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Abstrat

Phase diagrams of exat ground states of polyphenylene types

of quasi-1D hexagonal hain stutures have been dedued and

examined. During the alulations some speial harateristis

of the phase spae have been revealed.

I. Introdution

This study deals with the polyphenylene types of hexagonal hains whih

are built up periodially by hexagons joint eah other through interell-

bonds, onstituting a quasi-1D organi polymer hain. Many di�erent repre-

sentatives of polyphenylenes an be mentioned, for example polyphenylene

oxide, polyphenyl sul�de, polyphenyl ether, polyphenyl thioether, polyary-

lene ether, polyethylene terephthalate et.

These types of hexagonal hains an have a wide range of appliation pos-

sibilities whih is due to their speial hemial and mehanial properties.

Emphasizing some areas: aerospae appliations, di�usion pumps, high-

temperature hydrauli systems, eletroni onnetors, ultra high vauum or

heat transfer proesses [1, 2, 3℄.

Fousing on the intrinsi physial properties of polyphenylenes, many

investigations happened from quite diverse aspets, as for example ligth

emission possibilities [4℄, appliation possibilities in fuel ell tehnology [5℄,



Figure 1: The struture of polyphenylene.

temperature dependent elastohydrodynami properties [6℄, frequeny de-

pendene in spei� heat [7℄, appliation possibilities in nanosale juntions

[8℄. Some studies reveal also the fat that inter-eletroni orrelations play

a high important role in the physial proesses [8, 9℄, so they atually an

not be negleted during the desriptions.

II. The Hamiltonian of the system

Let us have a look at Figure 1, whih shows the line drawing of the

polyphenylene hains. As seen, one primitive ell of the system is de-

termined by one hexagon whih ontains six sites at the vertexes of the

hexagon. On these sites single arbon atoms are loated, but in several

ases additional groups of atoms an be attahed to ertain arbon atoms

in the hain (for example a CH3 methyl group in ase of polyphenylene ox-

ide). The neighbouring hexagonal primitive ells are onneted by interell-

bonds, whih an be reated by di�erent atoms in di�erent systems (for

example an oxygen atom at polyphenylene oxide, or a sulphur atom at

polyphenylene sul�de). Figure 1 illustrates the polyphenylene types of

hains of ourse only shematially, and � although only four ells are de-

pited � the number of ells denoted by Nc an be an arbitrary positive

integer.

The studied system is desribed by the Hamiltonian Ĥ = Ĥ0 + ĤU ,

where

Ĥ0 =
∑

σ

∑

i

ǫi n̂i,σ +
∑

σ

∑

i,j
i6=j

(tij ĉ
†
i,σ ĉj,σ + t′ij ĉ

†
i,σ ĉj,σ +H.c.),

ĤU = U
∑

i

n̂i,↑n̂i,↓. (1)
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In expression (1) Ĥ0 gives the kineti energy of the system, while ĤU de-

monstrates the Hubbard interation between eletrons. ĉ
†
i,σ reates an elet-

ron with spin projetion σ on site i, ĉj,σ annihilates an eletron with spin

projetion σ from site j, and n̂i,σ = ĉ
†
i,σ ĉi,σ holds. ǫi represents the one-

partile on-site potential, t and t′ denote the nearest and the next nearest

hopping matrix elements, respetively, while the oupling onstant U yields

the strength of the Hubbard interation. Hubbard interation is essentially

short-range Coulomb interation between eletrons, and due to the repulsive

nature of it, U has to be positive, i.e. U > 0. The sum

∑
i runs over the

Nc ells of the system.

In the Hubbard terms in (1) we have taken into aount only on-site

ontributions from the Coulomb repulsion, i.e. interation between elet-

rons ouring on the same site. Interations between �rst, seond, third,

... neighbour eletrons of ourse also exist in the system, but ompared

to the on-site terms they are smaller with one, two, three, ... orders of

magnitude, thus the longer-range Coulomb ontributions an be negleted

during the alulations. By several estimations the value of the on-site

Coulomb-repulsion in organi hain strutures built up from hexagonal ells

is around or above 10 eV [8, 9, 10, 11℄, so these data on�rm that the on-site

Hubbard repulsion is the highest interation in the system.

III. About our method

As written in Setion I., the inter-eletroni orrelation e�ets play a high

important role in the evolving of physial properties of polymer strutures,

hene in order to reveal and understand the real physial aspets of these

systems, the desriptions must be e�etuated at an exat alulational level.

