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Abstra
t

The quantized anharmoni
 os
illator is studied by the fun
-

tional renormalization group method. It is shown that the en-

ergy gap between the �rst ex
ited state and the ground state

exhibits a strong s
heme dependen
e. We argue that there is no

optimal value of the regulator parameter that gives the 
losest

results to the exa
t energy gaps for any values for the initial


ouplings.

I. Introdu
tion

In this work we apply the fun
tional renormalization group (RG) method

for the quantized anharmoni
 os
illator. Quantum me
hani
s 
an be 
on-

sidered as a quantum �eld theory, with 0 spatial and 1 time dimension.

In the framework of the path integral formalism we 
an use the fun
tional

renormalization group method in quantum me
hani
s as in quantum �eld

theory. The RG method is widely used in many areas of modern physi
s

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10℄, starting from the theory of phase-transitions in


ondensed matter systems to some aspe
ts of 
osmologi
al problems. Al-

though quantum me
hani
s 
an be investigated by solving the S
hrödinger



equation numeri
ally the RG method 
ould give a new point of view of the

problem.

We investigate the quantized anharmoni
 os
illator in one spa
e dimen-

sion by solving the RG equations [7, 11℄. In the 
ase of this simple model

it is possible to 
ompare our results with other method's results, where the

problem is treated by solving the S
hrödinger equation numeri
ally with the


orresponding potential, whi
h are 
onsidered as the exa
t values hen
efor-

ward. It provides us a good testing ground to investigate how we 
an

optimize the RG method. We 
ompute the energy gap between the �rst

ex
ited state and the ground state with the RG te
hnique and 
ompare it

with the exa
t results. The determination of the energy gap is an interest-

ing question in itself be
ause it leads a non-perturbative problem when the

potential has two degenerate minima [10℄.

II. Evolution equations

The RG method provides us a partial integro-di�erential equation for

the e�e
tive a
tion, whi
h is 
alled the Wetteri
h equation [1, 7℄

Γ̇k =
1

2
Tr

Ṙk

Rk + Γ′′

k

, (1)

where

. = k∂k,
′ = ∂/∂φ, Rk is the regulator and the tra
e Tr denotes the

integration over all momenta and summation for internal indi
es. Eq. (1)

has been solved over the fun
tional subspa
e de�ned by the ansatz

Γk =

∫

x

[

Zk

2
(∂µφ)

2 + Vk

]

, (2)

with the potential Vk, and the wave fun
tion renormalization Zk. In 
ase

of the lo
al potential approximation (LPA) Zk = 1. Then the evolution

equation for the potential reads as

V̇k =
1

2π

∫

∞

0

dp
Ṙk

p2 +Rk + V ′′

k

. (3)

in one spa
e dimension. This equation 
an be 
onsidered as the RG evolu-

tion equation of quantum me
hani
s. The initial 
ondition for the Wetteri
h

78



equation is given by the expli
it form of the e�e
tive a
tion at the ultra vio-

let (UV) 
uto� k = Λ, i.e., by that of the 
lassi
al a
tion of the anharmoni


os
illator by �xing the initial values of the 
ouplings. There are lots of ex-

amples in the literature for di�erent type of regulator fun
tions. Here we

use the following power-law type regulator fun
tion

Rk(p) = p2
(

k2

p2

)b

, (4)

where b ≥ 1. The parti
ular 
ases b → ∞ and b = 1 
orrespond to the

Wegner-Houghton (WH) and the Callan-Symanzik (CS) renormalization

s
hemes, respe
tively.

We investigate the quantum me
hani
al anharmoni
 os
illator. We apply

a polynomial ansatz

Vk =
m2

k

2
φ2 + gkφ

4 +
∑

n=3

g2n(k)

(2n)!
φ2n

(5)

for the potential, where we introdu
ed the additional 
ouplings g2n with

n ≥ 3 whi
h are vanishing at the UV s
ale. Applying Eq. (5) in Eq. (3)

we obtain a system of ordinary di�erential equations for the 
ouplings. We

noti
e that in the 
ases of the WH and CS s
hemes in LPA the integral

with respe
t to the momentum p has a 
losed form, so that the equations

be
ome more simple.

