,
Uzhgorod, Ukraine

Abstract

A dipole model of pomeron with two independent exponents
is suggested. It is shown that the appearance of the minima
and maxima observed experimentally in the differential cross-
sections of elastic pp-scattering at high energies could be de-
scribed within the framework of the above model. The model
is analyzed; the limitations for its certain parameters are ob-
tained.

I. Introduction

The experimental differential cross-sections of elastic pp-scattering for mo-
mentum transfer 0.5 < [t| < 14 GeV? (energy /s = 23.5 — 62 GeV) demon-
strate different minima and maxima. These extrema shift slowly to lower
|t| with increasing energy. In [1-3], an elegant model was proposed and the
above behavior of cross-sections has been satisfactorily described. The ad-
vantage of the model is its simplicity (it includes only the dipole pomeron)
and a small number of parameters (four), which can be fitted from exper-
iments. However, its shortcoming is that it leads to a decreasing ratio of
Oel/0tot, which tends to an asymptotic constant value.

The model [3, 4] includes a triple pomeron and, therefore, it breaks the
unitarity. However, due to a large number of parameters (10-20), this model



describes perfectly the above minima, maxima and the o /o ratio.

Here a dipole pomeron model is suggested containing two exponential
terms dependent on ¢. In this model, the minima and the maxima of the
differential cross-sections for the elastic pp-scattering appear as well. In
addition, it imposes several restrictions on the parameters and allows one
to determine those values of /s, for which the extrema would appear or
disappear.

I1. Dipole model with one exponent

An ansatz for the dipole pomeron amplitude has a geometrical form [2,3]
u(s,t) =isgo (c1 R; exp(Rit) + caRR3 exp(R3t))

where radii R; 2 depend on the energy; go, c1 and co are constants. Making
known transformations of this amplitude, performing some substitutions
and choosing definitely the constants ¢y, ¢o [2], one obtains [3]

-4 e ()
(1)

where A, b, 7 are the constants or parameters. sy can be chosen as a di-
mensionality parameter: so = 1 GeV2. The pomeron trajectory was chosen
in a linear form:

a(t) =1+d't. (2)
In this model, simple formulae were obtained [2] for the positions of the
minima and maxima as well as for their behavior.

I1I. Dipole model with two exponents

The amplitude with two exponents for pp (pp)-scattering is also chosen in
a simple form:

a(t)—1
P(s,t) =isgo [e“t + ce® In (—zi>] <—zi> , (3)
S0 S0



pp

23,5GeV

s

30,5 GeV

2743 GeV

do/dt ( mb/Gev®)

N
“‘6A..1...1%..1..A1‘..1.4g1

6 8
-t (GeV ’2)

Figure 1: Differential cross-sections of elastic pp-scattering.

where gg, a, b, ¢ are the constants and sg = 1 GeV?2.
Here the amplitude (3) is normalized in such a way that the differential

and total cross-sections could be calculated by the following formulae:

dog T 9
= —|P(s,t 4
24— SIPGs,tP, (4)
4
Ot = —ImP(s,t =0). (5)
S

For the elastic differential cross-section we obtain an expression:

s 2 e 2 s 20(t)
e® 4eettln =) + (—> et [ 2=
S0 2 S0

doe g?
dt 82

~—~
D
=
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where substitution g = gpso was made. The total cross-section is given by
the following formula:

4
Ctot = _2"9 <1 +cln i) ) (7)

50 50

IV. Extrema in differential cross-sections

Here we also choose a linear pomeron trajectory (2). Let us find the extrema
of the differential cross-section (6) on ¢. The extremal points should be
obtained from the following equation:

2
(a+a'L)e*™ 4+ cL(a+b+2a/L)eaP)t 4 |:62(b +d'L) <L2 + ﬂ—)] e =0,

4
(8)

2t and introducing a

where L = In(s/sp). Multiplying this equation by e~
new variable

x = ela bt 9)

we obtain

2

(a4 /L)z* + cL(a+b+2d'L)x + 2 (b+ L) <L2 + 1 > =0. (10)

The solutions are

c

e 2(a+a'L)

[L(a+b+2o/L) + ¢L2(a—b)2—w2(a+a/L)(b+a/L)} .
(11)

Let us analyze formula (11). First note that for the pomeron trajectory
slope we chose here o/ = 0.25 GeV~2 and, from experiment, ¢ > 0. With
this o/ accepted in the most of papers a large number of experimental data
were described not only for pp- and pp-scattering but also for other high-
energy processes. We notice that our amplitude reflects the situation when
the pomeron gives a main contribution to the physical values, which charac-
terize the processes. This statement is correct beginning from the energies
/s ~4—5 GeV. Thus, L > 0.

One can see from expression (9) that the physical values of x are posi-
tive. On the other hand, to let the minima and the maxima occur in the
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differential cross-section, the determinant of equation (10) must be positive.
We require for all L >0

L*(a—b)* —7%(a+o'L)(b+a'L) > 0. (12)

The left-hand part of inequality (12) could be considered a positively defined
function of L:

f(L) =[(a—b)*— (7a’))]L? — 7%d/(a + b)L — w%ab > 0. (13)

It is obvious that
(a —b)* — (ma’)? > 0. (14)

Inequality (13) must be valid for L = 0 as well. Thus,
—n%ab > 0. (15)

Not restricting the generality, we can choose a > 0 and b < 0. Then it
follows from (14) that
a+b>0, a>]lbl. (16)

The function f(L) has a minimum at

m2a/(a + b)
Lmin = ) 1
2[(a— b - (v} o
i.e., in fact, Ly, > 0. It is obvious that the minimal value is
2,12 2
+0b)
L) = —n2ah—"—_( 0. 18
FEmin) = =03 =0 (el ]~ 1
This inequality may be represented in a following form
m2a’%(a — |b])?
bl — 0. 19
W S ol (o] 7 )
Hence, it follows
(a + |b])?(4alb| — 72a/?) > 0, (20)
i.e.
4alb] > (ma)?, (21)
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or
alb] > (ma//2)? = 0.15. (22)

In the physical region, ¢t <0 and 0 < < 1. From formula (11) we obtain
for L=0

o = —i (i 7T2a]b]) (23)

i.e. the physical solution is obtained by choosing the minus sign. Thus,

T Jalb] < 1 (24)
and
4a
bl < . 25
b < o (25)

So, the constant b satisfies the following inequalities

ol ’ < bl < _4a_ (26)
2y/a = (me)?’
From this expression the lower limit for the constant a results:

72/ |c|

4

(27)

It is seen from (22) and (11) that for some L = L; the value of x_ becomes
zero and for L > L the solution is z_ < 0. The equation for L; has a form

(4L2 4+ 7*)(a + o'Ly)(b+ o/ Ly) = 0, (28)

and from here we obtain
_ 1]

/

Ly (29)

Q

Thus, for L > L; the extrema vanish. This fact confirms the data for
pp-scattering obtained up to /s = 546 GeV.

The author would like to thank Laszlo Jenkovszky for helpful discussions.
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THE FRENET APPARATUS OF NULL CURVE AND THE
NULL HELIX IN R}*?

A. Altin

Hacettepe University, Beytepe Ankara Turkey
Abstract

In this work we calculated the Frenet apparatus of a null
curve C' in RTH in terms of the Frenet apparatus of the curve
C* which is the orthogonal projection of C' on R™*!. We also
give the theorems which provides some information about a null
helix. If C is a null helix then it must be contained in a four
dimensional subspace in RTH.

I. Preliminaries

The smooth curve C' = a(I) in a semi-Riemannian manifold (M™% g) is
said to be a null curve if the velocity vector to C' at any point is a null
vector.

Let TC be the tangent bundle of C' and TCt = UtelTa(t)C’l, where
ToiryCF = {Vaw) € TayM : g(Va), (1)) = 0}.

At each point «(t), we choose a complementary vector space to To)C
in Ta(t)C’l. Denote by S(Ta(t)CJ-), this chosen subspace. Hence, we get a
vector bundle S(TC*) on a. Since

TC+H=TCLS(TCH),

S(TCH) is a vector bundle of rank m. The non-degenerate vector bundle
S(TCH) is called a screen vector bundle of C. Therefore we have

TM |c= S(TCH)LS(TCH* (1)



where S(TC+)* is a complementary orthogonal vector bundle to S(TC+)
inTM |¢ .

Theorem 1.1. Let C' be a null curve of a proper semi-Riemannian
manifold (M, g) and S(TC) be a screen vector bundle of C. Then there
exists a unique vector bundle ntr(C) over C of rank 1, such that on each
coordinate neighbourhood U C C there is a unique N € T'(ntr(C) |v)
satisfying

g(a/(t)vN):L g(NaN):Oa g(NaX):()? VXGF(S(TCL) ‘U (2)
Consider

tr(C) = ntr(C)LS(TC),
from (1), (2) then we have the following sum

TM |c=TC&tr(C) = (TContr(C))LS(TCH). (3)

The vector field N, which was constructed in this theorem, is said to be the
null transversal vector field of C' with respect to o’ [3.p.53]. A null curve C
in R’1"+2 is given locally by the equation of the following form

a(s) = (s, /08 al,...,/os Amt1), (4)

where, a1 = cosby(s)ds + ¢1, g = cosba(s) [[4Z] sinby(s)ds + ca, a €
{2,....m}, a1 = [[ sinby(s)ds+cmq1, ¢k € R, by, are smooth functions
for any k € {1,...,m}, and s is the arc-length of the orthogonal projection
C* = a*(I) of C on R™*! give by, [3,p.73],

o’ (t) = {ai(t), a5 (b), ., agy 1 (1)}

In this paper, we mean by a!’s, (1 <1 < r) the derivatives of the curve a.

Let o* be a regular curve in R™*! and v = {(a*)(t), (a*)"(t), ..., a*" (t)}
be a maximal linearly independent set. The orthonormal system {V;(¢),
Va(t), ..., Vi(t)} can be obtained from . This is called a Frenet frame at
the point o*(t), [4].

Defnition 1.2. Let a* be a regular curve in R™*! and {Vi(t), Va(t),
..., Vo(t)} be the Frenet frame at the point a*(t).
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The functions k; : I — R defined by
ki(t) = g(V/ (1), Visa(t)), 1<i<r—1 (5)

are called curvature functions on a*. Moreover, the real number k;(t) is
called the i — th curvature on o at the point o*(¢).

Theorem 1.3. Let a* be a unit speed curve in R™*! and the set
{Vi(t), Va(t),...,V.(t)} be the Frenet frame at the point a*(¢). Then, the
followings hold, [7,p.194],

Vi(t) = ki(t)Va(t), (6)

Vit) = —kia(®)Viea(t) + ki()Visa (1), 1<i<m (7)

Vit) = —k—a(t)Veoa (D). (8)
2. Helix

Theorem 2.1. Let a and a* be the curves as in equation (4) and
{Vi,Va, ...y Vi }, {k1, ko, ..., kr—1} be Frenet fields and curvature functions of
curve o respectively. Then, « is a null curve in R’{H. More over if we
choose S(T'C+) spanned by {Ws, ..., W,.}, then we have the null transversal
vector field N = 1(—1,17), and the Frenet equations are

o = KWy
1
N = =
2k1W2
1
(Wg)/ = —§k10/ — k1N + kW3
(Wg)/ —kJQWQ + k‘3W4
(Wy)' —k3Ws3 + kyWs
(erl)l —kp oWy + kAW,
(WT)I _krfIerla (9)
where
W;=(0,V;) je{2,...,r} (10)

99



and the Frenet frame is F' = {a/, N, Wy, ..., W,.} on R’frl along a.
Proof. From (4) we have

o =(1,("), o =(0,(ax)), j>2.

Therefore {o/,a”,...,a"}, r < m+ 1 is the maximal linearly independent
set. Since o has at most (r-1) non zero curvatures, o* is contained in R".
Therefore « is also contained in Rf.

We choose S(T'C+) = span{Ws,...,W,} and a complementary vector
bundle H to TC in S(TCY),

Y = (0,(a*)) € T(H |y) and g(a/,Y) # 0 on U. We calculated the null
transversal vector field and found that
1 g(V,Y) 1 *\/
N = Y — — (=1 .
@)Y T gy =k e

Since (a*)" = V1, we have
, 1
o =(1,Vy), N= 5(—1,V1). (11)

We differentiate (10), (11) and by using (6), (7), (8) we obtain (9).

By the ideas in [5, p.73] and [6, p.160] , a helix is defined as a curve which
has a constant scalar product of its tangent vector field and a constant
vector field.

We now give the definition of a null helix in semi-Euclidean space RTH
in a similar way to [2], as follows.

Definition 2.2. Let o be a null curve in R;”‘LQ and X be a non zero
constant vector field. If

g(d/(t), X) = constant £ 0, for all ¢ ¢€ I,

then, « is said to be a null helix in R7**? and span {X} is said to be the
inclination axes of «,

Example 2.3.
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a: R — R} be the curve difened by

4 4
a(t):(§t3+t, 22, §t3—t), X =(1,0,1)

Example 2.4. Let a, 0, p,w,d be non-zero constants, b be constant and
let a : R — R} be the curve difened by

1 1 1 1
a(t) = (at + b, —ocospt, —osinpt, —dcoswt, —dcoswt), X = (1,0,0,0,0)
p p w w

where a2 = 02 + d2.

