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Abstra
t

Phase diagrams of exa
t ground states of polyphenylene types

of quasi-1D hexagonal 
hain stu
tures have been dedu
ed and

examined. During the 
al
ulations some spe
ial 
hara
teristi
s

of the phase spa
e have been revealed.

I. Introdu
tion

This study deals with the polyphenylene types of hexagonal 
hains whi
h

are built up periodi
ally by hexagons joint ea
h other through inter
ell-

bonds, 
onstituting a quasi-1D organi
 polymer 
hain. Many di�erent repre-

sentatives of polyphenylenes 
an be mentioned, for example polyphenylene

oxide, polyphenyl sul�de, polyphenyl ether, polyphenyl thioether, polyary-

lene ether, polyethylene terephthalate et
.

These types of hexagonal 
hains 
an have a wide range of appli
ation pos-

sibilities whi
h is due to their spe
ial 
hemi
al and me
hani
al properties.

Emphasizing some areas: aerospa
e appli
ations, di�usion pumps, high-

temperature hydrauli
 systems, ele
troni
 
onne
tors, ultra high va
uum or

heat transfer pro
esses [1, 2, 3℄.

Fo
using on the intrinsi
 physi
al properties of polyphenylenes, many

investigations happened from quite diverse aspe
ts, as for example ligth

emission possibilities [4℄, appli
ation possibilities in fuel 
ell te
hnology [5℄,



Figure 1: The stru
ture of polyphenylene.

temperature dependent elastohydrodynami
 properties [6℄, frequen
y de-

penden
e in spe
i�
 heat [7℄, appli
ation possibilities in nanos
ale jun
tions

[8℄. Some studies reveal also the fa
t that inter-ele
troni
 
orrelations play

a high important role in the physi
al pro
esses [8, 9℄, so they a
tually 
an

not be negle
ted during the des
riptions.

II. The Hamiltonian of the system

Let us have a look at Figure 1, whi
h shows the line drawing of the

polyphenylene 
hains. As seen, one primitive 
ell of the system is de-

termined by one hexagon whi
h 
ontains six sites at the vertexes of the

hexagon. On these sites single 
arbon atoms are lo
ated, but in several


ases additional groups of atoms 
an be atta
hed to 
ertain 
arbon atoms

in the 
hain (for example a CH3 methyl group in 
ase of polyphenylene ox-

ide). The neighbouring hexagonal primitive 
ells are 
onne
ted by inter
ell-

bonds, whi
h 
an be 
reated by di�erent atoms in di�erent systems (for

example an oxygen atom at polyphenylene oxide, or a sulphur atom at

polyphenylene sul�de). Figure 1 illustrates the polyphenylene types of


hains of 
ourse only s
hemati
ally, and � although only four 
ells are de-

pi
ted � the number of 
ells denoted by Nc 
an be an arbitrary positive

integer.

The studied system is des
ribed by the Hamiltonian Ĥ = Ĥ0 + ĤU ,

where

Ĥ0 =
∑

σ

∑

i

ǫi n̂i,σ +
∑

σ

∑

i,j
i6=j

(tij ĉ
†
i,σ ĉj,σ + t′ij ĉ

†
i,σ ĉj,σ +H.c.),

ĤU = U
∑

i

n̂i,↑n̂i,↓. (1)
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In expression (1) Ĥ0 gives the kineti
 energy of the system, while ĤU de-

monstrates the Hubbard intera
tion between ele
trons. ĉ
†
i,σ 
reates an ele
t-

ron with spin proje
tion σ on site i, ĉj,σ annihilates an ele
tron with spin

proje
tion σ from site j, and n̂i,σ = ĉ
†
i,σ ĉi,σ holds. ǫi represents the one-

parti
le on-site potential, t and t′ denote the nearest and the next nearest

hopping matrix elements, respe
tively, while the 
oupling 
onstant U yields

the strength of the Hubbard intera
tion. Hubbard intera
tion is essentially

short-range Coulomb intera
tion between ele
trons, and due to the repulsive

nature of it, U has to be positive, i.e. U > 0. The sum

∑
i runs over the

Nc 
ells of the system.

