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Abstract

The mechanism of magnetization reversal in single-domain
ferromagnetic particles is of interest in many applications, in
most of which losses must be minimized. In cancer therapy
by hyperthermia the opposite requirement prevails: the specific
loss power should be maximized. The research to be reported
below is related to the investigation of the role of anisotropy
in an anticipated enhancement of heat production of magnetic
nanoparticles under circularly polarized external field.

I. Introduction

Hyperthermia has been widely studied as adjuvant therapy additional to
standardized chemotherapy and radiotherapy in patients with different can-
cers. The term hyperthermia refers to temperature above 41 °C (somewhat
between 41 and 45 °C), and the strategy seems promising in oncological
terms as cancer cells partially lack proper recovery mechanisms (e.g. de-
creased amount of heat-shock proteins, HSP 70, HSP 27) during excessive
heat conditions [1, 2]. During hyperthermic conditions, compared to phys-
iological cells, cancer cells are more vulnerable to additional environmental



stressor, like cytotoxic agents and irradiation, and depending on the condi-
tions, programmed cell death (apoptosis) or in certain cases necrosis might
occur. A major technical problem is the selective heating of the tumor tissue
without damaging its environment. Excessive heat conditions might have
serious side effects (local or extended destruction of healthy tissues), thus
proper control in the targeting, extension and duration of hyperthermia is
inevitable for therapeutic applications [1].

Among many forms of hyperthermia, the local induction of hyperthermia
via magnetic nanoparticles seems a fruitful strategy, with promising preclin-
ical results in different cancer models [3]. The unique feature of magnetic
nanoparticle hyperthermia is that the energy is transported in the body
by means of an ac magnetic field. The nanoparticles absorb the energy,
and the magnetic moment of the particles enable also targeting: they can
be directed towards the cancer tumors by a magnetic field. Overheating
might also be controlled by applying compounds with optimalized Curie
temperature.

Local microinjection of magnetic nanoparticles for hyperthermia induc-
tion was repeatedly performed in patients with glioblastoma multiforme (a
devastating brain tumor) [4] and in patients with prostate cancer [5], where
the feasibility of other procedures were considerably low. In the above
cases, little side-effects were present, and beneficial clinical effects were ob-
served. Technically, the microinjection contained superparamagnetic iron
oxid nanoparticles (measured approximately 15 nm in diameter) covered
by aminosilane type shell. Systematic administration of iron oxid particles
(like contrast agents in MRI settings) is regularly applied (so far not for
therapeutical reason), and these molecules might also be used for local hy-
perthermia induction in case of increased local accumulation in the cancer
tissue. At present the clinical application of the promising procedure is still
limited, partly due to the efficacy of the heat transfer and controllability
of temperature parameters [6]. Yet, the study of relaxation mechanisms of
magnetic nanoparticles is a very active research field both in its theoretical
and material-science aspects.

The research to be reported below follows our earlier investigation of
the isotropic, single-particle case. This work [7] was based on the Landau-
Lifshitz-Gilbert (LLG) equation and it was followed by a similar work based
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on the modified Bloch equation [8]. Apart from finding the response of the
magnetization of nanoparticles to an applied ac field, we have determined
the frequency dependence of the energy loss (i.e. the heat gain). For both
models, we found that, in the low-frequency limit, larger energy loss per
cycle was achieved applying linearly, rather than circularly polarized field.
However, as no magnetic particle is strictly isotropic, it is essential to study
the anisotropic case. The purpose of our recent paper [9] was to determine
the role of anisotropy in an anticipated enhancement of heat production
of magnetic nanoparticles under circularly polarized field. Solving the dif-
ferential equation, which describes the dynamics of the magnetization in
circularly polarized field, we have found that the power losses decreased
due to the anisotropy. The outcome of our research was then that in the
low-frequency limit, in circulary polarized field, it is impossible to increase
the energy loss using easy-axis, uniaxially nanoparticles.

The purpose of the present work is (i) to summarize the results on the
anisotropic case [9] and (ii) to present new results calculated for higher
frequencies than reported in [9], but still falling into the range allowed in
hyperthermia.