Aordingly, we have applied suh an exat method for deduing ground

states in the system whih utilizes the peuliarity of positive semide�nite

operators. The operator P̂ has a positive semide�nite harateristi, if the

〈ψ|P̂ |ψ〉 ≥ 0 relation holds for any |ψ〉 wave vetor of the Hilbert spae.

Making use of the P̂ |ψ〉 = p|ψ〉 eigenvalue equation of P̂ , one an be led to

the onlusion that p ≥ 0, i.e. the set of the eigenvalues is non-negative,

whih means that the spetrum of P̂ has a well-de�ned lower bound, namely

the zero. This fat was of apital importane in the development of our
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exat method. The substane of the proedure is that we transribe the

Hamiltonian of the system from (1) to a positive semide�nite form by

Ĥ = P̂ + C, (2)

where P̂ is usually generated as a sum of positive semide�nite operators,

P̂ =
∑

q P̂q, and C provides a onstant value. Now, if the transformed

Hamiltonian in (2) ats on an arbitrary |ψ〉 element of the Hilbert spae,

we get to the expression Ĥ|ψ〉 = (P̂ +C)|ψ〉, from where � onsidering the

p = 0 lowest eigenvalue � through

P̂ |ψ〉 = 0, (3)

we obtain the Ĥ|ψ〉 = C|ψ〉 eigenvalue equation. At this point it must

be emphasized that even ondition (3) is the lue to dedue exat ground

states in the system. Namely, if one sueeds in onstruting the most

general wave vetor whih satis�es (3), then |ψ〉 yields the e�etive ground
state wave funtion of the system, i.e. |ψ〉 = |ψg〉, and C provides the

attahed ground state energy, i.e. C = Eg.

The above reviewed method is very produtive in many respets. On the

one hand, its appliability is absolutely independent of the dimension and

the number of onstants of motion of the system. On the other hand, one has

to make onsious that the transformation of Ĥ into positive semide�nite

form is not at all a trivial step. Namely, even though the lower bound of the

spetrum of Ĥ is unknown, however, one an determine the ground state

energy of the system, sine the lower bound of the spetrum of P̂ is known

and �xed at zero. And as seen from (2), Ĥ and P̂ di�er only in the onstant

C, thus shifting the lower bound of P̂ with the onstant C, one an gain all

information about Eg.

In order to arry out the transformation in (2) e�etively, one has to

reate a onretely given form of P̂ so that P̂ must reprodue Ĥ identially.

This omparision and identity always generates a system of equations, whih

ontains the starting parameters of Ĥ, the parameters of P̂ (they are usually

oe�ients), and the onstant C. Totally generally these relations an be

graphially inorporated in a funtion form by

F ({ǫ1, ǫ2, ...ǫm, t1, t2, ..., tn, U}, {s1, s2, s3, ..., sk}, C) = 0, (4)
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where ǫ1, ǫ2, ..., ǫm, t1, t2, ..., tn, and U the relevant on-site one-partile po-

tenials, the hopping matrix elements, and the ouple onstant of the Hub-

bard interation. The set of s1, s2, s3, ..., sk denotes generally the parameters

of P̂ , and C is the onstant from (2). In the equations of (4) ǫ1, ǫ2, ...ǫm,

t1, t2, ..., tn, U are onsidered as known parameters, while s1, s2, s3, ..., sk
and C must be dedued in order to determine P̂ and hereby perform ondi-

tion (3) to obtain the ground state wave funtion |ψg〉. (4) usually leads to

a non-linear omplex algebrai system of equations, whih are alled mat-

hing equations. These mathing equations usually ontain more equations

than unknown variables, thus after expressing the unknown s1, s2, s3, ..., sk
and C parameters, some additional equations still remain, whih determine

extra onditions between the ǫ1, ǫ2, ...ǫm, t1, t2, ..., tn, U parameters. Then,

these extra onditions de�ne a speial restrited D domain in the parameter

spae, where the relevant ground state wave funtion dedued based on (3)

is valid. Of ourse, it an also happen that the mathing equations have

more than one possible solutions, and in this ase eah solution �xes the

dedued ground state in di�erent D′, D′′, ... regions.