Definition 2.5. Suppose that k1, ko, ..., k,_1 are curvature functions of
a curve a. A function H; : I — R defined by

e if =1
Hi(t) = 2(0)? . : (12)
m{Hle(t) + ki(t)HZ‘_Q(t)}7 if 2<i<n-2

is called the 7 — th harmonic curvature function of a.

Lemma 2.6. Let a be a null helix in R**?, span{X} be the inclination
axes, {a/, N,Wa, ..., W, 12} be the Frenet frame fields of « and let II be the
orthogonal projection of R{”‘LQ onto the space span{a’, N,Wo, ... W,42}.
If » < m, then span{II(X)} is the inclination axes in span{a/, N, Wa, ...,
Wr+2}-

Proof. We can choose {o/, N, Wy, ... Wiio,wr, ..., wm,(rﬁ)} as an qua-
si-orthonormal basis of RTH. In this case

r42 m—(r+2)
X = x(]O/ +x1N + leWl + Z bjwj,
i=2 Jj=1
r+2
H(X) = x(]O/ +x1N + leWl
=2

Since g(zgn;l(rﬁ) bjwj, /) =0 and g(X,') = constant # 0, we have

r—42
g(zod + 21N + inWi, o) = constant # 0
i=2
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Since span{X} is inclination axes, then II(X) is also non zero and constant.

Theorem 2.7. Let o be a curve in R’1"+2 with the Frenet frame field
{o/, N, W, ...,W,} and with harmonic curvatures Hy, Ha, ..., H.—o, 7 < m.
Then, « is a null helix in R’1"+2 if and only if H; ’s are constant and z1 # 0.

Theorem 2.8. There is a relation between curvatures and harmonic
curvatures of a curve in R’1"+2 as follows.

r—=2 172\/
. H+

k:ﬁ 3<r<m-—1 (13)
r— T—

Consequently, combining (12), (13) and theorem 2.7 we can give our main
theorem.

Theorem 2.9. The curve « is a null helix in R71”+2 if and only if and
kj =0 for j > 3.

As a consequence of this theorem we obtain the following.

Corollary 2.10. if « is null helix then « is contained in a four dimen-
sional subspaces in R’ln”.

References

[1] A. Altin, Harmonic curvatures of null curves and the null heliz in
R(m+2,1), International Matematical Forum, 2 22, 1069 (2007).

[2] A. Altin, Harmonic Curvatures of Non Null Curves and the Helix in
R}, Hacettepe Bulletin of Natural Sciences and Engineering 30, 55
(2001).

[3] K. L. Duggal, A. Bejancu, Lightlike Submanifolds of Semi-Riemannian
Manifolds and Applications (Kluwer Academic Publishers Group, Dor-
drecht, The Netherlands, 1996).

[4] H. Gluk, Higher Curvatures of curves in Euclidean space, American
Mth. Month. 73, 699 (1966).

102



[5] A. Goetz, Introduction to Differential Geometry, (Addison Wesley Pub-
lishing Company, 1970).

[6] H. W. Guggenheimer, Differential Geometry, (Mc Graw-Hill Book
Company, inc, 1963).

[7] H. H. Hacisalihoglu, Diferensiyel Geometri, (Inonii Universitesi Fen
Edebiyat Fakiiltesi Yayinlari, 1983).

103



ACTA PHYSICA DEBRECINA XLII, 104 (2008)

ON ISOMETRIC IMMERSIONS OF N-DIMENSIONAL
LOBACHEVSKY SPACE INTO (2N-1)-DIMENSIONAL
EUCLIDEAN SPACE
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Abstract

In this work some theorems about isometric immersions of
the Lobachevsky space into Euclidean space are presented.

I. Introduction

The study of isometric immersions of n-dimensional Lobachevsky space L™
into Euclidean space E?"~! from the local and global points of view is
considered in the author’s papers [1] - [10] . In this direction for n > 2
there exist also the works by E.Cartan, A.Liber, J.D.Moore, K.Tenenblat,
C.-L.Terng, F.Xavier and others.

Let F™ be a regular submanifold in E?"~! isometric to some simple
connected domain of the Lobachevsky space L™ with a curvature equal to
-1. In terms of curvature coordinates the metric form of F™ can be written
in the form

n n
ds® = Z:Sim2 Ji(dui)2, Zsin2 o; = 1. (1)
i=1 i=1

The functions o; satisfy some system of nonlinear differential equations.



For convenience we shall use the following notation:

1 OH,
Hi 8ul ’

Hi = smaoy;, ﬂz‘j =

i # .

For a regular immersion H; > 0. Then the following system of differential
equations describes the isometric immersions of the Lobachevsky space L"
into En—1

0H; 0Bi; 0B
— 3. H: E e -
Gui 61] 2 3Uj + Gui + ; ﬂzqﬁ]q 07

bu =~ 2 Patle Gt g+ 2 Puifes = M,
! q ¢ q

0B;j
Buk

= BirBrj, where i#jF#k#i.

This system is completely integrable and is a generalization of well-known
"sin-Gordon" equation.

It is natural to call it the system "Lobachevsky-Euclid" or briefly "LE-
system". The solution of this system depends on n(n — 1) analytical func-
tions of one variable.

II. Section

On the Grassmann image of an immersion

Let N* be some k-dimensional subspace in E™** through the fixed point
O. Let ey, ...,e,+ be a fixed orthonormal frame in E"tk. We take in N’f
some orthonormal frame, which consists of unit vectors &, ..., & and let &
be the coordinates of & with respect to eq,...,en+r. We call the following
quantities the Pliicker coordinates of N*

i1 i

' ' 1 1
V.U
p =

i1 ik
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Pliicker coordinates p''*% are components of the simple polyvector p =
[€1, ..., &k] generated by the vectors &1, ..., &,. Well ordered set of these com-
ponents with condition i; < 7s... < it gives us a point P in the Euclidean
space K™, where m = C’S 4k Since we consider the Grassmann manifold
G ntr as some submanifold of £ we can introduce to Gy, a metric

do?, which is induced by ambient space E™

d0_2 _ Z (dpzllk)2

i1,...<lk

Let F™ be a regular submanifold in the Euclidean space E™** with the posi-
tion vector r = r(u', ...,u™) and curvilinear coordinates u!, ..., u".Grassmann
map ¢ : I — G,,_1 2n—1 correlates the (n-1)-dimensional space N passing
through some fixed point O € E**~! with every point € F™, the space N
being parallel to normal space N, of F™ at the point = (i.e. it corresponds
to every point = some point of Grassmann manifold G,_1 2,—1). The image
of this map ¥ (F"™) we denote I'". The Grassmann mapping v transfers co-
ordinates from F™ onto the image I'™. So we can write the position vector
of a point of I' as a vector-function

By using of the Weingarten decomposition we can obtain for the metric di?
of the Grassmann image I'" the following expression

k
i’ = dp> =Y LGLS.g"*du’du’,

a=1

where L are the coefficients of the second fundamental form of F™ with
respect to its normal vector &,. If F™ is a regular immersion of some do-
main of the Lobachevsky space L™ into E?"~! and u!,...,u™ are curvature
coordinates, so in these coordinates the metric of I'” is written as follows

2]

n 2
di* = Z cos® o (dut)?, Z cos>o; =n — 1. (2)
i=1 i=1
From here we obtain

106



The sum of the metric of a Lobachevsky space and its Grassmann image
is the flat metric

ds? +di* = (du)? + ... + (du™)>.

From the expression of di? it follows also that I'” is a regular n-dimensional
submanifold. The map for n > 2 increases the volume of any domain of F"
and the length of any asymptotic line.

It is well known that does not exist local isometric immersions of a
n-dimensional Riemannian space with negative curvature into E?"~2. Mul-
tidimensional analogy of the pseudosphere is an example of isometric im-
mersion of domain of the Lobachevsky space L™ into E**~1.

Remember, that for n = 2 it has place the Hilbert theorem about nonex-
istence isometric immersion of complete Lobachevsky plane into E2. Multi-
dimensional analogy of this theorem is open question. We can give answer
only under some additional conditions.

The properties of the Grassmann image imply the following result

Theorem 1. If the Grassmann image I'" lies on a closed n-dimensional
manifold and if the Grassmann map 1s finite-to-one, then the immersion of
the full space L™ in E*"~' has singularities.

It is interesting to investigate different classes of immersions. One of
such classes for n = 3 arises on condition that the Garssmann image is
hyperplanar, i.e. I'* ¢ E?.(In the general case I'® ¢ E'.) In this case
the Pliicker coordinates of points of the Grassmann image satisfy the linear
equation

Zaijpij +a =0,
i<j
where a;; and o are constant numbers.

The existence of local isometric immersions with the hyperplanar Grass-
mann image is proved. In this case the author found the connection of the
theory of isometric immersion with the theory of rigid body rotation with a
fized point in the central field of gravity and the Newton Law of gravity [3].
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We show that the set of equations for isometric immersion of L? into E® in
this case has as subset the Kirchhoff equations
dH dF;

—r = [FH], == = C(FjFy — cH;Hy), i,j,k #

where H = {H;}, F = {F;} are 3-dimensional vectors, C; and ¢ are
constant,[ ] is the vector product in E3. We obtain some number of the
first integrals. From existence of these integrals it follows

Every solution H of the system for isometric immersions of L® into E®
with hyperpflat Grassmann image in general case is definite and analytical

over all parameter space u', u?, u>.

This statement does not guarantee that a corresponding immersion of
complete space L? into E° is regular because there the points of H; = 0
and H; < 0 may occur.

In some subcases the theorems about nonimmersion of full Lobachevsky
space are proved.

The following question arises in a natural way: can the metric of the
Grassmann image have a constant curvature ? The answer to this question
for n = 3 is given in [6].

Theorem 2. There is no local C? isometric immersion of L? into E®
with constant curvature of the metric of the Grassmann image.

ITI. Section

On a family of submanifolds with a constant negative curvature

In [10] we consider a (n — 1)- parametric family of submanifolds F™ in
E?~1 with a constant negative curvature Ko(F™) in a ball D of the Eu-
clidean space E?"~!. We suppose that this family is included in some (2n-
1)-orthogonal coordinate system wy, ..., us,—1 as a family of coordinate sub-
manifolds w,41 = const, ..., usn_1 = const. The author calls this system the
Bianchi system of coordinates, if the first n coefficients H? of the metric
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form of the ambient space satisfy the following condition
n
> HP =1 (3)
i=1

Bianchi shows for n = 2 that the condition (3) satisfied automatically.
The author has proved for n = 3 that for proving the next theorem it will
suffice to demand the condition (3) only on two coordinate curves uy, us
going through the center of the ball D. Besides, remark that on each sub-
manifold F™ one can introduce the curvature coordinates, for which the
condition (3) is true. In the paper [10] proved is

Theorem 3. Assume that a ball of radius p in the Euclidean space
E?=1 carries a reqular Bianchi system of coordinates such that Ko(F™) <
—1. Then

p<

N

There exists an example of a regular Bianchi system in a ball D C E3
with radius p = %

As F™ is the submanifold with the flat normal connection, then on ™
there exists a field £ of normal unit vectors parallel translated in the normal
bundle. With the help of this field ¢ we construct a map ¢ : F™ — §2"72 of
the submanifold F™ into the unit sphere $?"~2. We call the map ¢ spherical
and denote its image T'(¢). The metric of T'(§) has the following form:

n

(d€)? = Z cos? o cos? @i (du')?, (4)
i=1
where (; is an angle between £ and i-th principal vector of normal curvature
ki, ¢=1,...,n. In the general case the spherical image cannot be regular
and, moreover, it can degenerate in a submanifold of lower dimension than
n.

We found a curvature tensor of the spherical image and proved a saddle
character of spherical image, which considered as a submanifold in S?"2.
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Theorem 4. Under a spherical mapping the curvature lines are trans-
lated on the curvature lines of the spherical image, the asymptotic lines are
translated on the asymptotic lines of submanifold T(¢) C S?"~2. The length
of asymptotic lines is preserved under this mapping.

IV. Section
Some new results with codimension > n-1.

In 1960 E.R Rozendorn in the work [11] constructs isometric immersion of
complete Lobachevsky plane L? into E®. His method is modification of the
method of D.Blanusa, who gave the imbedding of L? into E®(1954).

I investigate extrinsic-geometrical properties of the Rozendorn surface
and proved the following theorem

Theorem 5.  The modul of the mean curvature vector H on the Rozen-
dorn surface L?> — E® is bounded from above

|H| < const.

