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Abstrat

The quantized anharmoni osillator is studied by the fun-

tional renormalization group method. It is shown that the en-

ergy gap between the �rst exited state and the ground state

exhibits a strong sheme dependene. We argue that there is no

optimal value of the regulator parameter that gives the losest

results to the exat energy gaps for any values for the initial

ouplings.

I. Introdution

In this work we apply the funtional renormalization group (RG) method

for the quantized anharmoni osillator. Quantum mehanis an be on-

sidered as a quantum �eld theory, with 0 spatial and 1 time dimension.

In the framework of the path integral formalism we an use the funtional

renormalization group method in quantum mehanis as in quantum �eld

theory. The RG method is widely used in many areas of modern physis

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10℄, starting from the theory of phase-transitions in

ondensed matter systems to some aspets of osmologial problems. Al-

though quantum mehanis an be investigated by solving the Shrödinger



equation numerially the RG method ould give a new point of view of the

problem.

We investigate the quantized anharmoni osillator in one spae dimen-

sion by solving the RG equations [7, 11℄. In the ase of this simple model

it is possible to ompare our results with other method's results, where the

problem is treated by solving the Shrödinger equation numerially with the

orresponding potential, whih are onsidered as the exat values henefor-

ward. It provides us a good testing ground to investigate how we an

optimize the RG method. We ompute the energy gap between the �rst

exited state and the ground state with the RG tehnique and ompare it

with the exat results. The determination of the energy gap is an interest-

ing question in itself beause it leads a non-perturbative problem when the

potential has two degenerate minima [10℄.

II. Evolution equations

The RG method provides us a partial integro-di�erential equation for

the e�etive ation, whih is alled the Wetterih equation [1, 7℄

Γ̇k =
1

2
Tr

Ṙk

Rk + Γ′′

k

, (1)

where

. = k∂k,
′ = ∂/∂φ, Rk is the regulator and the trae Tr denotes the

integration over all momenta and summation for internal indies. Eq. (1)

has been solved over the funtional subspae de�ned by the ansatz

Γk =

∫

x

[

Zk

2
(∂µφ)

2 + Vk

]

, (2)

with the potential Vk, and the wave funtion renormalization Zk. In ase

of the loal potential approximation (LPA) Zk = 1. Then the evolution

equation for the potential reads as

V̇k =
1

2π

∫

∞

0

dp
Ṙk

p2 +Rk + V ′′

k

. (3)

in one spae dimension. This equation an be onsidered as the RG evolu-

tion equation of quantum mehanis. The initial ondition for the Wetterih
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equation is given by the expliit form of the e�etive ation at the ultra vio-

let (UV) uto� k = Λ, i.e., by that of the lassial ation of the anharmoni

osillator by �xing the initial values of the ouplings. There are lots of ex-

amples in the literature for di�erent type of regulator funtions. Here we

use the following power-law type regulator funtion

Rk(p) = p2
(

k2

p2

)b

, (4)

where b ≥ 1. The partiular ases b → ∞ and b = 1 orrespond to the

Wegner-Houghton (WH) and the Callan-Symanzik (CS) renormalization

shemes, respetively.

We investigate the quantum mehanial anharmoni osillator. We apply

a polynomial ansatz

Vk =
m2

k

2
φ2 + gkφ

4 +
∑

n=3

g2n(k)

(2n)!
φ2n

(5)

for the potential, where we introdued the additional ouplings g2n with

n ≥ 3 whih are vanishing at the UV sale. Applying Eq. (5) in Eq. (3)

we obtain a system of ordinary di�erential equations for the ouplings. We

notie that in the ases of the WH and CS shemes in LPA the integral

with respet to the momentum p has a losed form, so that the equations

beome more simple.

III. Results

The quantized anharmoni osillator has been investigated in a tradi-

tional way by the solution of the Shrödinger equation numerially, so we

an ontrol our RG results for the energy gap. There are known results

in the literature where the problem was treated in the framework of the

Wetterih equation [12℄ or in that of the heat-kernel tehnique [13℄. Here

we onsider a broader set of regulator funtions. The UV potential has the

form of

VΛ =
m2

Λ

2
φ2 + gΛφ

4, (6)
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where m2
Λ
and gΛ denotes the initial values of the ouplings, and the further

ouplings are suppressed. We investigate the energy gap as the funtion of

the initial values. Mathematially they provide di�erent initial onditions of

RG equations whih onstitute a system of ordinary �rst-order, but highly

non-linear di�erential equations.

We have developed a C++ ode in order to solve the system of the

di�erential equations and applied a 4th order Runge-Kutta method. We

hose Λ = 1500 for the UV ut-o�.

Our goal is to determine the e�etive potential V0, i.e. the potential in

the k → 0 limit. We note that the physial properties of the model an be

determined from the knowledge of the e�etive potential. In LPA the value

of the energy gap is the root of the seond derivate of the e�etive potential

at the vauum expetation value < φ > of the �eld variable [10℄,

∆E =

√

∂2V0

∂φ2

∣

∣

∣

∣

φ=<φ>

. (7)

In quantum mehanis the vauum expetation value < φ > is generally

the trivial �eld on�guration < φ >= 0, i.e. we have to take the seond

derivative of the e�etive potential at φ = 0. In our ase the energy gap is

∆E = m0, (8)

whih is the IR limit of the oupling mk. Figure 1 shows the �ow of the

oupling mk during the evolution in WH sheme for various initial values

for the potential. In the IR limit the values of the dimensionful ouplings

sale marginally, i.e. they tend to positive onstant values.

