ACTA PHYSICA DEBRECINA XLVII, 77 (2013)

ON OPTIMIZATION OF THE FUNCTIONAL
RENORMALIZATION GROUP APPLIED TO THE
QUANTIZED ANHARMONIC OSCILLATOR

J. Kovacs!, S. Nagy! 2, K. Sailer!

! Department of Theoretical Physics, University of Debrecen, P.O. Box 5, H-4010
Debrecen, Hungary,
2 MTA-DE Particle Physics Research Group, P.O.Box 51, H-4001 Debrecen,
Hungary

Abstract

The quantized anharmonic oscillator is studied by the func-
tional renormalization group method. It is shown that the en-
ergy gap between the first excited state and the ground state
exhibits a strong scheme dependence. We argue that there is no
optimal value of the regulator parameter that gives the closest
results to the exact energy gaps for any values for the initial
couplings.

I. Introduction

In this work we apply the functional renormalization group (RG) method
for the quantized anharmonic oscillator. Quantum mechanics can be con-
sidered as a quantum field theory, with O spatial and 1 time dimension.
In the framework of the path integral formalism we can use the functional
renormalization group method in quantum mechanics as in quantum field
theory. The RG method is widely used in many areas of modern physics
[1,2,3,4,5,6,7,8,9, 10|, starting from the theory of phase-transitions in
condensed matter systems to some aspects of cosmological problems. Al-
though quantum mechanics can be investigated by solving the Schrodinger



equation numerically the RG method could give a new point of view of the
problem.

We investigate the quantized anharmonic oscillator in one space dimen-
sion by solving the RG equations |7, 11|. In the case of this simple model
it is possible to compare our results with other method’s results, where the
problem is treated by solving the Schrédinger equation numerically with the
corresponding potential, which are considered as the exact values hencefor-
ward. It provides us a good testing ground to investigate how we can
optimize the RG method. We compute the energy gap between the first
excited state and the ground state with the RG technique and compare it
with the exact results. The determination of the energy gap is an interest-
ing question in itself because it leads a non-perturbative problem when the
potential has two degenerate minima [10].

II. Evolution equations

The RG method provides us a partial integro-differential equation for

the effective action, which is called the Wetterich equation [1, 7]
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where * = kg, ' = 0/0¢, Ry is the regulator and the trace Tr denotes the
integration over all momenta and summation for internal indices. Eq. (1)
has been solved over the functional subspace defined by the ansatz
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with the potential Vj, and the wave function renormalization Zj. In case

of the local potential approximation (LPA) Z; = 1. Then the evolution

equation for the potential reads as
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in one space dimension. This equation can be considered as the RG evolu-

tion equation of quantum mechanics. The initial condition for the Wetterich
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equation is given by the explicit form of the effective action at the ultra vio-
let (UV) cutoff k = A, i.e., by that of the classical action of the anharmonic
oscillator by fixing the initial values of the couplings. There are lots of ex-
amples in the literature for different type of regulator functions. Here we
use the following power-law type regulator function

K2\°

m) = (%) 0
p

where b > 1. The particular cases b — oo and b = 1 correspond to the

Wegner-Houghton (WH) and the Callan-Symanzik (CS) renormalization

schemes, respectively.

We investigate the quantum mechanical anharmonic oscillator. We apply
a polynomial ansatz

m2
Vim TE gt + Y 20 o)
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for the potential, where we introduced the additional couplings g9, with
n > 3 which are vanishing at the UV scale. Applying Eq.(5) in Eq. (3)
we obtain a system of ordinary differential equations for the couplings. We
notice that in the cases of the WH and CS schemes in LPA the integral
with respect to the momentum p has a closed form, so that the equations
become more simple.

ITII. Results

The quantized anharmonic oscillator has been investigated in a tradi-
tional way by the solution of the Schrédinger equation numerically, so we
can control our RG results for the energy gap. There are known results
in the literature where the problem was treated in the framework of the
Wetterich equation [12]| or in that of the heat-kernel technique [13]. Here
we consider a broader set of regulator functions. The UV potential has the
form of

2
m
Va = A7+ gat, O
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where mf\ and gp denotes the initial values of the couplings, and the further
couplings are suppressed. We investigate the energy gap as the function of
the initial values. Mathematically they provide different initial conditions of
RG equations which constitute a system of ordinary first-order, but highly
non-linear differential equations.

We have developed a C++ code in order to solve the system of the
differential equations and applied a 4th order Runge-Kutta method. We
chose A = 1500 for the UV cut-off.

Our goal is to determine the effective potential Vj, i.e. the potential in
the £ — 0 limit. We note that the physical properties of the model can be
determined from the knowledge of the effective potential. In LPA the value
of the energy gap is the root of the second derivate of the effective potential
at the vacuum expectation value < ¢ > of the field variable [10],

9%Vy
5 :
9% | y—cp>
In quantum mechanics the vacuum expectation value < ¢ > is generally

the trivial field configuration < ¢ >= 0, i.e. we have to take the second
derivative of the effective potential at ¢ = 0. In our case the energy gap is

AE = my, (8)

AE = (7)

which is the IR limit of the coupling mg. Figure 1 shows the flow of the
coupling my during the evolution in WH scheme for various initial values
for the potential. In the IR limit the values of the dimensionful couplings
scale marginally, i.e. they tend to positive constant values.