In the work [12] D.V.Bolotov proved that does not exist a regular isomet-
ric immersion of L™ into Euclidean space E™T™ with flat normal connection
and with |H| < const.
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Abstract

This work considers Geometrical and Physical aspects in a
setting of arithmetic provided by Observer’s Mathematics (see
www.mathrelativity.com). We prove that Euclidean Geome-
try works in sufficiently small neighborhood of a given line, but
when we enlarge the neighborhood, non-Euclidean Geometry
takes over. We given an analog of the Lorentz Transform. We
prove that the physical speed is a random variable, which can-
not exceed some constant, and this constant does not depend
on an inertial coordinate system. Certain results and commu-
nications pertaining to these theorems are also provided.
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I. Introduction

The following discussion is based on the work introduced in [1]. Further
information can also be found in [2| and [3]. We consider a finite well-
ordered system of observers, where each observer sees the real numbers as
the set of all infinite decimal fractions. The observers are ordered by their
level of “depth”, i.e. each observer has a depth number (hence, we have the



regular integer ordering), such that an observer with depth k sees that an
observer with depth n < k sees and deals (to be defined below) not with
an infinite set of infinite decimal fractions, but, actually, with a finite set of
finite decimal fractions. We call this set W,,, i.e. it is the set of all decimal
fractions, such that there are at most than n digits in the integer part and n
digits in the decimal part of the fraction. Visually, an element in W,, looks
like .. . .. _ . Moreover, an observer with a given depth is

n n
unaware (or can only assume the existence) of observers with larger depth

values and for his purposes, he deals with “infinity”. These observers are
called naive, with the observer with the lowest depth number — the most
naive. However, if there is an observer with a higher depth number, he
sees that a given observer actually deals with a finite set of finite decimal
fractions, and so on. Therefore, if we fix an observer, then this observer
sees the sets W,,, ,..., W, with n; < ... < ny indicating the depth level,
and realizes that the corresponding observers see and deal with infinity.
When we talk about observers, we shall always have some fixed observer
(called ‘us’) who oversees all others and realizes that they are naive. The
“Whp-observer” is the abbreviation for somebody who deals with W, while
thinking that he deals with infinity.

The following sections describe application of the idea of relativity in
mathematics to various mathematical fields.

II. Arithmetic

We begin by defining sets W,, which consist of all finite decimal fractions
such that there are at most n digits in the integer part and at most n digits
in the decimal part. That is, the set W,, contains all elements of the form
a = ag.ai...a, where the integer part can be written as ag = b,,—1...bg, where
bp—1,-, 00,01, ....,an, € {0,1,...,9}. If n < m, then W,, naturally embeds
into W,,, by placing 0’s in the n + 1% through m* decimal places. We call
the embedding ¢y, : Wy, — W,,. Here are some examples: let 2.34 € Wy
and then @24 (2.34) = 2.3400 € Wy. Similarly, W,, projects onto W, by
cutting off the superfluous digits on the right of the decimal point. Let
Omn : Wi — W, be the projection, then, for example, if 45.4301 € Wy,

113



then @49 (45.4301) = 45.43 € Wh. If the integer part of a fraction contains
more than n digits, then ¢,, , is not defined.

Now, given ¢ = ¢y.ci...c,,, d = do.dy...d,, € W,, we endow W,, with the
following arithmetic (4, —n, Xn, +n):
Definition 1. Addition and subtraction

et d— ctd, ifctdeW,
"7\ not defined, if c+d ¢ W,

and we write ((... (¢1 +n 2) ...) +ncN) = ]XV: "e; forcy, ..., cn iff the contents
of any parenthesis are in Wy, =
Definition 2. Multiplication
n N n—k N
cxnd—kgo mzzo O.%._.’lgck-0.0:.f(%dm

where ¢,d > 0, ¢y -dy € Wy, 0.0...0¢i - 0.0...0d,, is the standard product,

k—1 m—1
and k = m = 0 means that 0.0...0c, = ¢y and 0.0...0d,, = dy. If either
N~ \,.1/
k—1 m—

¢ <0 ord<0, then we compute |c| X, |d| and define ¢ x,, d = £ |c| X, |d|,
where the sign + is defined as usual. Note, if the content of at least one
parentheses (in previous formula) is not in W, then ¢ x,, d is not defined.

Definition 3. Division
c+nd:{ roif AreW, rx,d=c

not defined, if no such r exists or it is not unique

Let n = 2, so we are in Ws. Here are some examples of elements
of Wa: 3.14,-99,0.1 € W5 and 0.115,123.9,—100000 ¢ Ws. Now, the
examples of arithmetic: 2.08 +9 11.9 = 13.98; (—2.08) +2 11.9 = 9.82;
80 +2 24 = not defined; 21.36 — 0.87 = 20.49; 1.36 —2 16.95 = —15.59;
1.36 —2(—99.95) = not defined; 11 x28 = 88; (—5) X219 = —95; 11 X312 =
not defined; 3.41 x4 2.64 = 8.98; 3.41 x5 (—2.64) = —8.98; 3.41 x42.64 =
not defined; 99.41 x5 1.64 = not defined; 0.85 x5 0.02 = 0; 80 +5 4 = 20;
1+, 0.5 = not defined (since we get 10 different 7’s); 1 +,, 3 = not defined
(since no r exists).
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ITI. Derivatives

From the point of view of Wj-observer (we will call such observers
"naive", since they "think" that they "live" in W and deal with W) a
real function y of a real variable z, y = y(x), is called differentiable at
x = xg (see [4]) if there is a derivative

) = m Y®) = y(z0)
y (xo) J:—>x%)I,Ia:17éxo T — X

What does the above statement mean from point of view of W,,,-observer
with m > n? It means that

|(y(x) —n y(0)) —n (¥ (20) Xn (T —n 20))| < 0.0...01
whenever

[y(®) —n y(z0)| = 0.0... 0y Y141 -+ Un
——
l

and
|(z —p x0)| =0.0...02k Ty1 ... T
k

for 1 <k, ! <n,and x - non-zero digit.
We now state the main theorems.

Theorem 1. From the point of view of a W,,-observer a derivative calcu-
lated by a Wy-observer (m > n) is not defined uniquely.

Proof. Put y/(zg) = £ag.a1...apap11 ... an with ag.aj ... apapy1 ... ay
> 0 and p < n. Then 0.0...0y; Y141 -..Yn = G0-Q1 ...ApAp41 -.-Qp
——

l
Xn0.0...02 Tpq1.. .2y =ag.a1...apbpy1...0,%,0.0... 02 Tpqq ... 2y for
—— ——

k k
any digits bpi1,...,b, and p = n — k. Hence y/(z¢) € V = {*ap.a1...q,
Api1 - - Qplapit, - an € {0,1,...,9}} and |V| = 10%. QED.
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Theorem 2. From the point of view of a W, -observer with m > n, |y’ (xo)| <
C’f{k, where Crl{k € W, is a constant defined only by n,l, k and not dependent

on y(x).

Proof. We have £0.0...0y; Y141 .- Yn = (Fag.a1 ... ay) X, (£0.0... 0xy,

l k
T4l ... %y) With g - non-zero digit and ag.a; ...apapy1...a, > 0. Now,
if I > k then ag = 0; if [ = k then ag < 9 and if | < k then ag < 9 x 10¥~1.

Hence
1,if I >k

Chk =< 10, if 1 =k
9x 101 ifl < k

QED.

Theorem 3. From the point of view of a W,-observer, when a W, -observer
(with m > n > 3) calculates the second derivative:

y(@s)—y(x1) _ y(z2)—y(zo)
(x3—1) T3 —x0

" .
Yy (xo) = lim
T1—T0,T17£T0,T2—T0,T2AT0,T3—T1,T3FT1 T — o

we get the following unequality:

(|$2 —n $0| Xn |,I3 —n $1|) Xn |$1 —n $0| Z 0.0...01

n

provided that y" (xq) # 0.

Proof. For the W,,-observer existence of y”(zg) means that |((y(z3) —n
y(x1)) Xn (22 =nT0) =n ((y(22) —ny(20)) Xn (2 =n70))) =ny" (z0) Xn (|22 —n
xo| Xn |23 —n x1|) X0 |21 —n 20])| <0.0...01, whenever

n

n

——f—
|(xg —p 20)| <0.0...0px%...x%

——
k
and
n
——
|(z3 —pn 21)] <0.0...0g*...x%
——
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and
n

——
|(z1 —pn 20)] <0.0...0r%...x%

S

where p, ¢, r are non-zero digits, asterisks are any digits and 3 < k+I+s < n.
Then given y"(zg) # 0 we have (|xe —, 20| Xp |23 —p 21|) X0 |21 —n 20| >
0.0...01. QED.

—

n

IV. Physical Interpretation

The following hypotheses illustrate possible physical interpretation of
previous theorems.

Hypotheses 1 Theorem 1 could offer an explanation of why physical speed
(or acceleration) is not uniquely defined and, from the point of view of
a measurement system (observer), it is possible to consider speed (or
acceleration) as a random variable with distribution dependend on the
measurement system. Let v be the speed with v = vg.v1 ... v,k —1—57?5]6
where &% € {0.0...0vp_js1-..vn} - random variable, m > n, and

n—k

the distribution function is F*(z) = P(&5* < ).

Hypotheses 2 Theorem 2 could offer an explanation of why the speed of
any physical body cannot exceed some constant, (the speed of light,
for example). Independence of this constant on explicit expression of
space-time function could offer an explanation of why the speed of
light does not depend on an inertial coordinate system.

Hypotheses 3 Theorem 3 could offer an explantion of the various uncer-
tainty principles, when a product of a finite number of physical vari-
ables has to be not less than a certain constant. This can be seen not
just from consideration of second derivatives, but of any derivative.

Hypotheses 4 Theorems 1, 2, and 3 combined may provide an insight into
the connection between classical and quantum mechanics.
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V. Nadezhda Effect

In this section we consider an open square () centered at the origin
with sides of length 2 located on a plane W,, x W,,. We will calculate
the distance D between the origin (0,0) and any point of @ as follows.

D = p((0,0), (z,y)) = Va?+y?> = /T Xp @ +p Yy Xp y, where Ja = b

means b X, b=a, z,y € Q, ie., |z| <1, ly| < 1.

The figure below contains an illustration of the fact that for some points
on W,, x W, the concept of distance from the origin does not exist; while
for others it does exist. The illustration below is for n = 3 (Q C W3 x Wj3).
Points with no distance to the origin are indicated by black, while points
where distance from the origin exists are indicated in white.

This means that the distance D does not always exist, i.e., not every
segment on a plane has a length. This phenomenon occurs for all n. We
call the presence of these "black holes" as the Nadezhda Effect. This effect
gives us new possibilities for discovering physical processes and developing
their mathematical models.
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POLYHEDRAL SPACE FORMS WITH HYPERBOLIC AND
OTHER METRICS
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Abstract

In earlier works of the author, partly joint with I. PROK and J. SZIRMAI
(e.g. [M92], [M97], [MO5], [MPSz06]), the projective sphere PS%(R; VI+!;
Vai1; +) has been introduced for presentation of polyhedral d-orbifolds and
d-manifolds, mainly in the homogeneous 3-spaces

E3; 83 H? S?2xR; H?xR; S/L\g_f{; Nil; Sol
(Thurston geometries). The main steps can be indicated as follows.

1. A projective simplex coordinate system has to be introduced for the
fundamental polyhedron, where the face pairing generators are ex-
pressed by linear mappings upto projective freedom with some free
parameters.

2. The defining relations for the symmetry groups (by the induced edge
equivalence classes) fix some parameters of the generator mappings,
by matrix equations, occasionally of high degree.

3. We look for a plane-point polarity (or scalar product) for the orthog-
onality of planes of a 3-dimensional projective metric geometry from
the eight possibilities above. This polarity (i.e. the orthogonality of
planes) has to be invariant under the generator mappings. These lead
to linear matrix equations for the symmetric polarity matrix.



4. The signature of polarity (scalar product, fundamental quadratic form),
if it is not trivial, with some additional properties, provides the pos-
sible Thurston geometry.

5. If the signature is (0;+; +; +), then we obtain Euclidean 3-tiling with
exact matrices for the generators and the scalar product, possibly with
free parameters. Moreover, by a conventional coordinate system we
can recognize the corresponding crystallographic space group as well.

6. Other signatures (e.g. (+;+;+;+) to spherical space, (—;+;+;+) to
hyperbolic or Bolyai-Lobachevskii space) lead to other realizations.
Or - if only trivial polarity is possible - then either certain "splitting
effects” occur, or the famous Thurston conjecture would not be true
(1), considered still to be open, in general (7).
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Abstract

The functional bases of the first-order differential invariants
of all non-conjugate subgroups of the Poincaré group P(1,4)
have been divided into classes of equivalent bases. The number
of all non-equivalent functional bases has been determined. The
application of the results obtained to the construction of classes
of the first-order differential equations in the space M(1,3) x
R(u) invariant under these subgroups is discussed. Among
those classes, there are some invariant under the following sub-
groups of the group P(1,4): SO(2), SO(3), E(2), E(3),

SO0(1,3), SO(4), E(4), P(1,3), SO(1,4), G(1,3), etc.
I. Introduction

In many cases, mathematical models of various processes can be de-
scribed by means of differential equations (linear or nonlinear) in the spaces
of different dimensions and different types (Euclidean, non-Euclidean, etc.).