Moreover, we would like to underline that the transformation of the

starting Hamiltonian in (2) an be arried out in many di�erent ways, sine

the transription of Ĥ itself is determined by the hosen struture of P̂ (for

example P̂ an be strutured as P̂ =
∑

i Â
†
i Âi, where Âi is a linear om-

bination of fermioni annihilation operators). Consequently, eah transfor-

mation generates di�erent systems of equations F1 = 0, F2 = 0, F3 = 0,
..., whih provide solutions in di�erent D1, D2, D3, ... restrited domains

of the parameter spae, and the proper ground state wave funtions |ψg,1〉,
|ψg,2〉, |ψg,3〉, ... exist in these D1, D2, D3, ... domains, thus demonstrating:

F1({ǫ1, ǫ2, ...ǫm, t1, t2, ..., tn, U}, {s1, s2, s3, ..., sk}, C) = 0 → D1 → |ψg,1〉

F2({ǫ1, ǫ2, ...ǫm, t1, t2, ..., tn, U}, {s1, s2, s3, ..., sk}, C) = 0 → D2 → |ψg,2〉

F3({ǫ1, ǫ2, ...ǫm, t1, t2, ..., tn, U}, {s1, s2, s3, ..., sk}, C) = 0 → D3 → |ψg,3〉

.

.

. (5)

The Dα domains an have various shapes and extensions in 1, 2 or 3 di-
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mensions, whih implies linear, surfae or volumetrial regions in the phase

spae. The shape and extension of these domains depend on the onrete

form and ompliay of the extra onditions arising from the mathing

equations, whih determine the relation(s) between the parameters of the

starting Hamiltonian.

In pursuane of the above explanations, it is lear that either searhing

for di�erent solutions of the mathing equations from (4) at a �xed transfor-

mation of Ĥ, or e�etuating di�erent transformations of the Hamiltonian

into positive semide�nite form, and solving the resultant mathing equa-

tions from (5), one an reah di�erent Dα domains in the parameter spae,

where the di�erent |ψg,α〉 ground state wave funtions with the same or

di�erent physial properties are present. In this manner one an san the

whole phase diagram globally, and it makes possible to talk about for ex-

ample the magneti phases or the eletri features of the system.

We also note that onstruting the global phase spae from loal solutions

by exat methods is usually typial for non-integrable systems � in ontrast

to the integrable systems, where it is possible to obtain the exat ground

states in a ompat single solution for the whole parameter spae.

IV. Results and onlusions

In the present paper we have investigated the polyphenyelene types of

hexagonal hains by the exat method presented in Setion III.. The star-

ting point of our examinations was a previous study [12℄, in whih we ob-

tained for polyphenylenes that there is a thin linear domain in the parameter

spae where the system behave in its ground state as a paramagneti insula-

tor. This linear domain denoted by L an be graphially observed in Figure

2, whih is only a skethy illustration in order to failitate to imagine and

understand the results. The t1, t2, ǫ1 parameters of the axes exemplify only

a possible ase in general, when the extra ondtions inlude requirements

for t1, t2 and ǫ1. Based on our earlier results from [12℄, we aimed to study

the phase spae of the system more intimately and try to disover other

domains, as well, where the dedued paramagneti and insulating ground

state an also exist. After deomposing the Hamiltonian from (1) into a

positive semide�nite form by (2), we have solved the mathing equations
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Figure 2: A shemati piture of possible domains in the parameter spae.

from (4) in more di�erent manners, and then we have performed the re-

quirement (3). Colleting and omparing the reeived solutions, we realized

that the paramagneti insulator property of the system an be extended

to a volumetrial region demonstrated by V in Figure 2. For onveniene

we have drawn a simple ubi in order to depit the volume, but otherwise

V an have a more ompliated shape. It means preisely that the para-

magneti and insulating ground state dedued in a narrow L linear domain

remains stable in a muh more extended V volumetrial region of the rele-

vant phase spae. As a further information we note that these results are

valid in the low onentrational limit of the eletrons. This treatment a

non-trivial disussion for polyphenylene types of hain strutures, beause

beside the enlargement of the physial knowledge, suh a problem an also

open the door to work out diversi�ed methodologial developments in the

alulation tehniques, as well. More details are available in [13℄.

As a summary one again, we report that in the urrent study many-

partile, strongly orrelated, quantummehanial, non-integrable polypheny-

lene types of quasi-1D organi periodi hexagonal hain strutures were

analyzed by means of an exat method whih utilizes the speial harate-

ristis of the positive semide�nite operators. Applying this exat proedure,

a paramagneti and insulating ground state was dedued in the low onent-

ration limit. In addition, we showed that this ground state an be observed

not only in a slight linear region, but an be spread out to a onsiderable vol-
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umetrial domain of the parameter spae with the same physial behaviour.

Beside the real physial aspets this investigation is also important in point

of some alulational improvements.
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