In the Hubbard terms in (1) we have taken into a

ount only on-site


ontributions from the Coulomb repulsion, i.e. intera
tion between ele
t-

rons o

uring on the same site. Intera
tions between �rst, se
ond, third,

... neighbour ele
trons of 
ourse also exist in the system, but 
ompared

to the on-site terms they are smaller with one, two, three, ... orders of

magnitude, thus the longer-range Coulomb 
ontributions 
an be negle
ted

during the 
al
ulations. By several estimations the value of the on-site

Coulomb-repulsion in organi
 
hain stru
tures built up from hexagonal 
ells

is around or above 10 eV [8, 9, 10, 11℄, so these data 
on�rm that the on-site

Hubbard repulsion is the highest intera
tion in the system.

III. About our method

As written in Se
tion I., the inter-ele
troni
 
orrelation e�e
ts play a high

important role in the evolving of physi
al properties of polymer stru
tures,

hen
e in order to reveal and understand the real physi
al aspe
ts of these

systems, the des
riptions must be e�e
tuated at an exa
t 
al
ulational level.

A

ordingly, we have applied su
h an exa
t method for dedu
ing ground

states in the system whi
h utilizes the pe
uliarity of positive semide�nite

operators. The operator P̂ has a positive semide�nite 
hara
teristi
, if the

〈ψ|P̂ |ψ〉 ≥ 0 relation holds for any |ψ〉 wave ve
tor of the Hilbert spa
e.

Making use of the P̂ |ψ〉 = p|ψ〉 eigenvalue equation of P̂ , one 
an be led to

the 
on
lusion that p ≥ 0, i.e. the set of the eigenvalues is non-negative,

whi
h means that the spe
trum of P̂ has a well-de�ned lower bound, namely

the zero. This fa
t was of 
apital importan
e in the development of our
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exa
t method. The substan
e of the pro
edure is that we trans
ribe the

Hamiltonian of the system from (1) to a positive semide�nite form by

Ĥ = P̂ + C, (2)

where P̂ is usually generated as a sum of positive semide�nite operators,

P̂ =
∑

q P̂q, and C provides a 
onstant value. Now, if the transformed

Hamiltonian in (2) a
ts on an arbitrary |ψ〉 element of the Hilbert spa
e,

we get to the expression Ĥ|ψ〉 = (P̂ +C)|ψ〉, from where � 
onsidering the

p = 0 lowest eigenvalue � through

P̂ |ψ〉 = 0, (3)

we obtain the Ĥ|ψ〉 = C|ψ〉 eigenvalue equation. At this point it must

be emphasized that even 
ondition (3) is the 
lue to dedu
e exa
t ground

states in the system. Namely, if one su

eeds in 
onstru
ting the most

general wave ve
tor whi
h satis�es (3), then |ψ〉 yields the e�e
tive ground
state wave fun
tion of the system, i.e. |ψ〉 = |ψg〉, and C provides the

atta
hed ground state energy, i.e. C = Eg.

The above reviewed method is very produ
tive in many respe
ts. On the

one hand, its appli
ability is absolutely independent of the dimension and

the number of 
onstants of motion of the system. On the other hand, one has

to make 
ons
ious that the transformation of Ĥ into positive semide�nite

form is not at all a trivial step. Namely, even though the lower bound of the

spe
trum of Ĥ is unknown, however, one 
an determine the ground state

energy of the system, sin
e the lower bound of the spe
trum of P̂ is known

and �xed at zero. And as seen from (2), Ĥ and P̂ di�er only in the 
onstant

C, thus shifting the lower bound of P̂ with the 
onstant C, one 
an gain all

information about Eg.

In order to 
arry out the transformation in (2) e�e
tively, one has to


reate a 
on
retely given form of P̂ so that P̂ must reprodu
e Ĥ identi
ally.

This 
omparision and identity always generates a system of equations, whi
h


ontains the starting parameters of Ĥ, the parameters of P̂ (they are usually


oe�
ients), and the 
onstant C. Totally generally these relations 
an be

graphi
ally in
orporated in a fun
tion form by

F ({ǫ1, ǫ2, ...ǫm, t1, t2, ..., tn, U}, {s1, s2, s3, ..., sk}, C) = 0, (4)
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where ǫ1, ǫ2, ..., ǫm, t1, t2, ..., tn, and U the relevant on-site one-parti
le po-

ten
ials, the hopping matrix elements, and the 
ouple 
onstant of the Hub-

bard intera
tion. The set of s1, s2, s3, ..., sk denotes generally the parameters

of P̂ , and C is the 
onstant from (2). In the equations of (4) ǫ1, ǫ2, ...ǫm,

t1, t2, ..., tn, U are 
onsidered as known parameters, while s1, s2, s3, ..., sk
and C must be dedu
ed in order to determine P̂ and hereby perform 
ondi-