We hose the power-law regulator, where the parameter b is freely ho-

sen. By varying b one an obtain di�erent values of the energy gap ∆E.
The results also depend on the initial values of the ouplings and on the

number N of the ouplings taken into aount in the potential. Aording

to previous results in the literature it was shown that in the 2-dimensional

sine-Gordon model [14, 15, 16℄, or in the 3-dimensional and O(N) model

[13, 17℄ the optimal value of b is around 2, whih means that b ≈ 2 provides
us the losest value of the RG results to the exat ones. Our aim is to

�nd the optimal value of b, sine it was not investigated so far in quantum

mehanial models.
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Figure 1: The evolution of the ouplings mk is shown. The urves orre-

spond to di�erent initial values of gΛ, we hose m2
Λ
= 1.

First we investigated the N dependene of the energy gap. Our results

are demonstrated in �gure 2. We hoose the the ase m2
Λ

< 0 for the

optimization, beause then the deviation from the exat value is larger. We

note that although larger values of N ould improve the approximation of

the expansion but it auses larger numerial errors. Due to the numerial

approximation there is an optimal value of the number of ouplings, whih

is about 6 in the loal potential approximation.

One an distinguish two phases of the lassial model depending on the

sign of m2
k, beause the potential an have either a single minimum at the

origin or 2 minima for non-trivial values of the �eld variable. The seond

ase is onsidered as the spontaneously broken symmetri phase, where the

ground state breaks the Z2 symmetry of the model. In quantum mehanis

(i.e., in 0 + 1-dimensional quantum �eld theory) the e�etive potential is

symmetri due to the tunneling e�et even if m2
Λ

< 0, so the model has

a single symmetri phase. However our numerial results show that for

negative values of m2
Λ
and for large values of gΛ the e�etive potential

beomes onave at φ = 0. This is due to the strong trunation of the

potential and that of the gradient expansion.

As to the next, we investigated the optimization with respet to the
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Figure 2: The di�erene between the exat and numerial values of the

energy gap as the funtion of N is shown for various initial values of gΛ and

m2
Λ
. The red olumn orresponds to gΛ = 0.4, the green olumn denotes

gΛ = 0.3 and blue olumn refers to gΛ = 0.2. The data were alulated in

the CS sheme with m2
Λ
= −1.
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Figure 3: The relative error of the energy gap as the funtion of gΛ is shown

in the ase of m2
Λ
= 1 for the number of ouplings N = 6. The red olumn

denotes the WH sheme, the green olumn denotes the CS sheme.
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Figure 4: The relative error of the energy gap as the funtion of gΛ for

m2
Λ
= −1 and the number N = 6 of the ouplings. The red olumn denotes

the WH sheme, the green olumn denotes the CS sheme.

renormalization sheme. We are free to hoose the regulator funtion, and

naturally the results depend on the renormalization sheme due to the ap-

plied approximations, the LPA and the Taylor expansion. Figures 3 and 4

show the omparison of the results of the WH and CS shemes for various

initial values, in the ase of six ouplings. In our approximation for m2
Λ
> 0

the CS sheme gives better results than the WH sheme. Our results are in

good agreement with the exat values when the parameter g is tiny and the

onvergene of the expansion is faster. For m2
Λ
< 0 the statement is just

the opposite, the WH sheme works better and our results are the more

bad the smaller is gΛ, i.e., the more we approah the regime where the two

minima of the bare potential beome rather �at.

We investigated the optimization with respet to the parameter b for

various numbers of ouplings and various their various initial values. We

hose m2
Λ
= 1,−1 and gΛ = 1, 0.4, 0.1, 0.05, 0.03, 0.02,−0.4, 0.3,−0.2,−0.1.

Generally we an evaluate the integral by numerially for arbitrary values of

b. We have applied the Romberg-method in our ode [18℄. The parameter

b dependene is shown in Figure 5.

Although the single ase shown in Figure 5 would indiate that the op-
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Figure 5: The deviation of ∆E as the funtion of the parameter b is shown
for m2

Λ
= −1, gΛ = 0.4, and N = 6.

timal hoie were b ≈ 1.5, this is not the ase when we onsider the ases

with various numbers of ouplings and their various initial values. Aord-

ing to our �ndings the optimal value of b depends rather remarkably on the

number of ouplings and on their initial values. These optimal values range

from b = 2.5 to b = 5.5. Generally, the optimal value is less than 4.5 for

N = 4 and it is between 4.5 and 5.5 for N = 6, for the initial values of the
ouplings investigated by us.

IV. Conlusions

By using the funtional renormalization group method we alulated

the energy gap for the quantized anharmoni osillator. The renormaliza-

tion requires approximations to be introdued. We used the loal poten-

tial approximation and the Taylor expansion of the potential with various

trunations. The energy gap has been determined for di�erent regulator

funtions. Our results have been ompared with the exat numerial re-

sults taken from the literature that were obtained numerially by solving

the Shrödinger equation for the anharmoni osillator. We showed that

one annot �nd a unique regulator whih an give the losest results to the

exat ones for all values of them bare ouplings. It suggests that we should
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perform the optimization for the regulator for every model, sine there is

no optimized regulator that is suitable in every alulation.
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