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Abstract

The functional renormalization group equations are presen-
ted in the two-dimensional sine-Gordon model for momentum
dependent wave-function renormalization in the gradient ex-
pansion. The �ow equations are derived for the compactly sup-
ported smooth infrared regulator function.

I. Introduction

The sine-Gordon (SG) model [1] has been investigated in framework of
functional renormalization group (RG) [3]. Calculations with momentum
independent wavefunction renormalization seem su�cient to describe the
model qualitatively. By our expectations neglecting momentum dependence
does not change signi�cantly the low energy behavior of the model. However
there are some questions (scheme dependence or asymptotic safety) which
merit further investigations and should be answered by calculating further
term of wave-function renormalization. Furthermore it is also an open issue
to investigate whether the gradient expansion with the new term is con-
vergent or not and whether it can modify the phase structure of the SG
model or leave it qualitatively unchanged. In this article equations with the
momentum dependent term are derived in the case when the wavefunction
renormalization does not depend from the �eld variable. The higher-order
equations can lead to more precise investigation of the model.



The paper is organized as follows. In section II. we brie�y discuss the SG
model and in section III. we derive the RG equations and give the explicit
form of the linearized RG equations in the case of Callan-Symanzik scheme.
In the summary the conclusions are drawn up.

II. The model

The two-dimensional (2D) SG model is a self-interacting scalar model
de�ned by the bare action

S =

∫
x

[
1

2
(∂µϕ)

2 + u cos(βϕ)

]
, (1)

in Euclidean spacetime. The SG model belong to the university class of
the 2D Coulomb gas and the 2D-XY spin model, hence it has important
applications in condensed matter systems [2], since the model exhibits a
Kosterlitz-Thouless (KT) type or in�nite order phase transition. There are
high energy applications of SG model, too. In spite of its simplicity it has
nontrivial phase structure which feature is common with the non-Abelian
gauge theories. It can be applied as a toy model to investigate new methods
for example soft mechanism of quark con�nement [4] or string theory [5].

The periodicity of the potential the model plays an important role of un-
derstanding its low energy behavior. Describing the model with the usual
perturbative treatment cannot be applied, because truncating the Taylor
series expansion in the �eld variable breaks the periodic symmetry. Func-
tional RG method preserves the symmetry and it has been successfully
applied to investigate the phase structure of the model. The method is ca-
pable of giving the KT type phase transition and the corresponding critical
exponents.

III. Renormalization

The RG method provides us the following functional equation for the
e�ective action Γ, which is called Wetterich-equation [3]

k∂kΓk =
1

2
Tr

k∂kRk

Rk + Γ′′
k

, (2)
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where ′ = ∂
∂ϕ , Rk is the regulator and the trace Tr denotes integration over

all momenta and summation for internal indices. The mass like term Rk[ϕ]
is de�ned by the regulator function Rk(p

2)

Rk[ϕ] =
1

2
ϕ ·Rk(p

2) · ϕ, (3)

where dots denote integrations. There are several possibilities to choose the
regulator function, the following examples are often used in the literature:

Rpowerlaw = p2
(
1

y

)b

where b ≥ 1,

RLitim =
(
k2 − p2

)
θ
(
k2 − p2

)
,

Rexponential =
p2

ey − 1
, (4)

where

y =
p2

k2
. (5)

We chose the so-called compactly supported smooth (css) regulator function
[6, 7]

Rcss =
s1p

2

exp[s1yb/(1− s2yb)]− 1
θ
(
1− s2y

b
)
, (6)

where s1, s2 are positive parameters, b ≥ 1 and θ is the Heaviside step
function. The css regulator reproducts the regulator functions in (4) as
special cases:

lim
s1→0,s2→0

Rcss = Rpowerlaw,

lim
s1→0,s2→1

Rcss = RLitim if b = 1,

lim
s1→1,s2→0

Rcss = Rexponential if b = 1. (7)

This important property allows us to compare the results given by di�er-
ent regulators [7]. In this paper we choose b = 1 in order to satisfy the
normalization conditions

lim
y→0

Rk(p)

k2
= 1,

lim
y→∞

Rk(p)

k2
= 0. (8)
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During the calculations we use several approximations to derive di�erential
equations from the original functional equation. According to the gradient
expansion we can expand the action in powers of the derivatives of the �eld

Γk[ϕ] =

∫
x

[
Vk(ϕ) +

1

2
Zk(ϕ)(∂µϕ)

2

+H1(ϕ)(∂µϕ)
4 +H2(ϕ)(□ϕ)2 + . . .

