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Abstract

Based on a fiber bundle model of creep rupture we demonstrate that
fracture processes exhibit strong analogies to earthquakes: interpreting the
macroscopic rupture as a main shock, the preceding event series of the
nucleation and propagation of cracks can be described as a sequence of
foreshocks. Our simulations revealed that approaching macroscopic rupture
the increasing rate of crackling events obeys the Omori law and the entire
time series can be described as a non-homogeneous Poisson process.

I. Introduction

The fracture of heterogeneous materials proceeds in bursts which can
be recorded in the form of crackling noise by acoustic or electromagnetic
measuring techniques. Crackling noise is the primary source of information
about the microscopic dynamics of fracture: the measured signal is typi-
cally decomposed into a trail of pulses which can be assigned to elementary
events of crack nucleation and propagation. Characteristic quantities of
pulses such as amplitude, area, or energy provide a measure of the size of
events, while, the pulse duration and the time elapsed between consecutive
pulses reveals the internal dynamics of the process. Due to the disordered
micro-structure of materials, characteristics of crackling noise exhibit strong
fluctuations so that meaningful description can only be achieved in terms
of their probability distributions. During the last two decades fracture ex-
periments have revealed that crackling noise is characterized by power law
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distributions of burst sizes and of the waiting times between consecutive
bursts. Creep and quasi-static loading experiments provided exponents in
the range 1−2.5 and 1−2 for burst sizes and waiting times [1, 2, 3], respec-
tively, which motivated a large amount of theoretical investigations. How-
ever, practically all these studies evaluated integrated distributions: events
were accumulated from the beginning of measurements up to macroscopic
failure washing out all information about the time evolution of the frac-
ture process. The approach to macroscopic failure was characterized by
the functional form of the cumulative dissipated energy which revealed a
time-to-failure power law [3].

In the present project we demonstrate that due to the non-stationarity of
the fracture process comprehensive description of crackling noise can only
be obtained by analyzing the evolution of the time series of events as the
system approaches macroscopic failure. Based on analytic calculations and
computer simulations of a fiber bundle model we show that the creep rup-
ture of heterogeneous materials exhibits a strong analogy to earthquakes:
identifying the global rupture of the sample as the main shock, the pre-
ceding breaking avalanches can be described as a foreshock sequence. Our
calculations revealed that in the mean field limit the time evolution of creep
rupture can be described as a non-homogeneous Poisson-process, where the
rate of events obeys the Omori law with a high precision.

II. Fiber bundle model

To investigate the creep rupture of heterogeneous materials we use a
fiber bundle model, composed of N parallel fibers having a brittle response
with identical Young modulus E ( Fig. 1(a, b) ) [4, 5, 6]. It is a crucial
element of the model that under a constant subcritical external load σ0 the
fibers break due to two physical mechanisms: immediate breaking occurs
when the local load σi on fibers exceeds their fracture strength σi

th, i =
1, . . . , N , which is considered to be a random variable. We assume that
those fibers, which remained intact, undergo an aging process accumulating
damage c(t). The rate of damage accumulation ∆ci is assumed to have
a power law dependence on the local load ∆ci = aσγ

i ∆t, where a is a
constant and the exponent γ controls the time scale of the accumulation
process. The total amount of damage ci(t) accumulated up to time t is
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Figure 1: (a) The fiber bundle is composed of N parallel fibers. The
constant external load parallel to the fibers. [8]. (b) The fibers have a
brittle response [8].

obtained by integrating over the entire loading history of fibers ci(t) =
a
∫ t

0 σi(t
′)γdt′. Fibers can tolerate only a finite amount of damage so that

when ci(t) exceeds a local damage threshold cith the fiber breaks. The two
breaking thresholds cith and σi

th, i = 1, . . . , N of fibers are independent
of each other being uniformly distributed between 0 and 1. Each breaking
event is followed by a redistribution of load over the remaining intact fibers.
For simplicity, we consider only equal load sharing, i.e. intact fibers share
always the same load σ(t) = Nσ0/[N − Nb(t)], where Nb(t) denotes the
number of fibers broken up to time t. It has been shown in Refs. [4, 5, 6] that
the separation of time scales of the slow damage process and of immediate
breaking leads to a highly complex time evolution: damaging fibers break
slowly one-by-one, gradually increasing the load on the remaining intact
fibers. After a certain number of damage breakings the load increment
becomes sufficient to induce the immediate breaking of a fiber which in
turn triggers an entire burst of immediate breakings. As a consequence, the
time evolution of creep rupture occurs as a series of bursts corresponding
to the nucleation and propagation of cracks, seperated by silent periods of
slow damaging. An example of the time series of bursts is presented in Fig.
2 for a small system of N = 100000 fibers.