tion (3) to obtain the ground state wave fun
tion |ψg〉. (4) usually leads to

a non-linear 
omplex algebrai
 system of equations, whi
h are 
alled mat-


hing equations. These mat
hing equations usually 
ontain more equations

than unknown variables, thus after expressing the unknown s1, s2, s3, ..., sk
and C parameters, some additional equations still remain, whi
h determine

extra 
onditions between the ǫ1, ǫ2, ...ǫm, t1, t2, ..., tn, U parameters. Then,

these extra 
onditions de�ne a spe
ial restri
ted D domain in the parameter

spa
e, where the relevant ground state wave fun
tion dedu
ed based on (3)

is valid. Of 
ourse, it 
an also happen that the mat
hing equations have

more than one possible solutions, and in this 
ase ea
h solution �xes the

dedu
ed ground state in di�erent D′, D′′, ... regions.

Moreover, we would like to underline that the transformation of the

starting Hamiltonian in (2) 
an be 
arried out in many di�erent ways, sin
e

the trans
ription of Ĥ itself is determined by the 
hosen stru
ture of P̂ (for

example P̂ 
an be stru
tured as P̂ =
∑

i Â
†
i Âi, where Âi is a linear 
om-

bination of fermioni
 annihilation operators). Consequently, ea
h transfor-

mation generates di�erent systems of equations F1 = 0, F2 = 0, F3 = 0,
..., whi
h provide solutions in di�erent D1, D2, D3, ... restri
ted domains

of the parameter spa
e, and the proper ground state wave fun
tions |ψg,1〉,
|ψg,2〉, |ψg,3〉, ... exist in these D1, D2, D3, ... domains, thus demonstrating:

F1({ǫ1, ǫ2, ...ǫm, t1, t2, ..., tn, U}, {s1, s2, s3, ..., sk}, C) = 0 → D1 → |ψg,1〉

F2({ǫ1, ǫ2, ...ǫm, t1, t2, ..., tn, U}, {s1, s2, s3, ..., sk}, C) = 0 → D2 → |ψg,2〉

F3({ǫ1, ǫ2, ...ǫm, t1, t2, ..., tn, U}, {s1, s2, s3, ..., sk}, C) = 0 → D3 → |ψg,3〉

.

.

. (5)

The Dα domains 
an have various shapes and extensions in 1, 2 or 3 di-
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mensions, whi
h implies linear, surfa
e or volumetri
al regions in the phase

spa
e. The shape and extension of these domains depend on the 
on
rete

form and 
ompli
a
y of the extra 
onditions arising from the mat
hing

equations, whi
h determine the relation(s) between the parameters of the

starting Hamiltonian.

In pursuan
e of the above explanations, it is 
lear that either sear
hing

for di�erent solutions of the mat
hing equations from (4) at a �xed transfor-

mation of Ĥ, or e�e
tuating di�erent transformations of the Hamiltonian

into positive semide�nite form, and solving the resultant mat
hing equa-

tions from (5), one 
an rea
h di�erent Dα domains in the parameter spa
e,

where the di�erent |ψg,α〉 ground state wave fun
tions with the same or

di�erent physi
al properties are present. In this manner one 
an s
an the

whole phase diagram globally, and it makes possible to talk about for ex-

ample the magneti
 phases or the ele
tri
 features of the system.

We also note that 
onstru
ting the global phase spa
e from lo
al solutions

by exa
t methods is usually typi
al for non-integrable systems � in 
ontrast

to the integrable systems, where it is possible to obtain the exa
t ground

states in a 
ompa
t single solution for the whole parameter spa
e.

IV. Results and 
on
lusions

In the present paper we have investigated the polyphenyelene types of

hexagonal 
hains by the exa
t method presented in Se
tion III.. The star-

ting point of our examinations was a previous study [12℄, in whi
h we ob-

tained for polyphenylenes that there is a thin linear domain in the parameter

spa
e where the system behave in its ground state as a paramagneti
 insula-

tor. This linear domain denoted by L 
an be graphi
ally observed in Figure

2, whi
h is only a sket
hy illustration in order to fa
ilitate to imagine and

understand the results. The t1, t2, ǫ1 parameters of the axes exemplify only

a possible 
ase in general, when the extra 
ondtions in
lude requirements

for t1, t2 and ǫ1. Based on our earlier results from [12℄, we aimed to study

the phase spa
e of the system more intimately and try to dis
over other

domains, as well, where the dedu
ed paramagneti
 and insulating ground

state 
an also exist. After de
omposing the Hamiltonian from (1) into a

positive semide�nite form by (2), we have solved the mat
hing equations
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Figure 2: A s
hemati
 pi
ture of possible domains in the parameter spa
e.

