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Abstrat

We present simple formulae for the pole part ontribution of

the interferene of two-loop and tree amplitudes to the two-loop

QCD matrix element for e+e− → 3 jets. The omplexity of our

formulae and omputational ost are signi�antly smaller then

in the ase of the original formulae.

I. Introdution

The ross setion of the m-jet at next-to-next-to-leading order (NNLO)

auray is a sum of leading order (LO), next-to-leading order (NLO) and

NNLO orretion terms,

σ = σLO + σNLO + σNNLO . (1)

The NNLO orretion is a sum of the doubly-real, the one-loop singly-

unresolved real-virtual and the two-loop doubly-virtual terms,

σNNLO =

∫

m+2
dσRR

m+2Jm+2 +

∫

m+1
dσRV

m+1Jm+1 +

∫

m

dσVV
m Jm . (2)

Here Jm is the jet funtion that de�nes the physial quantity. It must

be IR safe, see Eqs. (9.7), (9.8) and (9.11�9.14) in Ref. [1℄. The terms

dσRR
m+2 and dσRV

m+1 are de�ned in Eq. (4.1) of Ref. [2℄ and in Eq. (2.19) of



Ref. [3℄, respetively. Here we fous on the squared matrix element, whih

was already presented in Ref. [12℄, of the double virtual ontribution dσV V
m=3.

In this paper we make a short ontribution to the implementation of

a new NNLO subtration algorithm, whih was sugested in [1℄-[9℄, to the

spei� ase of three jet prodution in eletron-positron annihilation. In the

framework of this sheme the NNLO orretion to the m-jet ross setion

an be written as follows (see Eq. (3.4) and Eq. (3.7) in [2℄).

σNNLO =

∫

m+2
dσNNLO

m+2 +

∫

m+1
dσNNLO

m+1 +

∫

m

dσNNLO
m (3)

where the last term is:

dσNNLO
m =

{

dσVV
m +

∫

2

[

dσRR,A2

m+2 − dσRR,A12

m+2

]

+

∫

1

[

dσRV,A1

m+1 +
(

∫

1
dσRR,A1

m+2

)A1
]}

ǫ=0
Jm . (4)

De�nitions of the subtration terms dσRR,A2

m+2 , dσRR,A12

m+2 are presented in

Ref. [2℄, while dσRV,A1

m+1 and

(

∫

1 dσ
RR,A1

m+2

)A1

are de�ned in Ref. [3℄. After

integrating over the phase spae of the unresolved parton(s), these an be

written in the following way, see Eqs. (4.24), (5.21) of Ref. [4℄, Eq. (3.13)

of Ref. [7℄ and Eq. (3.5) of Ref. [11℄,

∫

1
dσRV,A1

m+1 = dσV
m ⊗ I

(0)
1 ({p}m; ǫ) + dσB

m ⊗ I
(1)
1 ({p}m; ǫ) (5)

∫

1

(
∫

1
dσRR,A1

m+2

)A1

= dσB
m ⊗

[

1

2

{

I
(0)
1 ({p}m+1; ǫ), I

(0)
1 ({p}m+1; ǫ)

}

+

I
(0,0)
1,1 ({p}m+1; ǫ)

]

(6)

∫

2
dσRR,A12

m+2 = dσB
m ⊗ I

(0)
12 ({p}m; ǫ) (7)

∫

2
dσRR,A2

m+2 = dσB
m ⊗ I

(0)
2 ({p}m; ǫ) (8)
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Eah term on the right-hand side of Eq. (4) ontains an insertion operator

(in olour spae) I(ǫ) that an be written as a Laurent expansion in the

dimensional regularisation parameter ǫ = (4 − d)/2 ontaining poles 1/ǫi,
i = 1 , . . . 4. As the jet funtion Jm has to be IR safe, hene aording to the

Kinoshita-Lee-Nauenberg theorem, when we ollet epsilon oe�ients with

a negative power, those oe�ients have to vanish. In other words, poles are

expeted to anel eah other and only the �nite part will remain. Terms

proportional to ǫn, for n > 0, are out of interest, beause after anellation
of poles we set ǫ = 0. Our aim is to verify the anellation expliitly for our

spei� ase, hene it is useful to have an epsilon expansion of eah term in

Eq. (4). A numerial implementation of the epsilon expansion of insertion

operators I
(0)
1 , I

(1)
1 , I

(0,0)
1,1 , I

(0)
12 , I

(0)
2 is available, as well as an analytial

implementation for the two highest poles. To reah our goals, we need to

investigate the struture of dσVV
m=3, whih led us to �nd very simple formulae

of the pole part of the two-loop ontribution to the squared matrix element

for the γ∗ → qq̄g proess.

II. Pole part of the interferene of two-loop and tree amplitudes

The omputation of a perturbative expansion of a squared amplitude

of a virtual photon into qq̄g at O(α3
S(q

2)) an be found in [12℄, where the

squared amplitude is denoted by T (x, y, z) (see Eq. (2.6) in Ref. [12℄).