III. Results

In order to give a quantitative characterization of the time evolution of
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Figure 2: Time series of bursts in a relatively small bundle of N = 100000
at a load σ0/σc = 0.05 for the damage accumulation exponent γ = 1.
Approaching macroscopic failure the rupture process accelerates.

the system we determined the rate of bursts n as a function of time. In Fig. 3
the event rate n(t) is presented as a function of the distance from the critical
point tf−t. It can be observed that at the beginning of the creep process the
system accelerates, i.e. the rate of bursts monotonically increases having a
power law functional form. As the system approaches catastrophic failure,
the event rate n(t) saturates and converges to a constant. The functional
form of n(t) can be described by the Omori law

n(t) =
A

(

1 +
tf−t

c

)p , (1)

where A is the saturation rate at catastrophic failure, c denotes the charac-
teristic time scale, and p is the Omori exponent. In the case of earthquakes,
the Omori law describes the relaxation process following major earthquakes.
For creep rupture we observe the inverse process: considering the macro-
scopic failure as the main shock, the breaking bursts are foreshocks whose
increasing rate is described by the (inverse) Omori law.

A more detailed characterization of the statistics of the appearance of
breaking bursts can be obtained by determining the probability distribu-
tion P (T ) of waiting times T . Figure 4 presents waiting time distributions
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Figure 3: Event rate n as a function of the distance from the critical point
tf − t for several different load values. The lines represent fits with the
Omori law.

corresponding to the event rates of Fig. 3. It can be seen that along the
distributions two characteristic time scales can be identified: for waiting
times below a threshold T < Tl, the distributions have constant values,
while in the limit of large waiting times T > Tu a rapidly decreasing ex-
ponential form is obtained. For the intermediate regime Tl < T < Tu the
waiting time distributions exhibit a power law behavior

P (T ) ∼ T−z. (2)

where the exponent was determined numerically z = 1. Increasing the
external load σ0 the upper cutoff of the distribution shifts downwards,
i.e. Tu decreases, however, both the lower characteristic time Tl and the
exponent z proved to be independent of σ0, furthermore, z does not depend
on γ either.

The functional form of the rate of bursts, i.e. the Omori law describing
the acceleration of the system towards macroscopic failure suggests that
the time evolution of crackling noise of heterogeneous materials undergoing
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Figure 4: Waiting time distributions obtained from the simulations (sym-
bols) and from the analytic formula of non-homogeneous Poissonian pro-
cesses. Very good agreement is obtained at all load values. The curves of
different load values are vertically shifted to separate them for clarity.

creep rupture can be described as a non-homogeneous Poissonian process
(NHPP). For NHPP the waiting time distribution of the event series of
duration tf can be obtained analytically starting from the event rate [7] as

P (T ) =
1

N∆

∫ tf−T

0
n(s)n(s+ T )e−

∫ s+T

s
n(u)duds

+ n(T )e−
∫ T

0
n(s)ds. (3)

To verify the consistency of the NHPP picture for the creep rupture of
fiber bundles under equal load sharing conditions, first we fitted the event
rate functions by the Omori law determining the value of the parameters
A, c, and p. Then the analytic form Eq. (1) of the event rates n(t) with
the numerical parameters was plugged into the integral expression Eq. (3)
and the integral was calculated numerically taking into account the load
dependent lifetime tf (σ0) of the sample. In Fig. 4 an excellent agreement
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Figure 5: (a) Waiting time distributions obtained for bursts in narrow time
windows ∆t during the rupture process. (b) The curves can be collapsed
on the top of each other by rescaling with the average waiting time of the
window 1/n(∆t).

can be observed between the waiting time distributions obtained from the
simulations of creep rupture and the analytic prediction of Eq. (3). Based
on the NHPP nature of the time series we can understand the cutoff val-
ues Tl and Tu of waiting times: the lower cutoff Tl is determined by the
saturation event rate

Tl = 1/A, (4)

which does not depend on the external load. The upper cutoff Tu is deter-
mined by the characteristic time scale c, by the total duration of the time
series, i.e. the lifetime of the sample, and by the Omori exponent in the
form

Tu =
1

A

(

tf
c

)p

. (5)

An interesting consequence of the above arguments is that if we select
bursts in narrow time windows ∆t during creep rupture, the series of bursts
should behave as a homogeneous Poissonian process, i.e. the waiting time
distributions should have an exponential form. It is illustrated in Fig.
5(a) where all waiting time distributions P (T ) are exponentials. It can
also be observed in Figure 5(b) that the distributions obtained at different
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times along the time evolution, can be collapsed on a master curve just by
rescaling with the average waiting time 1/n(∆t).

IV. Conclusions

Using a fiber bundle model of creep rupture of heterogenous materials
we gave numerical evidence that the time series of micro-fracturing events
can be described as a non-homogeneous Poisson process, where the event
rate obeys (inverse) Omori scaling. The results suggest that the analogy of
rupture phenomena with earthquakes goes beyond the Gutenberg-Richter
law of event magnitudes, i.e. considering macroscopic failure as a main
shock, all preceeding fracturing events can be interpreted as a sequence of
foreshocks. For the consistency of the NHPP picture we demonstrated that
the waiting time distributions obtained from computer simulations have a
perfect agreement with the analytic results of NHPPs using the functional
form of the inverse Omori law for the event rates. In sufficiently small time
windows we pointed out that the probability distribution of waiting times
has an exponential form. It has the consequence that the power law form
of the distribution measured for a wide variety of materials may not reveal
any dynamical correlation, it is just the consequence of the summation of
exponentials.
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