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Abstract

Phase diagrams of exact ground states of polyphenylene types
of quasi-1D hexagonal chain stuctures have been deduced and
examined. During the calculations some special characteristics
of the phase space have been revealed.

I. Introduction

This study deals with the polyphenylene types of hexagonal chains which
are built up periodically by hexagons joint each other through intercell-
bonds, constituting a quasi-1D organic polymer chain. Many different repre-
sentatives of polyphenylenes can be mentioned, for example polyphenylene
oxide, polyphenyl sulfide, polyphenyl ether, polyphenyl thioether, polyary-
lene ether, polyethylene terephthalate etc.

These types of hexagonal chains can have a wide range of application pos-
sibilities which is due to their special chemical and mechanical properties.
Emphasizing some areas: aerospace applications, diffusion pumps, high-
temperature hydraulic systems, electronic connectors, ultra high vacuum or
heat transfer processes [1, 2, 3|.

Focusing on the intrinsic physical properties of polyphenylenes, many
investigations happened from quite diverse aspects, as for example ligth
emission possibilities |4], application possibilities in fuel cell technology [5],



Figure 1: The structure of polyphenylene.

temperature dependent elastohydrodynamic properties [6], frequency de-
pendence in specific heat |7], application possibilities in nanoscale junctions
[8]. Some studies reveal also the fact that inter-electronic correlations play
a high important role in the physical processes [8, 9], so they actually can
not be neglected during the descriptions.

II. The Hamiltonian of the system

Let us have a look at Figure 1, which shows the line drawing of the
polyphenylene chains. As seen, one primitive cell of the system is de-
termined by one hexagon which contains six sites at the vertexes of the
hexagon. On these sites single carbon atoms are located, but in several
cases additional groups of atoms can be attached to certain carbon atoms
in the chain (for example a C'H3 methyl group in case of polyphenylene ox-
ide). The neighbouring hexagonal primitive cells are connected by intercell-
bonds, which can be created by different atoms in different systems (for
example an oxygen atom at polyphenylene oxide, or a sulphur atom at
polyphenylene sulfide). Figure 1 illustrates the polyphenylene types of
chains of course only schematically, and — although only four cells are de-
picted — the number of cells denoted by N, can be an arbitrary positive
integer.

The studied system is described by the Hamiltonian H = Hy + Hy,
where

IAJO = Z Z € ﬁi’g + Z Z(tij é;géj,o + t;j éiaéj,g + H.C.),
o i o ij
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i
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In expression (1) Hy gives the kinetic energy of the system, while Hy de-
monstrates the Hubbard interaction between electrons. cT creates an elect-
ron with spin projection o on site i, ¢;, annihilates an electron with spin
projection o from site j, and 7n;, = ciocm holds. €; represents the one-
particle on-site potential, ¢t and ¢’ denote the nearest and the next nearest
hopping matrix elements, respectively, while the coupling constant U yields
the strength of the Hubbard interaction. Hubbard interaction is essentially
short-range Coulomb interaction between electrons, and due to the repulsive
nature of it, U has to be positive, i.e. U > 0. The sum ) _; runs over the
N, cells of the system.

In the Hubbard terms in (1) we have taken into account only on-site
contributions from the Coulomb repulsion, i.e. interaction between elect-
rons occuring on the same site. Interactions between first, second, third,

neighbour electrons of course also exist in the system, but compared
to the on-site terms they are smaller with one, two, three, ... orders of
magnitude, thus the longer-range Coulomb contributions can be neglected
during the calculations. By several estimations the value of the on-site
Coulomb-repulsion in organic chain structures built up from hexagonal cells
is around or above 10 eV [8, 9, 10, 11|, so these data confirm that the on-site
Hubbard repulsion is the highest interaction in the system.