It is well known (see, for example, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]|) that
the majority of differential equations, which are useful in theoretical and
mathematical physics, mechanics, gas dynamics have non-trivial symmetry
groups. For example, in the space M (1,3) x R(u), we have the following
equations:

1. The Eikonal equation

wuy, = (ug)?® = (ur)? = (u2)? = (ug)® = 1,

where u = u(z), v = (xo,21,22,23) € M(1,3), u, = A utt = gy,
x

v =20,1,2,3.

2. The Euler-Lagrange-Born-Infeld equation

Ou (1 — wyu”) + v uuy, =0,

ou d%u

i = gy
uw = g"™uy, 9w = (1,-1,-1,-1)6p,, p,v = 0,1,2,3, O is the

d’Alembert operator.

where u = u(z),x = (2o, 1,22, 23) € M(1,3), u, =

3. The homogeneous Monge-Ampére equation

det (uu) = 0,

d%u

where u = ’U,(.%'), T = (-%'0,.%'1,[132,.’133) € M(173)7 Upy = W7
z,0,

v =20,1,2,3.
4. The inhomogeneous Monge-Ampére equation

det (uy) = A (1 — wu’)®, AN#0,
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d%u
Oz, 0z,

v g =1,-1,-1,-1)6,, p,v,aa=0,1,2,3.

where u = wu(x), == (xo,x1,%2,23) € M(1,3), uy =
o
O0xq

Here, and in what follows, M(1,3) is a four-dimensional Minkowski
space; R(u) is a real number axis of the depended variable wu.

v _ SV —
u’ = g"%yq, Uq =

These equations are invariant under generalized Poincaré group P(1,4)
(see, for example, [7, 12, 13]). The group P(1,4) is a group of rotations
and translations of the five-dimensional Minkowski space M (1,4). This
group has many applications in theoretical and mathematical physics (see,
for example, [9, 14]). Continuous subgroups of the group P(1,4) have been
found in [15, 16, 17]. One of the nontrivial consequences of the description
of the non-conjugate subalgebras of the Lie algebra of the group P(1,4) is
that the Lie algebra of the group P(1,4) contains, as subalgebras, the Lie
algebra of the Poincaré group P(1,3) and the Lie algebra of the extended
Galilei group G(1,3) [9, 18], i.e. it naturally unites the Lie algebras of the
symmetry groups of relativistic and non-relativistic physics. Therefore, the
construction of the classes of differential equations, which are defined in the
space M(1,3) x R(u) and invariant under non-conjugate subgroups of the
group P(1,4), is important from different points of view.

In many cases (see, for example, [3, 5, 19]), these classes can be written
in the following form:

F(Ji, Joy o Jy) = 0, (1.1)

where F'is an arbitrary smooth function of its arguments, {Jy, Jo, ..., J; } is
functional basis of differential invariants of the corresponding subgroup of
the group P(1,4).

It should be noted that each of these classes is a non-singular differential
invariant manifold of the corresponding non-conjugate subalgebra of the Lie
algebra of the group P(1,4). More details on the manifolds of this type can
be found in [3, 5].

As we see from the formula (1.1), the properties of these classes essen-
tially depend on the properties of the corresponding functional bases.
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The construction of functional bases of differential invariants for non-
conjugate subgroups of different Lie groups has shown that there is no one-
to-one correspondence between the non-conjugate subgroups of these groups
and the corresponding to them functional bases of differential invariants. It
means that the different non-conjugate subgroups of Lie groups can have
the same (equivalent) functional bases of differential invariants.

In [20, 21| we have presented some results, which referred to the appli-
cation of equivalence criterion [20, 22] in order to construct separately all
non-equivalent functional bases of the first-order differential invariants of
splitting and non-splitting subgroups of the group P(1,4).

The purpose of the present paper is to give some new results obtained
by means of equivalence criterion for functional bases of the first-order dif-
ferential invariants of all non-conjugate subgroups of the group P(1,4).

II. The Lie algebra of the group P(1,4) and its representation.

The Lie algebra of the group P(1,4) is given by the 15 basis elements
My, = -My, (p,v=0,1,2,3,4) and P, (p=0,1,2,3,4), satisfying
the commutation relations

[P, P =0, (M), P.| = 9us P, — guo P,

pvr+ o
[M;wa M;o'] = g,upMzia + gqu;Lp - gupM;w - g,quLp,
where gop = —g11 = —g22 = —¢g33 = —guu = 1, g =0, if p # v. Here,
and in what follows, M, = iM,,,.
In the following we will use new basis elements
P, :Mélla_ (;0? Ca :Mia_}'M(;O’ (a: 1’2’3)’

Xo:%(PO’_PD, X, =P, (k=1,2,3), X4=%(P0’+Pi)-
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All non-conjugate subalgebras of the Lie algebra of the group P(1,4) are
divided into splitting and non-splitting ones. More details on the splitting
and non-splitting subalgebras of any finite-dimensional Lie algebra can be
found in [23].

Splitting subalgebras P;, of the Lie algebra of the group P(1,4) can
be written in the following form:

Pia = F; + Nia,

where F; are subalgebras of the Lie algebra of the group O(1,4), N;, are
subalgebras of the Lie algebra of the translation group 7'(5) € P(1,4).

Non-splitting subalgebras IBJk are subalgebras, for which basis can be
chosen in the form:

By, = By, + Z CkiXis Z drj X,
i J

where c¢; and d,; are fixed real constants (not equal zero simultaneously).
By, are bases of subalgebras of the Lie algebra of the group O(1,4), X; are
bases of subalgebras of the Lie algebra of the group 7'(5).

Let us consider the following representation of the Lie algebra of the
group P(1,4):

0 0 0 0
Pl=— pP=-—_ P=-— p=__"
0 8900’ ! 8901’ 2 3.%27 3 8903’

/ ! / / —
Py=—7, M, =- (muPy — m,,PM) , Ty = U

It means that the group P(1,4) acts on the space M(1,3) x R(u). More
details about the representations of this type can be found in [7, 12, 13].
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III. On non-equivalent functional bases of the first-order
differential invariants of non-conjugate
subgroups of the group P(1,4).

In this section we consider the construction of non-equivalent functional
bases of the first-order differential invariants of non-conjugate subgroups
of the group P(1,4), as well as the application of them in order to con-
struct mathematical models (differential equations) with nontrivial symme-
try groups in the space M(1,3) x R(u).

Let {Jl(l),Jg(l),...,Jt(l)} and {Jl(z),JQ(Q),...,Jéz)} be functional bases of
the first-order differential invariants, which correspond to the non-conjugate
subalgebras L' and L? of the Lie algebra of the group P(1,4).

Definition. We say that the functional bases {Jl(l), JQ(I), ceey Jt(l)} and

{J1(2), J2(2), veey Jt(2)} be equivalent if there exist smooth functions fy, fa, ..., fi
and g1, g9, ..., g+ such that

2 1 1 1 1 2 2 2
K = [ Y i) I =g (9P, 0P
2 1 1 1 1 2 2 2
1y = o Y ) I = (9P, )
........................................ and e
I = gV, ) I =g (P, 02, 0

Proposition 1. Two functional bases {Jl(l), 2(1), e Jt(l)} and {J1(2), J2(2),
vy Jt(2)} are equivalent if and only if they satisfy the following conditions:

XWg® =0, xM 5P <0, XV =0

- _ - (3.1)
XA g =0, xP N =0,.., X200 =0

where {)?f”,)?g”,...,)?ﬁ})}, {)?}2),2252),...,)?7&3)} are the first-prolonged
bases operators of the Lie subalgebra L' and L2, respectively; r1,ry are
the dimensions of the subalgebras L' and L2.
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Proof. The Proof of this Proposition for splitting subalgebras of the Lie
algebra of the group P(1,4) can be found in [20] (see Lemma). Since the
proof of this Proposition for non-conjugate subalgebras of the Lie algebra
of the group P(1,4) is quite analogical to the case of splitting subalgebras,
therefore we omit it here. The generalization of this Proposition on the func-
tional bases of any finite order differential invariants of the non-conjugate
subgroups of local Lie groups of the point transformations can be found
in [22].

We have used this Proposition as the criterion of the equivalence for
any two functional bases of the first-order differential invariants of the non-
conjugate subgroups of the group P(1,4).

Proposition 2. There exist 49/ non-equivalent functional bases of the first-
order differential invariants for the non-conjugate subgroups of the group
P(1,4).

Sketch of proof. The list of all non-conjugate (the conjugation was con-
sidered under the group P(1,4) ) subalgebras of the Lie algebra of the group
P(1,4) contains 555 ones [4].

As following from the calculation of the general ranks of matrices, which
contain coordinates of the one-prolonged basis elements of the subalgebras
of the Lie algebra considered, and using the theorem on number of invariants
of the Lie group of the point transformations (see, for example, [5, 3|) we
make sure that the 550 of the non-conjugate subalgebras of the Lie algebra
of the group P(1,4) have the functional bases of the first-order differential
invariants. Thus, there are 550 functional bases of the first-order differential
invariants. Among them, there are equivalent ones. Equivalent functional
bases can only be among those, which have the same dimensions.

Let L' be a non-conjugate subalgebra of the Lie algebra of the group
P(1,4), which has the ¢-dimensional functional basis of the first-order differ-

ential invariants {Jl(l), 2(1), cees Jt(l)}. To find the bases, which are equivalent

to {Jl(l), JQ(I), veey Jt(l)}, we use the Proposition 1. Let {J1(2), J2(2), ceey Jt(2)} be
t-dimensional functional basis of the first-order differential invariants of the
other non-conjugate subalgebra L?. Following the Proposition 1, if these
functional bases satisfy the conditions (3.1), then, the considered bases are
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equivalent. Otherwise, the considered bases are not equivalent. In the anal-
ogous manner, we check whether other ¢-dimensional functional bases of the
first-order differential invariants are equivalent to the {Jl(l), J2(1), - Jt(l)} or
not. In this way, we obtain all ¢-dimensional functional bases, which are

equivalent to {Jl(l) , J2(1) 3oy Jt(l) }

In the analogous manner, we construct classes of the equivalent func-
tional bases of other dimensions.

The direct application of the mentioned above criterion give us 494 non-
equivalent functional bases of the first-order differential invariants for the
non-conjugate subgroups of the group P(1,4). The Proposition is proved.

Taking into account the non-equivalent functional bases of the first-
order differential invariants of the non-conjugate subgroups of the group
P(1,4) we can construct 494 classes of the first-order differential equations,
which are defined in the space M(1,3) x R(u) and invariant under the non-
conjugate subgroups of this group. All these classes of equations can be
written in the form (1.1).

It is impossible to present all these classes here. Below, only for the
Lie algebras of some subgroups of the group P(1,4), often applicable in
theoretical and mathematical physics, we write their basis elements and
corresponding classes of the first-order differential equations in the space
M(1,3) x R(u).

1 (Ls)(= SO(2)),

2 2\1/2 2 2
F (z0, x3, (2] 4 23) 2, u, wu — w2u1, U, U3, U2 +u3) =0,

ou
= — =0,1,2,3;
’U,M axﬂa 2 ) Ly Sy Dy

2. (L1, Lo, L3)(= SO(3)),
F (w0, (23 + 23 4+ 292, u,u0, 2101 + 2ous + 23u3, uf +ud +u3) =0;

3. (L3, X1, X2)(= E(2)),

2 2 .
F(fEO, xr3, u, Up, U3, u1+u2) :07
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4. <L1, L2, L3, Xla X2, X3>(% E(3))7

F (20, u, ug, uf +uj+u}) =0

D. <L1, L2, L3, Pl _Cly PQ_CQ, P3_C3>(% 50(1’3))?

2 2.2 o 2\1/2
F ((3:0 — ] — x5 —x3) 12w, xoug 4+ T1ul + xous + T3u3,

2.2 .2 2) (.
uo—ul—uz—u3)—0,

6. <L1, L2, L3, P1—|—Cl, P2+02, P3_|_C’3>(g 50(4))’

T1u1 + Tauz + T3u3 — U
F (:co, (z} + 23 + 23 + u?)/?, :

Uuo

u%—i—u%—l—u%—i—l) 0.
u? Y
0

7. (L1, Lo, L3, Pi+Cy, P,+Cy, P3+C3, X1, X, X3, Xo—X4)(= E(4)),
1 1 1
<h+¢ﬂ+@%h+?&+@%m+ﬁ%+@%Xh&,
X3, Xo —X4>,
1 1 1 1
<L1+§ (P +Ch), L2+§ (P + Cy), L3+§ (Ps+C3), L3—§ (P3s+C3),
X1, Xo, X3, Xo— Xy4),

2 2 2 1
F@mM+%j%+>:m
U

F(u, u%—u%—u%—u%)zo;

9. (G, C1, Cy, Cs, L1, Loy, L, P1, Pa, P3)(= SO(1,4)),

2

F 5 2 2 o o (xoup + x1u1 + Tous + T3U3 — W) _ 0

Lo —T] — X3 —T3—U ) 2 2 2 2 )
uf —uy —usy —uz—1

10. <L15 L25 L3a Pla P2) P3) XOa Xla X?, X3a X4>(% G(153)))
<P15 P2a P3a XOa Xl, X25 X3a X4>a
<L3_P37 P17 P27 X07 X17 X27 X37 X4>7
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<L3a Pl) P2a P3a XO, Xl, X2a X3, X4>a
(Ls — Xo, P1, P», P3, X1, Xo, X3, Xy),
(P1, Py, Ps+ Xo, L3+ X0, X1, Xo, X3, X4, <0),

” u? + ud +u3 + 2(ug + 1) 0
(up +1)2 -

Since the Lie algebra of the group P(1,4) contains, as subalgebras,

the

Lie algebra of the Poincaré group P(1,3) and the Lie algebra of the

extended Galilei group G(1,3) (see also [9, 18]), the obtained classes of
differential equations can be used in relativistic and non-relativistic physics.