We chose the power-law regulator, where the parameter b is freely cho-
sen. By varying b one can obtain different values of the energy gap AFE.
The results also depend on the initial values of the couplings and on the
number N of the couplings taken into account in the potential. According
to previous results in the literature it was shown that in the 2-dimensional
sine-Gordon model [14, 15, 16|, or in the 3-dimensional and O(N) model
[13, 17| the optimal value of b is around 2, which means that b ~ 2 provides
us the closest value of the RG results to the exact ones. Our aim is to
find the optimal value of b, since it was not investigated so far in quantum
mechanical models.
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Figure 1: The evolution of the couplings my is shown. The curves corre-
spond to different initial values of gp, we chose m% =1.

First we investigated the N dependence of the energy gap. Our results
are demonstrated in figure 2. We choose the the case m?\ < 0 for the
optimization, because then the deviation from the exact value is larger. We
note that although larger values of N could improve the approximation of
the expansion but it causes larger numerical errors. Due to the numerical
approximation there is an optimal value of the number of couplings, which
is about 6 in the local potential approximation.

One can distinguish two phases of the classical model depending on the
sign of m%, because the potential can have either a single minimum at the
origin or 2 minima for non-trivial values of the field variable. The second
case is considered as the spontaneously broken symmetric phase, where the
ground state breaks the Z; symmetry of the model. In quantum mechanics
(i.e., in 0 4 1-dimensional quantum field theory) the effective potential is
symmetric due to the tunneling effect even if m% < 0, so the model has
a single symmetric phase. However our numerical results show that for
negative values of m3 and for large values of g the effective potential
becomes concave at ¢ = 0. This is due to the strong truncation of the
potential and that of the gradient expansion.

As to the next, we investigated the optimization with respect to the
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Figure 2: The difference between the exact and numerical values of the
energy gap as the function of IV is shown for various initial values of gx and
mi The red column corresponds to gn = 0.4, the green column denotes
gn = 0.3 and blue column refers to gyx = 0.2. The data were calculated in

the CS scheme with mi = —1.
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Figure 3: The relative error of the energy gap as the function of g, is shown
in the case of m3 = 1 for the number of couplings N = 6. The red column
denotes the WH scheme, the green column denotes the CS scheme.
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Figure 4: The relative error of the energy gap as the function of g5 for
mIQX = —1 and the number N = 6 of the couplings. The red column denotes

the WH scheme, the green column denotes the CS scheme.

renormalization scheme. We are free to choose the regulator function, and
naturally the results depend on the renormalization scheme due to the ap-
plied approximations, the LPA and the Taylor expansion. Figures 3 and 4
show the comparison of the results of the WH and CS schemes for various
initial values, in the case of six couplings. In our approximation for m?\ >0
the CS scheme gives better results than the WH scheme. Our results are in
good agreement with the exact values when the parameter g is tiny and the
convergence of the expansion is faster. For m?\ < 0 the statement is just
the opposite, the WH scheme works better and our results are the more
bad the smaller is g, i.e., the more we approach the regime where the two
minima of the bare potential become rather flat.

We investigated the optimization with respect to the parameter b for
various numbers of couplings and various their various initial values. We
chose m% =1,—1 and g = 1,0.4,0.1,0.05,0.03,0.02, —0.4,0.3, —0.2, —0.1.
Generally we can evaluate the integral by numerically for arbitrary values of
b. We have applied the Romberg-method in our code [18]. The parameter
b dependence is shown in Figure 5.

Although the single case shown in Figure 5 would indicate that the op-
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Figure 5: The deviation of AE as the function of the parameter b is shown
for m% =—1,g5r =04, and N =6.

timal choice were b = 1.5, this is not the case when we consider the cases
with various numbers of couplings and their various initial values. Accord-
ing to our findings the optimal value of b depends rather remarkably on the
number of couplings and on their initial values. These optimal values range
from b = 2.5 to b = 5.5. Generally, the optimal value is less than 4.5 for
N =4 and it is between 4.5 and 5.5 for NV = 6, for the initial values of the
couplings investigated by us.

IV. Conclusions

By using the functional renormalization group method we calculated
the energy gap for the quantized anharmonic oscillator. The renormaliza-
tion requires approximations to be introduced. We used the local poten-
tial approximation and the Taylor expansion of the potential with various
truncations. The energy gap has been determined for different regulator
functions. Our results have been compared with the exact numerical re-
sults taken from the literature that were obtained numerically by solving
the Schrédinger equation for the anharmonic oscillator. We showed that
one cannot find a unique regulator which can give the closest results to the
exact ones for all values of them bare couplings. It suggests that we should
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perform the optimization for the regulator for every model, since there is
no optimized regulator that is suitable in every calculation.
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