from (4) in more di�erent manners, and then we have performed the re-

quirement (3). Colle
ting and 
omparing the re
eived solutions, we realized

that the paramagneti
 insulator property of the system 
an be extended

to a volumetri
al region demonstrated by V in Figure 2. For 
onvenien
e

we have drawn a simple 
ubi
 in order to depi
t the volume, but otherwise

V 
an have a more 
ompli
ated shape. It means pre
isely that the para-

magneti
 and insulating ground state dedu
ed in a narrow L linear domain

remains stable in a mu
h more extended V volumetri
al region of the rele-

vant phase spa
e. As a further information we note that these results are

valid in the low 
on
entrational limit of the ele
trons. This treatment a

non-trivial dis
ussion for polyphenylene types of 
hain stru
tures, be
ause

beside the enlargement of the physi
al knowledge, su
h a problem 
an also

open the door to work out diversi�ed methodologi
al developments in the


al
ulation te
hniques, as well. More details are available in [13℄.

As a summary on
e again, we report that in the 
urrent study many-

parti
le, strongly 
orrelated, quantumme
hani
al, non-integrable polypheny-

lene types of quasi-1D organi
 periodi
 hexagonal 
hain stru
tures were

analyzed by means of an exa
t method whi
h utilizes the spe
ial 
hara
te-

risti
s of the positive semide�nite operators. Applying this exa
t pro
edure,

a paramagneti
 and insulating ground state was dedu
ed in the low 
on
ent-

ration limit. In addition, we showed that this ground state 
an be observed

not only in a slight linear region, but 
an be spread out to a 
onsiderable vol-
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umetri
al domain of the parameter spa
e with the same physi
al behaviour.

Beside the real physi
al aspe
ts this investigation is also important in point

of some 
al
ulational improvements.

A
knowledgements

The publi
ation is supported by the TÁMOP-4.2.2/B-10/1-2010-0024

proje
t. The proje
t is 
o-�nan
ed by the European Union and the Euro-

pean So
ial Fund.

Referen
es

[1℄ M. Joaquim, Polyphenyl Ether Lubri
ants, in: Syntheti
 Lubri
ants

and High-performan
e Fun
tional Fluids, edited by R. L. Rudni
k and

R. L. Shubkin (Mar
el Dekker, New York, 1999).

[2℄ B. Jakobsen, K. Niss, and N. B. Olsen, J. Chem. Phys. 123, 234511

(2005).

[3℄ S. Hamid and S. A. Burian, Polyphenyl Ether Lubri
ants, in: Synthe-

ti
s, Mineral Oils, and Bio-based Lubri
ants: Chemistry and Te
hnolo-

gy, edited by Leslie R. Rudni
k (Taylor and Fran
is Publisher, Abing-

don, 2006).

[4℄ A. Ruini, M. J. Caldas, G. Bussi, and E. Molinari, Phys. Rev. Lett.

88, 206403 (2002).

[5℄ D. Xing and J. Kerres, Polym. Adv. Te
hnol. 17, 591 (2006).

[6℄ T. Reddyho�, H. A. Spikes, and A. V. Olver, Tribol. Lett. 36, 69

(2009).

[7℄ B. Jakobsen, N. B. Olsen, and T. Christensen, Phys. Rev. E 81, 061505

(2010).

[8℄ J. P. Berg�eld, M. Solis, and C. A. Sta�ord, ACS Nano 4, 5314 (2010).

220



[9℄ G. Bro
ks, J. van den Brink, and A. F. Morpurgo, Phys. Rev. Lett.

93, 146405 (2004).

[10℄ Z. Vardery and J. Tan
, Phys. Rev. Lett. 54, 1844 (1985).

[11℄ D. Baeriswyl, D. K. Campbell, and S. Mazumdar, Phys. Rev. Lett. 56,

1509 (1986).

[12℄ R. Tren
sényi, K. Gulá
si, E. Ková
s, and Z. Gulá
si, Ann. Phys.

(Berlin) 523, 741 (2011).

[13℄ R. Tren
sényi and Z. Gulá
si, Phil. Mag. 92, 4657 (2012).

221