1]

2]
3]

4]

[5]

6]

7]

8]

References

S. Lie, G. Scheffers, Vorlesungen iiber Differentialgleichungen mit
bekannten infinitesimalen Transformationen (Leipzig, 1891).

E. Vessiot, Acta math. 28, 307 (1904).

L. V. Ovsiannikov, Group Analysis of Differential Equations (Academic
Press, New York, 1982).

W. I. Fushchych, L. F. Barannyk and A. F. Barannyk, Subgroup anal-
ysis of the Galilei and Poincaré groups and reductions of nonlinear
equations (Kiev, Naukova Dumka, 1991).

P.J. Olver, Applications of Lie Groups to Differential Equations (Sprin-
ger-Verlag, New York, 1986).

W. Miller, Jr., Symmetry and Separation of Variables (Addison-Wesley,
Readnig, Mass., 1977).

W.I. Fushchych, W.M. Shtelen and N. I. Serov, Symmetry Analysis
and Ezact Solutions of Equations of Nonlinear Mathematical Physics
(Dordrecht, Kluver Academic Publishers, 1993).

W.I. Fushchych, R.Z. Zhdanov, Symmetries of Nonlinear Dirac Equa-
tions (Kyiv, Mathematical Ukraina Publishers, 1997).

131



[9] W.I. Fushchych, A. G. Nikitin, Symmetries of Equations of Quantum
Mechanics (Allerton Press Inc., New York, 1994).

[10] N.H. Ibragimov, Transformation Groups Applied to Mathematical Phy-
sics (Reidel, Boston, 1985).

[11] W.I. Fushchych, A. G. Nikitin, Symmetries of Mazwell’s Equations
(Reidel, Dordrecht, 1987).

[12] W.I. Fushchych, N.I Serov, Dokl. AN SSSR 278, 847 (1984).
[13] W.I. Fushchych, N.I. Serov, Dokl. AN SSSR 273, 543 (1983).

[14] V.G. Kadyshevsky, Fizika elementar. chastitz. i atomn. yadra 11, 5
(1980).

[15] V.M. Fedorchuk, Ukr. Mat. Zh. 31, 717 (1979).
[16] V.M. Fedorchuk, Ukr. Mat. Zh. 33, 696 (1981).

[17] W.I. Fushchich, A.F. Barannik, L.F. Barannik and V.M. Fedorchuk,
J. Phys. A: Math. and Gen. 18, 2893 (1985).

[18] W.I. Fushchich, A.G. Nikitin, J. Phys. A: Math. and Gen. 13, 2319
(1980).

[19] S. Lie, Math. Ann. 24, 537 (1884).

[20] V.M. Fedorchuk, V.I. Fedorchuk, Universitatis Iagellonicae Acta Math-
ematica 44, 21 (2006).

[21] V.M. Fedorchuk, V.I. Fedorchuk, Annales Academiae Paedagogicae
Cracoviensis Studia Mathematica 4, 65 (2004).

[22] V.M. Fedorchuk, V.I. Fedorchuk, About equivalence of functional bases
of differential invariants of any finite order of non-conjugate subgroups
of local Lie groups of point transformations, Modern problems of me-
chanics and mathematics, V.3 (L’viv: Pidstryhach Institute of APMM
of NAS of Ukraine, 2008), 202-204.

[23] J. Patera, P. Winternitz and H. Zassenhaus, J. Math. Phys. 16, 1597
(1975).

132



ACTA PHYSICA DEBRECINA XLII, 133 (2008)

ITO-STRATONOVITCH FORMULA FOR A FOUR ORDER
OPERATOR ON A TORUS

R. Léandre

Institut de Mathématiques. Université de Bourgogne. 21000. Dijon. FRANCE
Abstract

We give an Ité-Stratonovitch formula for a semi-group gen-
erated by a four order operator on a torus.

I. Introduction

Let B; a Brownian motion on R. By the celebrated Ito formula ([2]), we
have if f is a C? function from R into R:

F(By) = f(Bo) + /O J/(B)SBs +1/2 /0 17 (By)ds (1)

where 0B, is the Itod differential.

This formula can be convert in the Stratonovitch Calculus in

F(B) = £(Bo) + /0 F(BJ)dB, 2)

where dB, is the Stratonovitch differential.

[to-Stratonovitch formula for diffusion processes was translated in semi-
group theory by Léandre ([11]). Léandre ([3], [4], [5], 6], [7], [8], [9], [10],
[11], [12], [13], [14], [15]) has translated in semi-group theory a lot of tools
of stochastic analysis, by using the classical relation between the theory of
stochastic processes and the theory of Markovian semi-groups, such that



the tools of stochastic analysis become algebraic comptations on the semi-
group, the estimates being done because we get semi-groups in probability
measures.

It is interesting to developp this strategy when we consider more general
semi group: it is the purpose of this communication to do that in a simple
case.

II. Statement of the main theorem

We consider a torus T" (xz € T") and a orthonormal basis of its Lie
algebra 9;. We consider the four order elliptic oeparator A = >(9;)*. Tt is
symmetric positive self-adjoint. It generates a (non-markovian!) semi-group
P; on L%(T™), the torus being endowed of its Haar measure.

We consider a smooth function f from T" into R and the vector field on
T" x R, (z,y) € T" x R
o] = 0, + (9:.1)0, (3)

and we consider the degenerated operator on T" x R

Al =3 @) (4)

It is symmetric positive, and therefore has a self-adjoint extension on L?(T"™x
R), T™ x R being endowed of its Haar measure. This self-adjoint extension
AJ generates therefore a semi-group Ptf on L*(T™ x R).

We consider a smooth function g(.,.) from T" x R with compact support
and the function on T"

g (x) = g(=, f(2)) (5)

Our main theorem is:

Theorem (1t6-Stratonovitch) We have the relation

Plg")(x) = P/lg(., )(z, f(x)) (6)

134



III. Proof of the theorem

It follows the same strategy of the proof of the Ité-Stratonovitch for-
mula of [11], the difficulty being that for the estimates we consider a Non-
Markovian semi-group, the algebra being more at less the same.

We suppose first of all that f is a finite sum of trigonometric and that
g is a finit sum of a product of trigometric function in = and expression of
the type y" exp[—ay?] a > 0. In such a case,

t" n
Plg’](x) = ¢’ (2) + (=8) g’ (x) (7)
But if we consider an expression 1 which depends only on x, we have

Bi(g"v) = (8] (., Y0) (, f(2)) 8)

such that we recognize in the right hand side of (7)

o, £()) + 30 (A gl e T @) = Lol (e £) )

Since the continuous semi-groups are continuous in L2, the formula (6) is
valid for all smooth g(.,.) with compact supports.

The theorem comes then from the following lemma:

Lemmalf f,, as well as all its derivatives tend to f uniformly, and if g
18 smooth with compact support, then

Pl lg (@ y) = B lg( )]G ) (10)
uniformly and in L?(T" x R).

Proof: We remark that the vector fields Bif commute and that 0, = Gg
commutes with them. Moreover if the supremum norm of the k¥ derivatives
of f are bounded, Bif ;4 = 0,..,n constitute uniformly a basis of the tangent
space of T" x R. Let (a) = (g, .., &) be a multiindex and (97)(® be the
associated differential operator. It is enough to show that

@)@ P [g(, (@, y) — (01D P [g(., )](x,y) (11)
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uniformly and in L. But (8/)(®) commute with A/ such that

@)@ P/ [g(., )(x,y) = PI"[(05) @ g (., ))(z,y) (12)

Moreover,

@)D PL (., )z, y) — (@) DB [g(., )](z, y) (13)

is solution of the problem

wo = ((01)@ — (9/)@)g(.,.); 5= Ay + (A = Al (14)
where ¢} = Pf”[(@f")(o‘)g(., J](,.). We solve this problem by the method
of variation of constant. The result comes from the fact that a function
which has all its derivatives in the distributional sense in L? is a smooth
function whose C* uniform norm can be estimated in terms of the L2 norm

of his higher derivatives.<.
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LORENTZ-COVARIANT THEORIES OF HIGHER-SPIN
FIELDS AND INSIDE

V. V. Dvoeglazov

Universidad de Zacatecas, Apartado Postal 636, Suc. 3 Cruzes
Zacatecas 98064, Zac., México

Abstract

We generalize the Stueckelberg formalism in the (1/2,1/2)
representation of the Lorentz Group. We analize the problem
of the mass generation and of the indefinite metrics from the
modern viewpoints. Some relations to other modern-physics
models are found.

I. Introduction

Recent advances in astrophysics [1] suggest the existence of fundamental
scalar cosmological fields |2, 3]. On the other hand, the (1/2,1/2) represen-
tation of the Lorentz group provides suitable frameworks for introduction
of the S = 0 field, Ref. [4]. In a series of papers, starting from the very
beginning we propose a generalized theory in the 4-vector representation,
for the antisymetric tensor field of the second rank as well 5], see also [6].
The results can be useful in any theory dealing with the light phenomena
and vector bosons. The plan of my talk is following:

e Antecedents. Mapping between the Weinberg-Tucker-Hammer (WTH)
formulation and antisymmetric tensor (AST) fields of the 2nd rank.
Modified Bargmann-Wigner (BW) formalism. Pseudovector poten-
tial. Parity.



Matrix form of the general equation in the (1/2,1/2) representation.
Lagrangian in the matrix form. Masses.

Standard Basis and Helicity Basis.

Dynamical invariants. Field operators. Propagators.

The indefinite metric.

The Gelfand-Tsetlin-Sokolik-type quantum field theory.

The Spin-2 Framework.

Non-commutativity.

I1. Results and Conclusions

The mapping exists between the Weinberg-Tucker-Hammer (WTH)
formalism for S = 1 and the antisymmetric tensor fields (AST) of
four kinds (provided that the solutions of the WTH equations are of
the definite parity).

Their massless limits contain additional solutions comparing with the
Maxwell equations. This was related to the possible theoretical exis-
tence of the Ogievetskii-Polubarinov-Kalb-Ramond notoph, Ref. [7].

In some particular cases (A = 0,B = 1, see ref. [5]) the massive
solutions of different parities are naturally divided into the classes of
causal and tachyonic solutions.

If we want to take into account the solutions of the WTH equations of
different parity properties, this induces us to generalize the Bargmann-
Wigner, Proca and the Duffin-Kemmer formalisms.

In the (1/2,0)® (0,1/2), (1,0) @ (0,1) etc. representations it is possi-
ble to introduce the parity-violating frameworks. The corresponding
solutions are the mixing of various polarization states.
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The sum of the Klein-Gordon equation with the (5,0) & (0,.5) equa-
tions may change the theoretical content even on the free level. For
instance, the higher-spin equations may actually describe various spin
and mass states.

The mappings exists between the WTH solutions of undefined parity
and the AST fields, which contain both tensor and dual tensor. They
are eight.

The 4-potentials and electromagnetic fields [8, 9] in the helicity basis
have different parity properties comparing with the standard basis of
the polarization vectors.

In the previous paper [10] and several talks I presented the theory
in the (1/2,0) & (0,1/2) representation in the helicity basis. Under
the space inversion operation, different helicity states transform each
other, Pup(—p) = —iu_p(p), Pvn(—=p) = +iv_n(p).

So, from the abovementioned (an my previous papers) it is not difficult
to understand the importance of A, ~ 9, x term in the electrodynam-
ics and in the Proca theory, cf. [11].

The (1/2,1/2) representation contains both the spin-1 and spin-0
states (cf. with the Stueckelberg formalism).

Unless we take into account the fourth state (the “time-like" state,
or the spin-0 state) the set of 4-vectors is mot a complete set in a
mathematical sense.

We cannot remove terms like (0, B};)(9, B, ) terms from the Lagrangian
and dynamical invariants unless we apply the Fermi method, i. e.,
manually. The Lorentz condition applies only to the spin-1 states.

We have some additional terms in the expressions of the energy-mo-
mentum vector (and, accordingly, those of the 4-current and the Pauli-
Lunbanski vectors), which are the consequence of the impossibility to
apply the Lorentz condition for spin-0 states.