III. Results

The quantized anharmoni
 os
illator has been investigated in a tradi-

tional way by the solution of the S
hrödinger equation numeri
ally, so we


an 
ontrol our RG results for the energy gap. There are known results

in the literature where the problem was treated in the framework of the

Wetteri
h equation [12℄ or in that of the heat-kernel te
hnique [13℄. Here

we 
onsider a broader set of regulator fun
tions. The UV potential has the

form of

VΛ =
m2

Λ

2
φ2 + gΛφ

4, (6)
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where m2
Λ
and gΛ denotes the initial values of the 
ouplings, and the further


ouplings are suppressed. We investigate the energy gap as the fun
tion of

the initial values. Mathemati
ally they provide di�erent initial 
onditions of

RG equations whi
h 
onstitute a system of ordinary �rst-order, but highly

non-linear di�erential equations.

We have developed a C++ 
ode in order to solve the system of the

di�erential equations and applied a 4th order Runge-Kutta method. We


hose Λ = 1500 for the UV 
ut-o�.

Our goal is to determine the e�e
tive potential V0, i.e. the potential in

the k → 0 limit. We note that the physi
al properties of the model 
an be

determined from the knowledge of the e�e
tive potential. In LPA the value

of the energy gap is the root of the se
ond derivate of the e�e
tive potential

at the va
uum expe
tation value < φ > of the �eld variable [10℄,

∆E =

√

∂2V0

∂φ2

∣

∣

∣

∣

φ=<φ>

. (7)

In quantum me
hani
s the va
uum expe
tation value < φ > is generally

the trivial �eld 
on�guration < φ >= 0, i.e. we have to take the se
ond

derivative of the e�e
tive potential at φ = 0. In our 
ase the energy gap is

∆E = m0, (8)

whi
h is the IR limit of the 
oupling mk. Figure 1 shows the �ow of the


oupling mk during the evolution in WH s
heme for various initial values

for the potential. In the IR limit the values of the dimensionful 
ouplings

s
ale marginally, i.e. they tend to positive 
onstant values.

We 
hose the power-law regulator, where the parameter b is freely 
ho-

sen. By varying b one 
an obtain di�erent values of the energy gap ∆E.
The results also depend on the initial values of the 
ouplings and on the

number N of the 
ouplings taken into a

ount in the potential. A

ording

to previous results in the literature it was shown that in the 2-dimensional

sine-Gordon model [14, 15, 16℄, or in the 3-dimensional and O(N) model

[13, 17℄ the optimal value of b is around 2, whi
h means that b ≈ 2 provides
us the 
losest value of the RG results to the exa
t ones. Our aim is to

�nd the optimal value of b, sin
e it was not investigated so far in quantum

me
hani
al models.
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Figure 1: The evolution of the 
ouplings mk is shown. The 
urves 
orre-

spond to di�erent initial values of gΛ, we 
hose m2
Λ
= 1.

First we investigated the N dependen
e of the energy gap. Our results

are demonstrated in �gure 2. We 
hoose the the 
ase m2
Λ

< 0 for the

optimization, be
ause then the deviation from the exa
t value is larger. We

note that although larger values of N 
ould improve the approximation of

the expansion but it 
auses larger numeri
al errors. Due to the numeri
al

approximation there is an optimal value of the number of 
ouplings, whi
h

is about 6 in the lo
al potential approximation.

One 
an distinguish two phases of the 
lassi
al model depending on the

sign of m2
k, be
ause the potential 
an have either a single minimum at the

origin or 2 minima for non-trivial values of the �eld variable. The se
ond


ase is 
onsidered as the spontaneously broken symmetri
 phase, where the

ground state breaks the Z2 symmetry of the model. In quantum me
hani
s

(i.e., in 0 + 1-dimensional quantum �eld theory) the e�e
tive potential is

symmetri
 due to the tunneling e�e
t even if m2
Λ

< 0, so the model has

a single symmetri
 phase. However our numeri
al results show that for

negative values of m2
Λ
and for large values of gΛ the e�e
tive potential

be
omes 
on
ave at φ = 0. This is due to the strong trun
ation of the

potential and that of the gradient expansion.