II. The Landau-Lifshitz-Gilbert equation

Out of the many phenomenological equations of motion for the relaxation
of magnetic moments or magnetization [10], the one put up by Landau and
Lifshitz [11] and extended by Gilbert [12] into the realm of strongly damped
moments has proved to give the most realistic description of the dynamics
of single-domain magnetic particles. An important feature of the resulting
Landau-Lifshitz-Gilbert (LLG) equation is that the magnetization vectors
magnitude does not change under the influence of the external field. Thus,
it is convenient to rewrite it in terms of the unit vector M = m/mg where
mg is the saturation magnetization. Then the LLG equation reads as

%M = —v [M X Heg] + o [[M x Hegr] X M], (1)

where v and is related to the gyromagnetic ratio, but also depends on the
damping, and « is a phenomenological damping constant, Heg contains the
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circularly polarized applied (external) magnetic field and the effect of the
anisotropy of the magnetic particle:

H.g = Hy (cos(wt), sin(wt), Aegg M), (2)

where w is the angular frequency of the applied field, M, is the z-component
of the normalized magnetization vector and Aeg is the measure of the
strength of the anisotropy with respect of the applied Hy field. In this
measure, using Aeg > 1 (cf. Fig. 1, Fig. 2 and Fig.4) and realizing that M is
a dimensionless unit vector, we are aware of working with strong anisotropy.

Transforming the LLG equation into polar coordinates allows to drop
the constant (M), leaving but two equations:

de

)7 sin ¢ + ay cos 0 cos ¢ — ayAegr Sin 0 cos 6, (3)
d¢ cos sin ¢

- 87w . . 4
It wr, COS(bsinH +w—ay 0 W Aeff COS 0 (4)

Note that the new coordinate system is rotating with the applied field: the
azimuthal angle (¢) has been cut into the rotation (wt) and a measure (¢)
of the lag of M with respect to the rotation of the applied field: ¢ = wt — ¢.

The left sides of equations (3) and (4) being derivatives of angles with
respect to time, the units of all terms in the equations must be s ! . Indeed,
the first one on the right sides is the Larmor frequency, wy, = |v|uoHp where
v = 1.76 x 10 Am?/Js is the gyromagnetic ratio of the electron spin and
po = 47 x 107 N/A? is the permeability of free space. Known that in
the practice [14] Hy < 18 kA/m we find that the Larmor frequency is of
the order of GHz. In hyperthermia the frequency of the applied field is
advised [15] to be chosen above about 100 kHz and below about 500 kHz,
so that w should be four orders of magnitude below wy. In the spirit of
the Landau-Lifshitz approach, the damping constant ay = |y|poa should
be much smaller than wy. We shall show results of simulations made for
any = wr /2, which can only be accepted if we assume that both v and «
are reduced by a factor of (1+ (a /8)?) ! (where 3 is of dimension « ) as it
was done in [9], in accord with the procedure of moving from the Landau-
Lifshitz equation to the Landau-Lifshitz-Gilbert equation. So far it seems
that the Larmor precession dominates the equations of movements, but the
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effect of anisotropy may very well have the same order of magnitude, or
indeed larger: the anisotropy field of magnetite is more than 40 kA /m, and
if we reckon with the shape anisotropy too, as suggested by Bertotti et al.
[13], a much stronger effect can be expected.

III. Anisotropic case, low frequency

In this section we briefly summarize the results obtained for the anisotropic
case in the low-frequency limit [9]. We have given numerical solutions of
the equations of motion set up for uniaxial anisotropy (Egs. (3), (4) and
Aeft > 0) in polar coordinates with various initial conditions in 6 vs ¢ plots.
To limit the number of Larmor circles before the steady state settles, the
parameters we have chosen are unlike the ones encountered in hyperthermia:
the Larmor frequency exceeds the applied frequency by factors of 4/3 to 20,
instead of being four orders of magnitudes higher. As we are observing the
motion in a frame rotating with the applied field, it is surprising that we see
no sign of the Larmor precession before the orbits collaps in the attractive
fixed point.

In Fig.1, two fixed points, a repulsive (circle) one and an attractive
one appear on the diagram. The lines carrying arrows, which indicate the
passing of time, is what we call orbits, the figures being orbit maps. The
attractive fixed point, where all orbits eventually arrive, indicate steady
states. Garstens and Kaplan [16] have defined steady states in terms of
the average value of M,, i.e., cos(f), over one cycle, which must be time-
independent. Clearly, with 8§ = constant, our fixed points represent steady
states. In this case, with a counter-clockwise rotation of the applied field,
the attractive fixed point is above the equator, the repulsive fixed points
is very close to the equator. In ref. [9] we have reported the observation
of parameter sets that supported two attractive fixed points; Fig.2 is an
example. Here we also marked the saddle point between the two fix points.
In what follows, we shall seek the critical anisotropy strength, at which
the second fixed point emerges. We define A, the critical value of the
anisotropy strength Mg, as the one at which only one attractive fixed point
appears, but the smallest increase, be it only a percent, will cause the
appearance of a new attractive fixed point. Out of these attractive fixed
points one is below the equator, the other one above.
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Figure 1: Orbit map in the rotating frame obtained by solving the LLG
equation, slightly below the critical value of anisotropy. The parameters
are ay = 0.1, w = 0.01, wy, = 0.2 and Mg = 1.175.