The helicity vectors are not the eigenvectors of the parity operator.
Meanwhile, the parity is a “good" quantum number, [P, H]- = 0 in
the Fock space.



e We are able to describe the states of different masses in any group
representation from the beginning.

e Various-type field operators can be constructed in the (1/2,1/2) rep-
resentation space. For instance, they can contain C, P and C'P con-
jugate states. Even if b];\ = ai\ we can have complex 4-vector fields.
We found the relations between creation, annihilation operators for

different types of the field operators B,,.

e Propagators have good behavious in the massless limit as opposed to
those of the Proca theory. In teh generalized Stueckelberg theory one
should follow the method developed in ref. [12].

The detailed explanations of several claims presented in this talk are
given in journal publications. I am grateful to Profs. V. Gusynin, M.
Khlopov, Y. S. Kim, M. Kirchbach, S. I. Kruglov, D. J. Cirilo-Lombardo,
N. Mankoc-Borstnik, H. B. Nielsen, W. Rodrigues, R. Yamaleev, and par-
ticipants of the recent conferences for useful discussions.
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Abstract

The self-localized quasi-particle excitation of the electron-
positron field is found for the first time in the framework of a
standard form of the quantum electrodynamics. This state is
interpreted as the "physical" electron (positron) and it leads to
the perturbation theory being free from the ultraviolet diver-
gence.

I. Introduction

It is no doubt at present that the Standard Model is the fundamental ba-
sis for the theory of the electro-weak interaction [1]. It means that the
quantum electrodynamics (QED) is actually the part of the general gauge
theory. Nevertheless, QED considered by itself as the isolated system re-
mains the most successful quantum field model that allows one to calculate
the observed characteristics of the electromagnetic processes with a unique
accuracy (for example, [2] ). It is well known that these calculations are
based on the series of rules connected with the perturbation theory in the ob-
served charge e of the "physical" electron and the renormalization property
of QED. The latter one means that the "primary" parameters of the theory
(the charge eg and the mass mg of the "bare" electron), that are defined by
the divergent integrals, can be excluded from the observed values. However,
even the creators of the present form of QED were not satisfied with these
rules [3](§81), [4]. It is also very essential that the dynamical description



of the internal structure of the "physical" electron gives the fundamental
possibility to consider muon as an excited state of the electron-positron field
as it has been shown by Dirac [5].

The relation between the "primary" coupling constant eg and the charge
e is undetermined in the present form of QED. Therefore it is possible
that the value eq is large in spite the observed renormalized charge is small
e << 1. Our main goal is to find such a form of the renormalization that
would be logically consistent but the calculation possibilities of QED for
the observed values would be preserved.

II. Construction of the self-localized state

It is well known that the spatially localized states are very important for a
lot of quantum field models. Let us now consider the nonperturbative anal-
ysis of the spectrum of the one-particle excitations of the QED Hamiltonian
that is defined by the following form (for example, [6]) :
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We suppose here that the field operators are given in the Schrédinger rep-

resentation, the spinor components of the electron-positron operators being
defined in the standard way [6].

In these formulas h = ¢ = 1; the primary charge (—egp),e9 > 0 and mg
are considered as the parameters of the model; the symbol : H : means
the normal ordering of the operators excluding the vacuum energy [3|; &, 3
are Dirac matrixes; aﬁs(a;s) and bﬁs(b;s) are the annihilation (creation)
operators for the "bare" electrons and positrons in the corresponding states.

The field operator /T(F) and the operator of the photon number 7, are
related to the transversal electromagnetic field.

For the variational description of the self-consistent excitation let us
choose the trial state vector |®; > in the general form of the wave packet
formed by the one-particle excitations of the "bare" electron-positron field
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depending on the set of variational classical functions Ugs; Vs ¢(7). Be-
sides, the effect of polarization and the appearance of the electrostatic field
©(7) should be taken into account, so we consider |®1 > to be the eigenvec-

tor for the operator of the scalar field:
0 _, S _,
(@1 > |01 (Ugs: Vas: (7)) >= / dq{Ugsa, + Vasbi }0; 0;0(7) > . (2)

The ground state of the system is |®g >= |0;0;0 >, if we use the same
notation. It corresponds to the vacuum of both interacting fields.

Firstly, let’s consider the excitation with the zero total momentum. Then
the constructed trial vector should satisfy the normalized conditions result-
ing from the definition of the total momentum P and the observed charge
e of the "physical" particle:

0)) 34 (0 = 2]
<o|Plof" >=3" dgql|Ug* + [Vgl?] = P = 0;
> dillUsl + Vg = 1;
< @|QIaY >= o Y dllVisl* U] = . 3)

The last equation defines the observed charge of the "physical" particle at
the given value eg of the initial charge of the "bare" particle. The trial vector
|®; > is actually the collective excitation of the system and in this respect
the variational approach differs greatly from the perturbation theory. where
the zero approximation for a one-particle state correspond to one-particle
excitations determined by the charge eg of the "bare" electron and the field

o(r) = 0.

Thus, the following variational estimation for the energy F (0)=FE; (P=0)
of the state corresponding to the "physical" quasi-particle excitation of the
whole system :

E1(0) = B Uys; Vs (7)) =< & (07 >, (4)

where the average is calculated with the full Hamiltonian (1) and the func-
tions Uys; Vys; (7)) are to be found as the solutions of variational equations
with the additional conditions (3) .
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The average value in Eq. (4) is calculated neglecting the classical com-
ponents of the vector field. They are appeared in the high-order corrections
that are defined by the renormalized charge ell and can be considered by
means of the canonical perturbation theory. It should be noted that the
possibility of constructing self-consistently the renormalized QED at the
non-zero vacuum value of the scalar field operator was considered before [7]
but the solution of the corresponding equations was not discussed.

In order to vary the introduced functional let us define the spinor wave
functions (not operators) which describe the coordinate representation for

the electron and positron wave packets in the state vector ‘(I)go) >

)= / 2m)3/2 ZUqSuq”e P = / 27)3/2 Z g™ (5)

Varying the functional (4) by the wave functions V(7)) and V() taking into
account their normalization conditions one can find the equivalent Dirac
equations describing the electron (positron) motion in the field of potential

o(7):

v, (

B!

{(=ia@V + Bmo) + eop(7) 1O (7) = 0;
{(=iaV + Bmo) + eop ()} (F) = 0,
=t [ ST ) - v ) (©

But it is important that in spite of the normalization condition (3) for the
total state vector (5) each of its components could be normalized differently

C

1
drUt (AU (F) = ——; [ dFUT(FR)TE(F) = ——. 7
[arvr@oi = g [arve@en = £ )
The constant C is an arbitrary value up to now. It defines the ratio of two
charge states in the considered wave packet. As a result the self-consistent

potential ¢(7) of the scalar field depends on C.

Since the considered physical system has no preferred vectors if P= 0, it
is natural to regard the self-consistent potential as spherically symmetrical.
Then the variable separation for the Dirac equation is realized on the basis
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of the well known spherical bispinors [2]. Then the unknown radial functions
f, g satisfy the following system of the equations:

W) Lrg) — (o — o)) = 0
d<;f> 2 (rf) — (mo + eo(r)) (rg) = 0. (8)

The equations for the radial wave functions fi, g1 of the positron compo-
nents:

W) 1 L rgy) — (mo + eopr)) 1) = 0
d(;;]jl) _ %(T’fl) — (mo — epp(r))(rg1) = 0. (9)

The equation for the self-consistent potential follows from the definition of
©(r) taking into account the normalization of the spherical spinors [2]:

d2<P 2dyp €0 2 2 2 2
—_— " = —— — ¥ —g7]. 10
g T = e - (10)

The boundary condition for the potential defines the charge e of the "phys-
ical" electron (positron)

() ==
T _ = —— = —
PAr—=o0 = e = A 0

[e.e]

ridr[f2(r1) + ¢%(r1) — fi(r1) — g1 (r)]. (11)
The structure of the equation (6) shows that the considered variational
method is consistent with the gauge symmetry of the initial Hamiltonian.
One can show that the Hamiltonian (1) could be chosen in an arbitrary
Lorentz gauge with the classical components both for the scalar field ¢(7)
and for the longitudinal field 4;(7) [8].

Dimensionless variables and new functions can be introduced

2
€
x = rmg; £ = emg; egp(r) = mop(x); ﬁ = Q; u(w)\/mo =rg(r);

v(x)y/mo = rf(r);ur(x)y/mo = rgi(r);vi(x)y/mo = rfi(r).  (12)
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As a result the system of equations for describing the radial wave functions
of the one-particle excitation of the electron-positron field and the self-
consistent potential of the vacuum polarization can be obtained:

\/ up, Vo, U1, vV A/ ’U u
1+CO;07171 1 0, U0

A dxlud(z) + 3(x)) = 1 pola) =

%}ﬁﬁ—u—w»m—o%LFW—u+w»wzm
(o) = o goo@ion) = [ D2 [yl 3)

The energy of the system can also be calculated with these functions:

1-C 1 1-C
Ei(0) = E(0) = T+ - HJ;
T=/ der[(ulyoo — vhuo) — 2220 + (uf — od)];
0
11— [ dogo(o)d +25). (14)
0

and Eq.(13) can be obtained when varying of the functional (14).

The value a = ap(1 — C)/(1 + C) is the free parameter of the equations
(13) and it plays a role of the eigenvalue when the nontrivial normalized
solution exists.

The method for the numerical solution of the nonlinear self-consistent
system of the equations (13) was described in detail in the paper [8]. Only
the numerical results for the localized wave functions and for the scalar
potential are described in the present work. The numerical value for the
parameter a depends on the accuracy of the finite-difference approximation
for the differential operators and was as a = ag ~ —3.531.

The solutions ug, vy for the electron and positron components and the
self-consistent potential were drawn in Ref. [8]. All these functions are
localized in the domain with the linear size of ~ mg L. The potential gets
over the Coulomb potential of the "physical" charge e for r > rg = mal.
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It is important that the characteristic size of this excitation rq is the same
order as the classical radius of the electron r. = o/m, namely r¢ = 2|7:;0| ~
0.157¢.

The stationary localized collective excitation of the electron-positron
field described above is of great interest by itself as the eigenvector of the
well known QED Hamiltonian that can’t be calculated by means of the per-
turbation theory and has not be considered before. It is naturally to suppose
that this localized state describes the "physical" electron (positron) with the
observed charge e. The integral charge of the considered one-particle exci-
tation is defined by the boundary condition (11) and this supposition leads
to eg(1 — C)/(1 4+ C) = e. In the result one can find the following relation
between the "primary" coupling constant ag = e3/4m and the observed
value of the fine structure constant o = 2 /47

2

ag = % ~ 1708.1. (15)

This formula defines the renormalization of the charge in the considered
approximation and shows self-consistency of the initial supposition that
the interaction between the "primary" electron-positron and scalar fields is
strong.

Then the total energy of the excitation with zero momentum is:
T
E(0)=——— = —moa— > 0. (16)

This value defines the minimal energy of the one-particle excitation of the
electron-positron field and its positive sign corresponds to the "bottom" of
the "physical" electron zone in the renormalized QED. It was also shown in
[8] that E(0) can be considered as the "physical" electron mass m, because
it defines the spectrum of the excitation with non zero total momentum P
by Lorentz invariant way:

~ T
E(P)=+/P?>+ E?(0); E(0) =m,= —Moary
ag
mo = m, 2% < 1991 7. (17)
o

As it was shown by Dirac [5], investigation of the "physical" electron with
the distributed charge gives the possibility to interpret the "physical" muon
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as the excited state of such system. The variational approach considered in
the present paper allows one to analyze the one-particle excitation differed
from the "physical" electron without inclusion of any additional parame-
ters.This approach leads to a quite reasonable estimation [8] for muon mass
(my/me) = 191 instead of the experimental value (m,/me)ezp ~ 206.

It was also shown in [8] that the interaction between the considered
"physical" electron and the transversal electromagnetic field corresponds to
the perturbation theory relatively to the "physical" charge ell but without
the divergent integrals.
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SINGULAR LOCALIZED STATES, EXACTLY SOLVABLE
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Physics Department, Belarusian State University, 4 Nezavisimosti av., Minsk,
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Abstract

Based on SUSY QM approach to stochastic problems the
construction of exactly solvable and quasi-exactly solvable prob-
lems is considered. The possibility of existence of singular lo-
calized eigenstates for linear Fokker-Planck equation has been
explicitly demonstrated.

I. Introduction

The problem of construction of new exactly solvable problems continues to
be very attractive. Even for cases of the most developed one dimensional
quantum mechanics, where there are about 50 known solvable potentials
(see, e.g. [1]) as well as a large number of quasi-exactly solvable ones, new
papers attacking the problem appears every month.

At the same time only few examples of solvable Fokker-Planck equations
are known. One of the goals of the paper will be to consider the problem
of solubility of the last equation based on SUSY QM approach.