As to the next, we investigated the optimization with respe
t to the
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Figure 2: The di�eren
e between the exa
t and numeri
al values of the

energy gap as the fun
tion of N is shown for various initial values of gΛ and

m2
Λ
. The red 
olumn 
orresponds to gΛ = 0.4, the green 
olumn denotes

gΛ = 0.3 and blue 
olumn refers to gΛ = 0.2. The data were 
al
ulated in

the CS s
heme with m2
Λ
= −1.
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Figure 3: The relative error of the energy gap as the fun
tion of gΛ is shown

in the 
ase of m2
Λ
= 1 for the number of 
ouplings N = 6. The red 
olumn

denotes the WH s
heme, the green 
olumn denotes the CS s
heme.
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Figure 4: The relative error of the energy gap as the fun
tion of gΛ for

m2
Λ
= −1 and the number N = 6 of the 
ouplings. The red 
olumn denotes

the WH s
heme, the green 
olumn denotes the CS s
heme.

renormalization s
heme. We are free to 
hoose the regulator fun
tion, and

naturally the results depend on the renormalization s
heme due to the ap-

plied approximations, the LPA and the Taylor expansion. Figures 3 and 4

show the 
omparison of the results of the WH and CS s
hemes for various

initial values, in the 
ase of six 
ouplings. In our approximation for m2
Λ
> 0

the CS s
heme gives better results than the WH s
heme. Our results are in

good agreement with the exa
t values when the parameter g is tiny and the


onvergen
e of the expansion is faster. For m2
Λ
< 0 the statement is just

the opposite, the WH s
heme works better and our results are the more

bad the smaller is gΛ, i.e., the more we approa
h the regime where the two

minima of the bare potential be
ome rather �at.

We investigated the optimization with respe
t to the parameter b for

various numbers of 
ouplings and various their various initial values. We


hose m2
Λ
= 1,−1 and gΛ = 1, 0.4, 0.1, 0.05, 0.03, 0.02,−0.4, 0.3,−0.2,−0.1.

Generally we 
an evaluate the integral by numeri
ally for arbitrary values of

b. We have applied the Romberg-method in our 
ode [18℄. The parameter

b dependen
e is shown in Figure 5.

Although the single 
ase shown in Figure 5 would indi
ate that the op-
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Figure 5: The deviation of ∆E as the fun
tion of the parameter b is shown
for m2

Λ
= −1, gΛ = 0.4, and N = 6.

timal 
hoi
e were b ≈ 1.5, this is not the 
ase when we 
onsider the 
ases

with various numbers of 
ouplings and their various initial values. A

ord-

ing to our �ndings the optimal value of b depends rather remarkably on the

number of 
ouplings and on their initial values. These optimal values range

from b = 2.5 to b = 5.5. Generally, the optimal value is less than 4.5 for

N = 4 and it is between 4.5 and 5.5 for N = 6, for the initial values of the

ouplings investigated by us.

IV. Con
lusions

By using the fun
tional renormalization group method we 
al
ulated

the energy gap for the quantized anharmoni
 os
illator. The renormaliza-

tion requires approximations to be introdu
ed. We used the lo
al poten-

tial approximation and the Taylor expansion of the potential with various

trun
ations. The energy gap has been determined for di�erent regulator

fun
tions. Our results have been 
ompared with the exa
t numeri
al re-

sults taken from the literature that were obtained numeri
ally by solving

the S
hrödinger equation for the anharmoni
 os
illator. We showed that

one 
annot �nd a unique regulator whi
h 
an give the 
losest results to the

exa
t ones for all values of them bare 
ouplings. It suggests that we should
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perform the optimization for the regulator for every model, sin
e there is

no optimized regulator that is suitable in every 
al
ulation.
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