〈M |M〉 = T (x, y, z) (9)

The perturbative expansion is given in Eqs. (2.7) and (2.13) of Ref. [12℄,

T (x, y, z) = 16π2α
∑

q

e2qαS(µ
2)

{

T (2)(x, y, z)

+

(

αS(µ
2)

2π

)[

T (4)(x, y, z) + b0T
(2)(x, y, z) ln

(

µ2

q2

)]

+

(

αS(µ
2)

2π

)2 [

T (6)(x, y, z) +

(

2b0T
(4)(x, y, z) +

b1T
(2)(x, y, z)

)

ln

(

µ2

q2

)

+ b20T
(2)(x, y, z) ln2

(

µ2

q2

)]

+ O(α3
S)

}

(10)
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where T (2)
, T (4)

and T (6)
in the equation above are de�ned in Eqs. (2.8�

2.10) of Ref. [12℄, eq is the frational eletri harge of quark q, α and αS are

QED and strong ouplings, the latter in the MS renormalisation sheme,

respetively, while µ is the renormalisation sale. The onstants b0, b1 are

known oe�ients of the two-loop beta funtions and q2 the total entre-

of-mass energy squared. Eq. (1) is expansion in the strong oupling, where

σNNLO
is proportional to α3

S , for m = 3. Then from Eq. (10) we see that

dσVV
m=3 ∝

(

αS(µ
2)

2π

)3 [

T (6)(x, y, z) +
(

2b0T
(4)(x, y, z) + b1T

(2)(x, y, z)
)

ln

(

µ2

q2

)

+ b20T
(2)(x, y, z) ln2

(

µ2

q2

)]

. (11)

The matrix element an be deomposed into infrared poles and �nite parts.

The funtion T (6)(x, y, z) an be written as

T (6)(x, y, z) = T (6,[2×0]) + T (6,[1×1]) , (12)

where the ontribution from the interferene of two-loop and tree amplitudes

an be deomposed into a sum of its �nite and pole parts,

T (6,[2×0]) = Poles(2×0) + Finite(2×0) . (13)

The same holds for one-loop self-interferene

T (6,[1×1]) = Poles(1×1) + Finite(1×1) . (14)

In the following we fous on Poles(2×0)
, whih is de�ned in Eqs. (4.2�4.14)

of Ref. [12℄ using master integrals de�ned in Eqs. (A.1�A.10) of Ref. [12℄.

The pole parts Poles(2×0)
, as presented originally in Ref. [12℄, is a non trivial

funtion originally built from one and two-dimensional harmoni polyloga-

rithms up to weight 4. The harmoni polylogarithms are de�ned in [15℄.

III. ǫ-expansion of Poles(2×0)

Based on the expliit formulae in Ref. [12℄, we implemented Poles(2×0)

in Mathematia. Using our Mathematia ode we generated a Laurent-

expansion in ǫ for Poles(2×0)
about the point ǫ = 0 to order 0,

Poles(2×0) =
0

∑

i=−4

c
Poles(2×0)
i ǫi + o(ǫ) (15)
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where the oe�ients an be written in a ompat form

c
Poles(2×0)
j = AjCj (16)

with oe�ients

A−4 = −
2312

9yz
, A−3 = −

68

9yz
, A−2 =

2

27yz
, (17)

A−1 =
1

27yz
, A0 = −

2

405yz
(18)

and fairly simple analyti funtions

C−4 = 2x+ y2 + z2 , (19)

C−3 = 4
(

2x+ y2 + z2
)

(log(x)− 9 log(yz))−

110x− 89y2 − 68yz − 89z2 , (20)

C−2 = 4(2x+ y2 + z2)
(

6 log(x)
(

8 log(x) + 9 log(yz)
)

− 54
(

9 log(y)

log(z) + 13 log2(y) + 13 log2(z)
)

+ 1955π2
)

+ 48 log(x)
(

− 9x+ 4y2 + 17yz + 4z2
)

− 24
(

− 128x+ 89y2 + 306yz +

89z2
)

log(yz)− 1862x − 6541y2 − 11220yz − 6541z2 (21)

C−1 = 8
(

2x+ y2 + z2
)

(

− log(x)
(

14 log2(x) + 27 log2(y) +

27 log2(z)− 230π2
)

+ 9 log(yz)
(

− 3 log2(x)− 17 log(y) log(z)

+44 log2(y) + 44 log2(z)
)

+ 578ζ(3)
)

− 4
(

15405x + 7237y2 −

931yz + 7237z2
)

− 24 log(yz)
(

4 log(x)
(

− 4y2 + y(9z + 17) +

z(17 − 4z)− 17
)

+ 2
(

690π2 − 319
)

x+ 690π2
(

y2 + z2
)

− 191y2

+z(256y − 191z)
)