Another interesting question in the field is related to the so called "blow
up regimes" for some nonlinear equations. One of the first report of this
phenomenon for quasi-linear heat transfer equation has been written in the
middle of 80-th by A. Samarski et al. [2|. They found that for the equation

O f(x,t) = Ox(D(f)0uf(x,1)) + U(f, ,1) (1)



with a nonlinear heat transfer coefficient D depending on temperature (f)
as D(f) ~ f?, o> 1 and for source functions of the form U(f,x,t) = bf?,
the existence of new regimes is possible (the so called "blowup", "heat ex-
plosion" and "heat localization" regimes) when singularity of f is produced
within the finite time interval. Later such regimes have attracted much
attention in different fields see e.g., [3] and bibliography therein.

It is commonly accepted that singular localization is an inevitably non-
linear effect, typically originated from the existence of some generalized
symmetry and therefore some self-similar solutions.

The second goal of the paper is to demonstrate that singular localized
solutions (eigenstates) can naturally appear in some linear problems for the
Fokker-Planck (F-P) equation in an external field.

The paper is organized as follows. In the second section we shortly out-
line the correspondence between Shrédinger and Fokker-Planck equations
arisen within the framework of supersymmetric quantum mechanics (SUSY
QM) to stochastic problems [4, 6] and construct a series of solvable po-
tentials. In the third section we use one quantum quasi-exactly solvable
problem and construct the appropriate F-P problem with singular localized
eigenfunctions.

II. Correspondence between the Shrédinger and Fokker-Plank
equations

One dimensional diffusion equation for the distribution function f(z,t)
for a system in an external field with a potential U(z) reads

of(x,t) 0 f(x,t) 0 dU (z,t)
ot b o2 "oz (f(a:,t) dx > ’ 2)

where D is the diffusion coefficient, a is the coupling constant for interaction
of a particle with an external potential U(x). In subsequent we incorporate
it directly to the potential putting a = 1.

In the literature it is commonly accepted that the only difference of
diffusion equation and Schrédinger’s one is in imaginary time on respect to
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real time (Vick’s rotation). Though it is evidently true for the case of a free
particle, for the problem in an external field the only sight on the second
equation
L0V, t) 2 OP(at)
i =——— "
ot 2m  Ox?
immediately demonstrates that the external field is incorporated into the
equation (3) in a different way with respect to that in the diffusion case (2).

+ U(z)(z, ) (3)

The prominent feature of the eq.(2) is the existence of zero-mode (sta-
tionary or steady-state) solution fs(z), which simply corresponds to the
known Boltzmann distribution fs(z) = Cexp (-U(z)) .

In opposite, for the Schrodinger equation (3) the ground state is typically
unknown and of most interest.

This, as we will see, is due to the fact that after transformation of the
diffusion equation into the form of the Schrédinger one, we obtain the last
in the supersymmetric quantum mechanics ( SUSY) form directly and the
proper partner Hamiltonian is just H_ [5].

Let us shortly outline this way [4, 6]. We assume the units’ choice is
such that A=1,m = 1,D = 1/2. It is worth to note that the steady state
solution reads fs(x) = exp(—2U(z)) with this units’ choice.

Then, after substitution f(z) = exp{—U(z) — Et}¢(z) into
Of (@, t) _ 1 &f(x,t) 0

. !
we get the Schrodinger equation in the form
1
V(@) + (B = Vy(@)) Y(z) = 0 (5)

with a "quantum potential" V,(x) given by
1 2 1
Vola) = 3 U'(a)? — S U"(a). ©

The last equation is just in the form of SUSY QM approach with the super-
potential given by W(xz) = U'(x) [4] and the Hamiltonian operator having
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the factorized form

ﬁ;:mA:§§Qé§+muO$§Q%+U@Q. 7

It is evident from the (5) and (7) that the state £ = 0 is the eigenstate of
H_.

One can exploit the supersymmetric form directly by the construction of
solvable cases for 1-D diffusion equation, considering known shape-invariant
partner potentials [4].

There is another way, namely to construct the superpotential W (x) =
U'(x) that leads to exactly-solvable potentials for eq.(5). Denoting a solv-
able quantum potential in (5) by Vs(z), we consider eq.(6) as the Ricatti
equation for the superpotential W (z)

W' (z) = W (z)? = =2 Vi(x). (8)

Here it is worth to point out that we can split the energy parameter E in
(5) as E = E1 + E5 that leads to the appearance of a term e.g., Fs in the
right side of (8) and can be convenient in subsequent.

Based on the known correspondence of Ricatti and Schrodinger equations
we make substitution

W(z) = —¥'(x)/¥(z)) (9)

and rewrite (8) in the form of the Schrodinger equation for the function
U(x)

1
5 V(@) + (B2 = Vi(w)) ¥ () = 0. (10)
The last equation means that every eigenstate W,,(x) of a quantum solvable

potential Vy(x) gives a superpotential through the relation (9) that after
integration gives the diffusion equation potential U(z) in the form

Un() = Up + log | Wa ()] (11)

It is interesting that the set U, (x) leads to the same Schrodinger equation
(5) (with different splitting of the constant F).

154



The i-th eigenstate for the exactly solvable diffusion problem with the
potential U, (z) reads

fi(z,t) = Wy (x) exp (= (Eign — Ep)t) Yiyn(z),i = 0,1, ... (12)

where Fj; is eigenenergy of the appropriate quantum potential).

We can construct examples of exactly-solvable diffusion potential using
eq.(11) and, e.g., known solutions for the quantum harmonic oscillator. Tts
potential is Vi(x) = 22/2, the eigenfunctions read (omitting normalization
factor)

U, (z) = Hy(z)exp(—2%/2) n=0,1... (13)

where H,(x) are Hermite polynomials and eigenenergies are given by F,, =
n+ 1/2. The diffusion case (potential,ground eigenstate and the F-P equa-
tion) reads

n=2>0
.%'2 2
Up(z) = = folx)=¢€e"
of(x,t)  10%f(x,t Of(x,t
n=1
1132 2
Ui(z) = 5~ loglz|, folz) =a”e®
Of (w,t) 19%f(w,t) 1\ Of(z,t) 1
o 2 o T (“5) T*(”p)ﬂ“”f)’
n =3
Us(o) = —logle(2® — ), fola) = #* (242 — 3>

of(x,t) 1 9 1 4z Of (x,t)
ot —28f(a:,t)8x * T T w23 Ox *
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1 1622 4
(1 TE TR 3 3) f(@b).

We demonstrate the diffusion potential and first two eigenstates for the
case n = 3 in two adjoined wells, (xz € [0,+/3/2] and = € [{/3/2,0]) in
Fig. 1.

Figure 1: Diffusion equation potential Us(z) (bold solid line) and first two
eigenstates fo(z), f1(x) (solid, and dashed lines, non-normalized) in two
adjoined infinite barrier wells.

The constructed solvable potentials are logarithmically singular, so the
question arises either they correspond to non-penetrable multi-wall diffusion
problem, or diffusion takes place in all space. The question needs more deep
investigation but first conclusion is that such walls are partially penetrable
within the ordinary diffusion model that ignores particle momentums (and
we can see e.g., non-zero slopes for higher eigenstates functions in Fig. 1).
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II1. Singular localized eigenstates for the F-P equation

In fact, the method outlined in the previous section is not restricted to
the construction of exactly solvable diffusion models only, it could be also
used and for the quasi-exactly solvable ones. The last are such systems
that allow algebraic construction of only a finite number of eigenstates (see
e.g., [7] for more detail and ref. therein). Let us use it for the explicit
construction of singular localized eigenstates for the F-P equation.

In the paper [8, 9] the method has been proposed for the construction of
1D solvable and quasi-solvable potential families in QM based on polynomial
Ansatz for the wave function.

The general form of the second order linear differential equations allowing
polynomial solutions at some specifically chosen values of their coefficients
reads [§]

A~

Liy(z) = Pey2(2)y" (@) + Qrr1(2)y (x) + Ri(x)y(z) = 0. (14)

It is easily understood that differential operator Ly maps the space of the n-
th order polynomials F),[z] into the space F, r[z]. As both spaces are finite
dimensional, the condition of non-trivial kernel KerZl # 0 leads simply to
a linear algebraic problem for operator representation in this space plus k
additional conditions imposed on the coefficients of coefficient functions.

One example we discussed in [9] was
2%y (z) + a(z? = 1)y'(z) + (Bz + 7)y(z) = 0. (15)
The Schrodinger equation
Y (u) 4+ (e = V(u))Y(u) =0 (16)
for this case has the potential V'(u) of the form
V(u) = % + Bu? + Cu* 4 Du®. (17)
Explicit formulae for the coefficients A, B, C, D can be found it [9].
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Polynomial Ansatz for n = 1 leads to two eigenstates with the energies
€ = ta and eigenfunctions given as

4
YO (u) = exp {Oé%} <% + 1) u3722a, (18)
4
W) = expd YL (A q) e
YW (u) exp{64}<u2 1>u z . (19)

The "admissible region" for the parameter « is given by @ < —1/4 (so
that the eigenfunction is square integrable and non-singular). Then the
constructed eigenstates represent the ground and the first excited states for
the potential

?ub  a(a—3)u? 4o’ +24a+35
YW=~ % T ae (20)

If one considers the region —1/4 < a < 0, it is easily checked that the
eigenfunctions in (18,19) have integrable singularity at z = 0.

The substitution of the explicit formula (18) gives for the diffusion po-
tential
Ulz) = Uy + —ax'log (xil/%a (4+ x2)> , (21)

for the steady state eigenfunction

folz, 1) = <Y(0)(u)>2 - <exp {0‘6—25} <% + 1) u e )2 (22)

and the first excited state eigenfunction

filz,t) = YO ()Y (D (g) = 20" —at (1 - —> 32, (23)

In Fig. 2 we demonstrate the quantum and diffusion potential and ground
and the first excited eigenstates for « = —1/4 with evident singularity at
z = 0.
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Figure 2: Quantum and diffusion potentials (bold and solid lines), steady
state and the first excited state (dotted and dashed lines) for « = —1/4.

The obtained result allows us to say that we indeed constructed singular
localized states for the Fokker-Planck (diffusion) equation, that can be con-
sidered as linear analogs of "heat localization" regimes known in the theory
of quasi-linear equations.
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SECONDARY QUANTIZED PROBLEM OF PAIR
CREATION: PROJECTION OPERATOR TECHNIQUE

H. V. Krylova

Physics department, Belarusan State University
4 Nezavisimosti Ave., 220030 Minsk, the Republic of Belarus

Abstract

In the work a secondary quantized wave function of many
fermion systems has been found in terms of one-particle fermion
creation (annihilation) operators and two-particle creation (an-
nihilation) operators. A Green function method developed has
been applied for the quantum field description of the problem
on pair creation.

I. Introduction

It is known that fermion pair creation appears in a large number of phys-
ical situations described in condensed matter, atomic, nuclear, elementary
particle physics, astrophysics, and cosmology. Therefore, the problem of
pair production from electric fields has been the subject of considerable the-
oretical interest [1]. A Dirac problem of pair production in a homogeneous
electric field E rotating in plane has been considered in [2|. Symmetry of
this Dirac problem is described by the group SO(4) [2]. The Dirac equation
describes a classical fermion field. However the Dirac operator has unphys-
ical states that leads to Klein paradox in a problem of electron scattering
on a potential barrier [3]. The Dirac equation describes a motion of an elec-
tron, and its Dirac conjugation describes motion of a positron. Therefore
that fact is surprising that the states belonging to the energy gap of the
Dirac operator, describe a fermion pair arising in a homogeneous electric



field rotating in the plane. In the secondary quantized Dirac problem of
pair production in the homogeneous electric field E a secondary quantized
fermion field is represented as a set of electrons and positrons, described by
complex spinor which real components are electronic ones, and imaginary
components are positronic ones [4]. An interaction Hamiltonian of this
problem can be constructed on generators of the algebra of group SO(4)
which is locally isomorphic to the group SU(2)xSU(2) [5]. To date, an
analytic formalism that successfully addresses the general problem of fields
which vary arbitrarily in both time and space has not been developed. The
goal of the work is to offer a projection operator technique for a secondary
quantized problem of pair creation.