III. About our method

As written in Section 1., the inter-electronic correlation effects play a high
important role in the evolving of physical properties of polymer structures,
hence in order to reveal and understand the real physical aspects of these
systems, the descriptions must be effectuated at an exact calculational level.
Accordingly, we have applied such an exact method for deducing ground
states in the system which utilizes the peculiarity of positive semidefinite
operators. The operator P has a positive semidefinite characteristic, if the
(1| P]¢p) > 0 relation holds for any |¢)) wave vector of the Hilbert space.
Making use of the P|t) = p|t)) eigenvalue equation of P, one can be led to
the conclusion that p > 0, i.e. the set of the eigenvalues is non-negative,
which means that the spectrum of P has a well-defined lower bound, namely
the zero. This fact was of capital importance in the development of our

215



exact method. The substance of the procedure is that we transcribe the
Hamiltonian of the system from (1) to a positive semidefinite form by

H=P+cC, (2)

where P is usually generated as a sum of positive semidefinite operators,

P = Zq qu, and C provides a constant value. Now, if the transformed

Hamiltonian in (2) acts on an arbitrary |¢) element of the Hilbert space,

we get to the expression H|¢) = (P + C)|1)), from where — considering the
= 0 lowest eigenvalue — through

Ply) =0, (3)

we obtain the H|i)) = C|¢) eigenvalue equation. At this point it must
be emphasized that even condition (3) is the clue to deduce exact ground
states in the system. Namely, if one succeeds in constructing the most
general wave vector which satisfies (3), then [¢) yields the effective ground
state wave function of the system, i.e. [¢) = [¢)y), and C provides the
attached ground state energy, i.e. C' = K.

The above reviewed method is very productive in many respects. On the
one hand, its applicability is absolutely independent of the dimension and
the number of constants of motion of the system. On the other hand, one has
to make conscious that the transformation of H into positive semidefinite
form is not at all a trivial step. Namely, even though the lower bound of the
spectrum of H is unknown, however, one can determine the ground state
energy of the system, since the lower bound of the spectrum of P is known
and fixed at zero. And as seen from (2), H and P differ only in the constant
C, thus shifting the lower bound of P with the constant C, one can gain all
information about E,.

In order to carry out the transformation in (2) effectively, one has to
create a concretely given form of P so that P must reproduce H identically.
This comparision and identity always generates a system of equations, which
contains the starting parameters of H the parameters of P (they are usually
coefficients), and the constant C. Totally generally these relations can be
graphically incorporated in a function form by

F({El, €2, ...Em,tl,tg, ...,tn, U}, {51, 52,83y .1y Sk}, C) = O, (4)

216



where €1, €a, ..., €, t1,%2,...,tn, and U the relevant on-site one-particle po-
tencials, the hopping matrix elements, and the couple constant of the Hub-
bard interaction. The set of s1, s9, $3, ..., s, denotes generally the parameters
of P, and C is the constant from (2). In the equations of (4) €1, €9, ...€m,
t1,to9,...,tn, U are considered as known parameters, while si, s9, 83, ..., Sg
and C must be deduced in order to determine P and hereby perform condi-
tion (3) to obtain the ground state wave function |t)4). (4) usually leads to
a non-linear complex algebraic system of equations, which are called mat-
ching equations. These matching equations usually contain more equations
than unknown variables, thus after expressing the unknown s1, so, s3, ..., Sk
and C parameters, some additional equations still remain, which determine
extra conditions between the €1, €9, ..., t1, 9, ..., t,, U parameters. Then,
these extra conditions define a special restricted D domain in the parameter
space, where the relevant ground state wave function deduced based on (3)
is valid. Of course, it can also happen that the matching equations have
more than one possible solutions, and in this case each solution fixes the
deduced ground state in different D’, D", ... regions.