Figure 2: Orbit map in the rotating frame obtained by solving the LLG
equation 28% above the critical value of anisotropy, Aeg = 1.5. The other
parameters are as under Fig. 1.
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Figure 3: The energy loss is plotted against the anisotropy Aeg. There are
two scaling regimes, the one is at small, the other is at large anisotropy
which are separated by critical value of anisotropy.

Fig. 3 shows the energy losses as functions of Aeg. The solid line corre-
sponds to the energy dissipated per particle in a single cycle at the stable
fixed point, the dashed line refers to the fixed points which emerges at A;.
When calculating the energy loss, it is not clear which fractions of the con-
tributions of the two fixed points have to be added. It is clear though that
this is irrelevant in our search of means to enhance the energy loss. No
matter which fixed point of the anisotropic particle, the isotropic particle’s
energy loss, represented by the straight line beginning at Aeg = 0, is sig-
nificantly higher. We must conclude that an easy-axis uniaxial anisotropic
sample will never perform better in the dissipation of magnetic energy than
its isotropical variant with otherwise the same magnetic parameters.

IV. Anisotropic case, medium frequency

Two intriguing features of the results shown in the previous section dictate
the subject to be clarified before extend the construction and analysis of
orbit maps. First, the existence and number of fixed points. Here the
question of the possibility of more than two fixed points arises. Secondly,
the asymmetry of Fig. 3 raises two questions: what prohibits the presence
of the second fixed points in the case of weak anisotropy and what is the
form and physical background of the dependence of the critical value of the
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anisotropy strength A, and the ratio of the applied and Larmor frequencies
w/wr?

Denisov and coworkers [17] have observed the asymmetry in the occu-
rance and position of the two fixed point in the § — ¢ map. They pointed
out that the rotating magnetic field breaks the symmetry between the di-
rections pointing up and down the plane of rotation, i.e. the two equivalent
directions of the uniaxial symmetry.

Lyutyy and coworkers [18] have stated that increasing the frequency
should enhance the energy loss. To find out if this increase is significant
within the frequency range allowed in hyperthermia, we have increased in
three steps the applied frequency in numerical calculations of the orbit maps
and the energy loss. The outcome supports the statement that raising the
frequency improves energy loss. Furthermore, comparing the orbit maps of
models differing only in the applied frequency leads to observations worthy
to pursue in a broader context.

Fig. 4 shows the trends in the occurance and properties of the critical
values of the anisotropy strength at different applied frequencies. Figure 1,
where w/wyr = 1/20, is part of this series, where the ratio is raising up to
w/wr, = 3/4. We see a growth of A\, monotonic (in fact almost linear) in
w/wr, from 1.175 to 2.2. This seems a large change, until we realize that
between w/wy, = 1/20 and zero the change is 1.175. The behaviour of Ac;
in a wider and more varied area will be necessary to analyse these data.

Another feature of the second fixed points that we can observe in these
figures is that both the values of the energy loss per cycle and the difference
between these data for the two fixed points are increasing with increasing
critical anisotropy. In Table 1 we have collected the data one can draw from
the E' vs Aegr plots in Fig. 3 and Fig. 4.

Fig. 1 and especially the orbit maps in Fig.4 draw the attention to an-
other kind of special point or area: where a number of orbits seem to join
in one, which then abruptly changes direction. Considering that A.g was
chosen in these calculations very close to A¢;, the bends the orbits make be-
fore the union suggest that they were on their way to the second attractive
fixed point. In a closer study of these points, including the velocities before
and after them, may give a clue why the attraction disappears.
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Figure 4: On the panels to the left, the energy loss is plotted against the
anisotropy Aeg for various values of w (a and wy, are fixed). On the panels
to the right, one finds the corresponding orbit maps in the rotating frame
obtained by solving the LLG equation, slightly below the critical value of
anisotropy.

In conclusion, we have shown that orbit maps provide a tool to anal-
yse the behaviour of single-domain magnetic particles. We have chosen to
model easy-axis uniaxial ferromagnets in temperatures low enough to ignore
thermal fluctuations. Expanding the parameter area and introducing time
into the maps, we intend to use the method for models with parameters
relevant to the usage of such nanoparticles in hyperthermia.
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