+ 12 log2(x)
(

5y2 − 2y(32z + 37) + z(5z −

74) + 74
)

− 8 log(x)
(

49y2 − 2y(54z + 103) + z(49z − 206) +

206
)

+ 23π2
(

231y2 − 2y(680z + 911) + z(231z − 1822) + 1822
)

−12
(

155y2 − 2y(468z + 623) + z(155z − 1246) + 1246
)(

log2(y)

+ log2(z)
)

− 432
(

7y2 − 2y(9z + 16) + z(7z − 32) + 32
)

log(y) log(z) , (22)
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C0 = 6
(

2x+ y2 + z2
)

(

− 680ζ(3)(log(x)− 9 log(yz)) − 90 log3(x)

log(yz)− 90 log(x)
(

− 13π2 log(yz) + log3(y) + log3(z)
)

+ 5 log2(x)
(

− 27 log2(y)− 27 log2(z) + 226π2
)

− 25 log4(x) + 45
(

18 log3(y)

log(z) + log2(y)
(

27 log2(z)− 356π2
)

+ 18 log(y) log(z)
(

log2(z)−

13π2
)

+ 40 log4(y) + 40 log4(z)− 356π2 log2(z)
)

+ 10336π4

)

−

5
(

86492x + 89461y2 − π2
(

62859yz + y(7316y + 48227) + 7316z2 +

48227(z − 1)
)

+ 92430yz + 89461z2
)

− 15 log3(x)
(

− 94y2 +

4y(28z + 75)− 94z2 + 300(z − 1)
)

− 15 log2(x)
(

1586x + 571y2 −

444yz + 571z2
)

+ 45 log2(z)
(

4010x − 36
(

7y2 − 2y(9z + 16) +

z(7z − 32) + 32
)

log(y) + 759y2 − 2492yz + 759z2
)

− 15 log2(y)
(

2
(

− 1584yz + y(821y − 3226) + 821z2 − 3226(z − 1)
)

log(y)−

3
(

4010x + 759y2 − 2492yz + 759z2
)

)

− 60 log(x)
(

− 388x− 91y2 +

π2
(

− 460yz + y(227y − 914) + 227z2 − 914(z − 1)
)

+ 206yz −

91z2
)

− 90 log(y) log(z)
(

550x+ 18
(

7y2 − 2y(9z + 16) + z(7z − 32) +

32
)

log(y) + 851y2 + 1152yz + 851z2
)

+ 30 log(yz)

(

2
(

− 3032x −

559y2 + 4π2
(

− 1035yz + y(451y − 1937) + 451z2 − 1937(z − 1)
)

+

1914yz − 559z2
)

+ 3 log(x)
(

58x+ 97y2 + 136yz + 97z2
)

)

+

360 log(x)
(

4y2 − y(9z + 17) + z(4z − 17) + 17
)(

log(x) log(yz) +

log2(y) + log2(z)
)

− 30
(

821y2 − 2y(792z + 1613) + z(821z − 3226) +

3226
)

log3(z)− 30ζ(3)
(

− 2312yz + y(14121y − 30554) + 14121z2 −

30554(z − 1)
)

.

The variables x, y, z are di�ned in Eq. (2.4) in [12℄.
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IV. Chek

We implemented Poles(2×0)
, based on Ref. [12℄, twie. Our �rst imple-

mentation was done in Fortran using the subroutine hplog the numerial

evaluation of harmoni polylogarithms, desribed in Ref. [14℄. The se-

ond implementation is in Mathematia, where harmoni polylogarithms are

omputed analytially from their de�nitions. Our odes provide same out-

put for any input with hosen preision. In our Mathematia ode one

an simply perform an expansion of our implementation of Poles(2×0)
at

some spei� point and by this we obtain numerial oe�ients of the ep-

silon expansion in suh a partiular ase. Finally, we implemented our

simple formula, whih we provide in this paper, of epsilon oe�ients of

Poles(2×0)
. We veri�ed that it provides the same numerial values as the

implementations in Fortran.

V. Conlusion

We studied the pole part ontribution of the interferene of two-loop

and tree amplitudes, Poles(2×0)
, to the two-loop QCD matrix element for

e+e− → 3 jets. In partiular we found that epsilon expansion of funtion

Poles(2×0)
is a simple formula that is omposed of polynomials and loga-

rithms. Thus instead of an implementation of a ompliated and ostly for-

mulae, given in Ref. [12℄ and ontaining one and two-dimensional harmoni

polylogarithms up to weight 4, it is su�ient to use our simple formulae

that are free of harmoni polylogarithms. We also investigated Poles(1×1)
,

but we did not �nd suh a remarkable simpli�ation, nevertheless some was

ahieved. We disussed an implementation of a new NNLO subtration

algorithm to the spei� ase of three jet prodution in eletron-positron

annihilation, where we will use our simple formulae of Poles(2×0)
.
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