I1. Secondary quantized problem of pair production in a
homogeneous electric field rotating in the plane

We can define an operator of electron creation @ as quantized positively
frequency part ;T of field function ¢ , and an operator of positron cre-
—~+
ation pf; as quantized positively frequency part cpT;r of Hermitian conju-
gate field function ¢, . Accordingly, the operator of electron annihilation
@t is defined as quantized negatively frequency part ¢f; of Hermitian
conjugate field function o', , and the operator of positron annihilation @; ~
quantized as negatively frequency part ¢; of field function ¢ . Now we can
~ - ~ +
define annihilation operators (@Tp(m) and creation operators <<I>pm'r) of

fermion pairs as

~% - o~ -
<(I) pair) =¢_ = #1 (PTl ) (1)
- + —~+ __
((I)pair> =d, = SDTI Qpl+, (2)
and an operator
~f 0 1/ . —~- . _—+
<‘I> Pair) =&y = 3 <<P1+ ol =& ¢y > . (3)

Substituting into invariant Casimir operator Cy for algebra SU(2)

1
Co= (P40 + 0 By) + o2 (4)
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the explicit expressions for &4, Py (1) - (3), we find the Casimir operator

as
3 R P
0221 (1— <¢1+80T1 -9l & ) ) (5)

One get a wave function W(7,72) of fermion pair with additional coupled

+
electron by an action of the operator 37" and <<I>pm'r) on a vacuum vector
| 0) as

(7, 7) = (71 1917 ) = (71 |77 [0) <0| (Bpasr)” |f2>, (6)

where 77 is a radius - vector of electron with spin "up", 7 is a radius -
vector of electron with spin "down". Since by virtue of state orthogonality
it is possible to add the projection operator |0 >< 0| in calculations up to
I, the expression (6) can be transformed to the form

| 0) =] 0) = 5" 1 (Bpair) | 0). 7

Neglecting correlations, the vacuum vector | 0) can be presented as a prod-
uct of vacuum vectors | 0 T) and | 0 |) for states with spin "up" and "down".
Hence, the expression (7) can be rewritten as

’\I]>:\i/’0>:ﬁ+’OT><$p(ur)+’Ol>E‘170>‘171>7 (8)

where | 1,0) is a state with one electron, | 1,1) is a state with one electron
and one positron. Since, as shown above, ket-vectors | 1,0) and | 1,1) are
transformed on a representation of the symmetry group SU(2), the wave
function | ¥) is transformed on representation of the symmetry group SO(4).
Let us evaluate a value which is accepted a Casimir operator Cy of group
SO (4) on the vector | 1,0) | 1,1) of Fock space:

Ca(| 1,0)[1,1)) = (C2[ 1,0)) [ 1,1) + | 1,0) (C2| 1, 1)) . (9)

Values of the Casimir operator Cy (9) are eigenvalues of the operaror of

~2
squared angular momentum J of the state | 1,0) | 1,1) describing the sys-
tem from one electron and one pair of particle - antiparticle. We see that
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- - —~ +
operators @1 f; and @f; @, are operators of occupation numbers for
fermions n_ and antifermions 74 :

=01 el L Ay =¢f G (10)
Substituting the expressions (5) and (10) in the formula (9) we get Cy = 2
as for the state | 1,1) we have

3 . N 3
and for the state | 1,0) Cy = 0 owing to identity
3
Col 1,0) = 20— | 1,0) +7, | 1,0)) =0, (12)

It means that the state | 1,0) | 1, 1) is transformed on a spinor representation
of the group SU(2). This result is an appearance of a cyclic symmetry
of many fermion systems, meaning, that by virtue of identity of electrons
there are configurations which are produced by a cyclic permutation from
a configuration with one unpaired electron including a configuration with a
"hole" - positron and electron with spin "down". Further we shall develop a
technique of projection operators allowing the secondary quantization of a
system with variable number of particles and pairs of particle - antiparticle.

III. Secondary quantized wave function of a system with variable
number of electron and fermionic pairs

Let us consider a quantum system consisting of variable (very large) number
N of identical interacting particles N — oo. Its description will be complete
if one knows accurate within phase multiplier exp(z6) a vector of state |p; >
for one particle, a two-dimensional vector of state |p1, p2 > for a subsystem
from two particles, a three-dimensional vector of state |p1, 2,3 > for a
subsystem from three particles, etc. A wave function |@ > of all many par-
ticle system is described by vectors with coordinates < @|pg, ¥1,- .-, Pn >
[6]:
< @leo >< ol
< Blpo, o1 >< o, 1]
- (13)
< Blpos 1, -+ Pn—1 >< 90,15 - -3 Pp—1]
< Blpo, P15+, Pn >< 90,01, -+, Pul
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Here |¢0,¢1,...,¢n > is called a vector of state in vector Fock space,
00,1, ---,pn are parameters of particles, for example, coordinates, mo-
mentum, energy. The secondary quantized function |@ > consists of the
sum of its projections:

(o.0]
<@l=> ... [dpo...den < Bleo, P, Pn >< 00,01, on| (14)
n=0

where the following identity holds for a vacuum state ¢q:

[dpo =1. (15)

Let us assume that the wave function |¢ > of many particle system is
produced by an action of projection operator @ on a vector | >:

| >=2lp > (16)

Since the operator ¢ is a projector it possesses a property of self-adjointness.
Hence, after taking into account the expression conjugated to (16) in (14)
the obtained relationship can be transformed to the following form

o0
<@l @ =" 1. [dpo. .. dpn < QP P,y Pn >< 00,1, Pl
n=0

(17)
The multidimensional vector |¢1,..., @, > belongs to a tensor product of
vector spaces V1 @ Vo ® ... ® V,:
1
= — . 1
|00, P15+ s Pn > m!wo > o1 > on > (18)

Since g is a vacuum state, the projection @|pg > of the vector of vacuum
state |po > is also the vacuum state

Plpo >=[po > . (19)

Substituting (19) in (17) and multiplying the obtained expression at the left
by a ket - vector |¢ > we get

lp >< 3| = o >< ¢| &

oo
=3 ... [dpo...denle >< @0, o1, >< 00,915 nl- (20)
n=0
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We see that the n-dimensional vector |pg,¢1,..., 9, > belongs to a sum
of tensor products of vector space V' on the n — 1 -dimensional space V] ®
Vo®...0V,_1:

00 P15 son SEVI@ VP TV ta. ..oV, Vrt,  (21)
where the (n — 1)-dimensional vector spaces V"1 are tensor products as
Vi =1%ene.. Vi1 @V ®...0 V. (22)

Therefore, using (21) and taking into account antisymmetry of the wave
function we can rewrite formula (18) as

1
’@07@17' <y Pn >= %(‘@07@1 > ’@27' - ¥Pn > +(_1)
X’SO07<)02 > ‘@179037--- y Pn >+...+ (_1)’”_1’%007()071 > ‘(pla'-' y Pn—1 >)(23)

where the multiplier (—1)* has arisen because of antisymmetry of the many
electron wave function with respect to permutation of particles. Assuming
orthonormality of the vectors |p; >: < pi|pi >= 0(vr — ¥i), substituting
(23) in the formula (20), and taking into account decomposition (18) we
obtain

o0 o0
~ 1
o >< @@t => f---fdcpo---dcanE > o >< @l >
n=0 7 k

=1
X(_l)k_lé(gpk - ‘Pi)’(PO=(P17 ey Ph—1,Ph+1y - P >< ©Yo, L1y - - - 7@”’(24)

Integrating with account of presence of ¢ - functions and taking into account
identity of particles, we transform the expression (24) to the following form

o >< @' =" [...[dey...dpn1vnd (1)
n=1 i=1

X’QO >< (p‘flgpl > ’@07‘)017' ey Pi—1,Pi41y - P >< ©Yo, P15 - - - 7%071‘ (25)

From expression (25) we find the expansion of the projector @:
= —1
T =>"lor > - (26)
k=1
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where the operator g/DTk is defined by the following expression:

— 1

0, = (=1)F1 Z [dpo...dpn_1v/n
n=1

X|900)g015 ey Ph—1,Pk+15-- -5 Pn >< Y0, P1, - - 730n| (27)

We construct a basis set of operators on which then we expand the sec-
ondary quantized function < ¢|3'. From the expressions (25), (27) and
decomposition of operator unity I =), |¢; >< ¢;| we find

n n
<@l @' =Y <olller > Il >< %!I%T =Y alp)lps >< %’\I%T
ik=1 ik=1
(28)
where factors ay(p) are defined by the expression ay(p) =< o|I|or >.
Obviously, the constructed secondary quantized wave functions

— 1 . .
loi >< @il¢) , i,k = 1,2,... can be considered as a basis set for the
expansion of secondary quantized function < | @' in a series (28). Taking
into account identity of particles we can define the one-particle annihilation
operator ¢ (pq) as [7]
i

AN ER = |0 >< ol + V2 [ dp1lpo, 01 >< 0,1, Pal
Pn—Pa

+V3 [ dprdgs|eo, o1, 02 >< @0, 01,02, Pal + - - - (29)

and express two-particle operators (/Isjmr and $pair (1), (2) describing pairs

of particles through these one-particle operators. The secondary quan-
tized wave function (28) contains entangled states and consequently the
positronic contribution at the offered way of quantization.

IV. Method of the Green functions

Let us utilize the technique of projection operators for the description of a
Green function [§]

G(2) = 2 G(2) = [ [ didi |7 >< 7'|C(2)|F >< 7
= [ [dFd |7 > G(7, 7 2) < 7. (30)
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Let us define the Green function G for N-dimensional problem as a solution
of the following equation:

0 R .
Zha — Ho— Hy(71,7,. .. ,FN)] G, 7 1379, 7 a5 PN, T N )
=6(F1—7"1)...0(Fn =7 'N)o(t — ). (31)

Here Hy is the kinetic energy of particles, H (71,7, ..., 7x) is an interac-
tion operator determined as

Hy(Fy, Py i) =Y Ha(| P =75 ). (32)
1<j
We can describe the Green function of N-dimensional problem as

. (0
Cnlt — to) = QW (t1 — to)

+1GY (0 — ) Hn (), Falte), . P (1)) GN (s — to)dts + [ dt;
X [ty G (b — ) B (7 (t >, 2 (), (1) G (b — )
X By (Fy (1), Fath) -« Pv(t) £<tk—to> =GN (- o)
+Jdt, GEV)<t1—t>HN< (), Fati), P (1) [GN (8 — to)

+ [ dt Gg\/)(tz — tk) ﬁN(Fl(tk),FQ(tk), - ,T_"N(tk)) ég\/) (tk — to) + .. ]

= W (81— to)

4t G (4 — ) (78, Pa(ta), - - P (t) G (t — to) (33)

where the projection N-particle Green function is defined by the following
expression:

Gn(t) = [diFy .. PydPydi'y .. dF' N

X’F’l,F’Q,...,F’N >< Fl,FQ,...,FN‘
XG(t)|F,1,F/2,...,F/N >< Fl,F2,...,FN| Efdfl...FNdfll...dF,N
|’F’1,...,F/N >< G(’Fl,...,FN,’F’l,...,F,N;t) >< ’f‘i,...,’f‘}v| (34)

and the interaction is determined by a projector

Hy=1H = [df .. "ndP'y ... dF 'y

‘7“ 1,...,7_",]\7><77/1,...,77/N‘PAI1‘771,...,7_"]\7><771,...,FN’. (35)
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In the secondary quantized case the operators G N H y become products of
projection operators:

Gn(t' —t1,...,t'N —ty)
= deI ...FNdF11 ...dF/NgD+(F/1,t1) ...g0+(FIN,tN)|O >
XG(F1,tis . PN EN T st T s t) < Olo™ (Fistn) -7 (Fivs ty), (36)
A 1 L . . .
Hy = 52 [ 7pdi s di ot (F)et (F5)]0 >
2%
x <7y, | Hy |7, 75 > 8(F =7 '1)3(F; =7 ;) < Olo™ (7)™ (7))
1 S S S
= 5 Z de’i Ty dthDJr(’l“i, ti)gDJr(’l“j, tj)|0 >
A7j
x Ho (|75 =75 )8t — t5) < Ol (Fi,ti) o™ (75,t;) (37)
where the time ¢;(t;) , i = 1,..., N is defined as t; = t + (¢, = t' + &),
gi(¢';) — 0 and in this sense the equality of the secondary quantized wave
functions (28) o™ (75, t;) = ¢ (Fi(t)) (o~ (i, t;) = ¢~ (7i(t))) is understood.
Knowing unperturbed Green function, the perturbed two-particle operator
Green function can be found from the equation

(Go™ ™ L Gt ()t () ()™ () = () () () ()
X (G O) () @) (5) + 5 ] dtgdtyd 7y '

t;)
(i)
)

)T (7 5, )t (73 ) Hy (|7 — 7)ot — tj)SD_(Fz‘,tz)sD_(F
0 )=

)t (75, ) (75,1 ﬁl(\ﬁ—ﬁ!)&tz‘—tj)w (7"], ) ( i
T(n)eT (i) (s)] (3

V. Discussion and conclusion

We observe that the contributions from particles and particle-antiparticle
pairs are not represented by superposition due to anticommutators that
are not equal to zero. In this sense these contributions are nonseparable.
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For one-particle Dirac problem the secondary quantized wave function is
expressed only through one-particle creation operators for particles and an-
tiparticles. In this case one can neglect the nonseparability of contributions
from particles and particle—anﬁiparticle pairs. Therefore instead of operator

two-particle Green function (G’g)"s/ms one can introduce an operator Green
function (Gy)™'*™ obtained from it by even permutations of the creation
and annihilation operators:

(GQ)mS/sn = (m)pT (s (8)pT(n) for ty, >ty,ts > t,. (39)

By rewriting eq. (38) for the Green function (39) and summation over in-
dexes s, s’ it is possible to obtain a Dyson equation describing one-particle
Green function. Finally, we have shown that in the case of variable number
of electron and fermionic pairs it is necessary to utilize more general equa-
tion for the Green functions which allows to describe any combination of
particles and pairs.
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