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Abstract

Due to the changing environment, living cells must conti-
nously adapt their protein synthesis to react to the various
inputs coming from their surrounding. A key element in the
protein synthesis is the transcription of DNA to RNA. The so
called regulatory proteins can catalyze or block the transcrip-
tion of other proteins, thus help the cell in sensing the envi-
ronment and regulating the rate of transcription of structural
genes. A very simple model of the above process is provided
by Boolean networks, where the state of each protein (gene) is
either "on" or "o�", and the interaction between proteins is rep-
resented by a directed graph. Here we overview the motivation
and settings of this model and highlight possibilities for further
research with a special focus on applying the latest results of
control theory to Boolean networks.

I. Introduction

Proteins are essentially important ingredients of cell structure, catalising
biochemical reactions, transporting di�erent types of molecules, and taking
part in a number of other vital processes. Twenty kinds of amino acids are
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available for building up proteins. Each protein is consisting of hundreds of
amino acids. All information that is needed to create a protein, is encoded
in the DNA with the help of four bases (A, T, C, G). These bases form two
complementer pairs (A-T, C-G), which follow each other along the double
helix of DNA. Each amino acid is encoded with a basis triplet. (A doublet
wouldn't be enough, since only 42 = 16 di�erent pairs can be constituted
from two bases.) All the triplets that encode a given amino acid constitute
a gene.

Transcription is the process of creating a complementary RNA copy of a
sequence of DNA. During transcription, a DNA sequence is read by an RNA
polymerase, which produces a complementary, antiparallel RNA strand. As
opposed to DNA replication, transcription is resulting in an RNA comple-
ment that includes uracil (U) in all instances where thymine (T) would have
occurred in a DNA complement. If the gene transcribed encodes a protein,
the result of transcription is messenger RNA (mRNA), which will then be
used to create that protein via the process of translation [6].

Regulatory proteins help the cell sense the environment and regulate the
rate of transcription of structural genes (in this case regulatory proteins are
called transcription factors). The genes encoding the regulatory proteins are
referred to as regulatory genes. There are two types of regulatory proteins,
negative-acting and positive-acting proteins. Transcription factors bind to
either enhancer or promoter regions of DNA adjacent to the genes that they
regulate, but they also use a variety of other mechanisms for the regulation
of gene expression [6].

The interaction between genes through transcription factors can be rep-
resented by a network, in which nodes correspond to genes, and a directed
link between a pair of genes represents interaction [1]. In this paper we over-
wiev the simplest model for gene regulation proposed by Boolean networks.
In Sect. II. we discuss the motivation for representing gene regulatory net-
works with Boolean networks, whereas in Sect. III we overwiev of general
properties of Boolean networks. Finally in Sect. IV we depict further ideas
for research in this direction.
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II. Modelling gene regulatory networks

There were many e�orts to describe the topology and dynamics of gene
regulatory networks. One of the possible methods is examining the cell in
action through measurment. Then we can make statements of the gene
regulatory network by using methods of statistical physics [1]. Another
method is modelling the topology and dynamics of the network, testing
the model by computer simulations, and then comparing the results of the
simulations with available measurement data.

We usually model gene regulatory networks with directed graphs. Nodes
represent genes, and directed edges show how a given gene acts on another
gene. Topology has a large e�ect on the behaviour of the network. The
quantities used to describe the topology a network in general are the distri-
bution of in- and out-degrees, in- and out-degree correlations, assortativity,
occurence of loops and di�erent kinds of small subgraphs, community struc-
ture [3, 4]. In order to study the e�ect of the topology on the dynamics we
usually have to examine these features one by one.

In order to take into account the time-dependent nature of the gene tran-
scription, we assign a time-dependent state, xi(t) to each node. The value of
this variable can correspond to, e.g., the transcription factor concentration
[1]. In this case, the quantity changes continously in time.

Linear dynamics is the simplest continous dynamics [2]. Most real sys-
tems are driven by nonlinear processes, but the controllability of most non-
linear systems is in many aspects structurally similar to that of nonlinear
systems, prompting us to start our study using the canonical linear, time-
invariant dynamics [3]. To simplify the discussion further, we suppose that
a gene can be in one of two states: allowed (turned on), when xi(t) = 1, or
blocked (turned o�), when xi(t) = 0. In this case we have a Boolean net-
work [5]. A Boolean network can be generalized by introducing more than
two discrete states (xi(t) ∈ 0, 1, 2, . . . n) [4]. We denote the state wector of
the entire graph by x(t) = (x1(t), x2(t), . . . , xN (t)), where N is the number
of nodes in the graph.

In the next step we choose the dynamical rules governing the behaviour of
the network in time. A cell interacts with its environment, so the behaviour
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of the gene regulatory network can be controlled from outside of the cell.
Our goal is to �nd how to control a gene regulatory network. Moreover,
small �uctuations can occur in gene expression pattern and in chemical
reactions inside the cell. We would also like to learn if these �uctuations
die out, or grow quickly. If these die out, the cell remains in its original
state, but if these grow, the cell will turn into another state. We aim at
understanding how stable is the behaviour of a gene regulatory network
against small �uctuations [4].