Moreover, we would like to underline that the transformation of the
starting Hamiltonian in (2) can be carried out in many different ways, since
the transcription of H itself is determined by the chosen structure of P (for
example P can be structured as P = > A;rfli, where A; is a linear com-
bination of fermionic annihilation operators). Consequently, each transfor-
mation generates different systems of equations Fy = 0, Fo = 0, F3 = 0,
..., which provide solutions in different Dy, Do, Ds, ... restricted domains
of the parameter space, and the proper ground state wave functions [t),1),
[1g,2), |tg,3), ... exist in these Dy, Dy, D3, ... domains, thus demonstrating:

Fl({€1,62, ...Em,tl,tQ, ...,tn, U}, {51,82,53, ...,Sk},C) =0— D1 — ’w971>
FQ({€1,62, ...Em,tl,tg, ...,tn, U}, {81,82,83, ...,Sk},C) =0— D2 — ’¢972>

FS({617627 "‘6m7t17t2) ~'-’tn7 U}7 {81)827837 "‘7816}70) =0 -D3 — ’¢g,3>

()

The D, domains can have various shapes and extensions in 1, 2 or 3 di-

217



mensions, which implies linear, surface or volumetrical regions in the phase
space. The shape and extension of these domains depend on the concrete
form and complicacy of the extra conditions arising from the matching
equations, which determine the relation(s) between the parameters of the
starting Hamiltonian.

In pursuance of the above explanations, it is clear that either searching
for different solutions of the matching equations from (4) at a fixed transfor-
mation of H, or effectuating different transformations of the Hamiltonian
into positive semidefinite form, and solving the resultant matching equa-
tions from (5), one can reach different D, domains in the parameter space,
where the different |t ) ground state wave functions with the same or
different physical properties are present. In this manner one can scan the
whole phase diagram globally, and it makes possible to talk about for ex-
ample the magnetic phases or the electric features of the system.

We also note that constructing the global phase space from local solutions
by exact methods is usually typical for non-integrable systems — in contrast
to the integrable systems, where it is possible to obtain the exact ground
states in a compact single solution for the whole parameter space.

IV. Results and conclusions

In the present paper we have investigated the polyphenyelene types of
hexagonal chains by the exact method presented in Section III.. The star-
ting point of our examinations was a previous study [12], in which we ob-
tained for polyphenylenes that there is a thin linear domain in the parameter
space where the system behave in its ground state as a paramagnetic insula-
tor. This linear domain denoted by L can be graphically observed in Figure
2, which is only a sketchy illustration in order to facilitate to imagine and
understand the results. The t1,t2, €1 parameters of the axes exemplify only
a possible case in general, when the extra condtions include requirements
for t1, t3 and €. Based on our earlier results from [12], we aimed to study
the phase space of the system more intimately and try to discover other
domains, as well, where the deduced paramagnetic and insulating ground
state can also exist. After decomposing the Hamiltonian from (1) into a
positive semidefinite form by (2), we have solved the matching equations
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Figure 2: A schematic picture of possible domains in the parameter space.

from (4) in more different manners, and then we have performed the re-
quirement (3). Collecting and comparing the received solutions, we realized
that the paramagnetic insulator property of the system can be extended
to a volumetrical region demonstrated by V in Figure 2. For convenience
we have drawn a simple cubic in order to depict the volume, but otherwise
V' can have a more complicated shape. It means precisely that the para-
magnetic and insulating ground state deduced in a narrow L linear domain
remains stable in a much more extended V' volumetrical region of the rele-
vant phase space. As a further information we note that these results are
valid in the low concentrational limit of the electrons. This treatment a
non-trivial discussion for polyphenylene types of chain structures, because
beside the enlargement of the physical knowledge, such a problem can also
open the door to work out diversified methodological developments in the
calculation techniques, as well. More details are available in [13].

As a summary once again, we report that in the current study many-
particle, strongly correlated, quantummechanical, non-integrable polypheny-
lene types of quasi-1D organic periodic hexagonal chain structures were
analyzed by means of an exact method which utilizes the special characte-
ristics of the positive semidefinite operators. Applying this exact procedure,
a paramagnetic and insulating ground state was deduced in the low concent-
ration limit. In addition, we showed that this ground state can be observed
not only in a slight linear region, but can be spread out to a considerable vol-
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umetrical domain of the parameter space with the same physical behaviour.
Beside the real physical aspects this investigation is also important in point
of some calculational improvements.
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