We can see that examining the dynamical stability and controlability of
a model network is essentially important in order to have more knowledge of
real gene regulatory networks. Additionally, this knowledge can be applied
to other systems, which can be described with the same network model and
are governed by similar dynamical rules.

III. Boolean networks

Deterministic Boolean networks are formally de�ned by a state vector
x(t) = (x1(t), x2(t), . . . xN (t))T , where xi ∈ {0, 1}, and a set of update
functions fi such that xi(t) = fi(xji;1(t − 1), xji;2(t − 1), . . . ), where ji;k
denote the indices of the Kin

i nodes that input to node i [4]. The update

function fi is de�ned for each node i by specifying a 2
Kin

i -entry truth table in
the following way: we assign 0 with probability pi or 1 with probability 1−pi
for every possible input signal. We de�ne "sensitivity" qi as the probability
that the output fi changes when given two di�erent input strings [4]. If the
Boolean functions are completely random, qi = 2pi(1− pi).

As a special case we can create a regular N −K network whose nodes
have uniformly Kin

i = K entries [4] . If the graph structure and the update
functions are �xed, we can set up the system from a given initial state. The
network evolves in descrete timesteps. Since there are �nite possible states
(2N ) of the network, it will return to a previous state after at most 2N

timesteps, and then it will show periodical behaviour.

To examine the stability of a Boolean network, consider two close initial
states, x(t) and x̃(t). Their divergence can be quanti�ed by the Hamming
distance: h(t) =

∑N
i=1 |xi(t)− x̃i(t)|. If h(t)→ 0 as t→∞, the network is
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stable. If the network is instable, h(t) quickly increases to O(N), signifying
chaotic behaviour. A �critical� network is at the border separating stability
and chaos [4]. There is a critical number of entriesKc =

1
2p(1−p) . IfK < Kc,

the network is stable. If K > Kc, it is unstable, and if K = Kc, it is critical
[4]. E.g., with K = 10 entries the network is unstable for q = 0.215,
q = 0.3, q = 0.4 and q = 0.5. We can see this behaviour for various values
of sensitivity on Fig.1., showing our simulation results. We generated a
regular N−K network with N = 10000 nodes and K = 10 connections, and
started the simulations from 100 di�erent initially close state-pairs (their
initial Hamming distance was 100), and averaged their Hamming distances
at each timesteps. At the beginning the average Hamming distance quickly
groves showing chaotic behaviour. But after some timesteps it will saturate
at a constant value, because the network will get to an attractor and remains
there. So the Hamming distance of a state-pair will saturate at a constant
value, and because of this, the average of all Haming distances will saturate
at a constant value, too.
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Figure 1: Evolution of the average Hamming distance for a Boolean network
of N = 10000 and K = 10, for various values of the sensitivity.

We can create a directed graph that shows the transition between all
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Figure 2: A graph of states of an N −K Boolean network of N = 5, K = 2
and p = 0.5. Attractors are cycles, marked with red.

possible states of a given Boolean network (with given update functions) if
we assign a node index for every state in the following way: imagine the
state vector of the network as a binary number, then convert this binary
number to a decimal number. This decimal number will be a node index.
Directed rings and loops correspond to attractors (cycles and �xpoints).
This method works only for small graphs, where N = 5 to N = 20. Our
hope is that examinig these small graphs can reveal interesting e�ects, which
may be generalised for larger graphs as well, where the order of the number
of nodes is as large as in real gene regulatory networks.

The networks on �gure 2 and 3 shows the transiton between states of a
reguar N −K network, where N = 10, K = 2 and pi = p = 0.5. The most
relevant di�erence between them is that the graph on �g. 3 is connected,
while the other on �g. 2 is not connected. On �g. 2 two attractors can
be seen, marked with red. On �g. 3 a loop marked also with red shows
the �xpoint of the system. It is visible, that by the same N , K and p
parameters we get topologically di�erent networks of states.
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Figure 3: Another graph of states of an N −K Boolean network of N = 5,
K = 2 and p = 0.5. The attractor is a �xpoint.
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IV. Discussion and outlook

In summary we have shown that Boolean networks o�er a simple and
intuitive model for gene regulatory networks. The attractors of the Boolean
network can be regarded as periodical cycles and steady states of the mod-
elled gene regulatory network. A cell adapts to changes in its environment
with the help of regulatory proteins and gene regulatory network. There-
fore, if we assume that the environmental conditions are steady for a long
time and the cell has adopted to these conditions, the regulatory network
is in one of its attractors. However, if there is a change in the environment,
after some time the network will get to another attractor driving the cell to
its new steady state or periodical cycle. If the graph of the states of gene
regulatory network is not connected, there is no transition between separate
subgraphs. (On �g. 2 we can see two separate subgraphs.) Each connected
subgraph has exactly one attractor, so there has to be a controller outside
of the regulatory network that can drive the system from one subgraph to
another. These outside controllers could correspond to e.g., special regula-
tory proteins. These controller regulatory proteins are able to change the
state of the whole network. Another natural assumption is that the optimal
way of control while changing from one attractor to another happens with
the help of as few controller nodes as possible. The aim of our further work
is examining the dependence of the minimum number of controller nodes
on di�erent parameters of a given Boolean network.
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