]
, (9)

where Vk(ϕ) is the potential and Zk(ϕ) is the wave-function renormalization.
We choose

V = u cos(βϕ) (10)

for the potential. In Fourier space we can write the �eld independent wave-
function renormalization as

Zk = Zk(P
2) = z + z1P

2 +O(P 4). (11)

Neglecting z1 we can derive the following equations

k∂kVk =
1

2

∫
p

k∂kRk,p

p2Zk(p2) +Rk,p + V ′′
k

, (12)

P 2∂kZk(P
2) = P0

∫
p

k∂kRk,p(V
′′′
k )2

(p2Zk(p2) +Rk,p + V ′′
k )

2
×(

1

(P + p)2Zk((P + p)2) +Rk,P+p + V ′′
k

− 1

[p2Zk(p2) +Rk,p + V ′′
k ]

)
, (13)

where the projection operator

P0 =
1

2π

∫ 2π

0
dϕ (14)

provides the �rst Fourier mode. By the expansion in P we can derive the
RG equations for the couplings z and z1. We introduce the following new
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variables:

C0 = 2z + 4z1p
2,

C1 =
2

k2
,

K =
s1y

1− s2y
,

C2 = eK
C1s1

(1− s2y)2
,

C3 = eK
C2
1s1

(1− s2y)3

(
s1

1− s2y
+ 2s2

)
,

C4 = eK
C3
1s1

(1− s2y)4

(
s21

(1− s2y)2
+

6s2s1
(1− s2y)

+ 6s22

)
,

C5 = eK
C4
1s1

(1− s2y)5

(
s31

(1− s2y)3
+

12s21s2
(1− s2y)2

+
36s22s1

(1− s2y)
+ 24s32

)
,

N = eK − 1,

C6 = 2N−3C2
2 −N−2C3,

C7 = −N−2C2,

C8 = −6N−4C3
2 + 6N−3C3C2 −N−2C4,

C9 = 24N−5C4
2 − 36N−4C3C

2
2 + 8N−3C4C2 + 6N−3C2

3 −N−2C5,

C10 = C0 + s1k
2θ(1− s2y)

(
2

k2
N−1 − yN−2C2

)
,

C11 = 8z1 + s1k
2θ(1− s2y)

(
− 4

k2
N−2C2 + yC6

)
,

C12 = s1k
2θ(1− s2y)

(
6

k2
C6 + yC8

)
,

C13 = s1k
2θ(1− s2y)

(
8

k2
C8 + yC9

)
,

D0 = zp2 + z1p
4 +Rk,p + V ′′

k ,

C14 =
2C2

10

D3
0

− C11

D2
0

,
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C15 = −C10

D2
0

,

C16 = 24
C4
10

D5
0

− 36
C11C

2
10

D4
0

+ 8
C12C10

D3
0

+ 6
C2
11

D3
0

− C13

D2
0

,

C17 = −6
C3
10

D4
0

+ 6
C11C10

D3
0

− C12

D2
0

,

C18 = 2
C2
10

D3
0

− C11

D2
0

,

C19 =
k∂kRk,p(V

′′′
k )2

(p2(z + p2z1) +Rk,p + V ′′
k )

2
. (15)

By these variables the RG equations become

∂kz = P0

∫
p

C19

2

(
C14

p2

2
+ C15

)
,

∂kz1 = P0

∫
p

C19

8

(
C16

p4

8
+ C17p

2 + C18

)
. (16)

In general the momentum integral cannot be performed analytically. For
simplicity we henceforward consider the case of Callan-Symanzik scheme
when the regulator function is Rk = k2, it does not depend on p

k∂kVk =

∫
p

k2

z1p4 + zp2 + k2 + V ′′
k

, (17)

k∂kz = P0

∫
p
k2
(
V ′′′
k

)2(−C0 + 4z1p
2

D4
0

+
p2C2

0

D5
0

)
,

k∂kz1 = P0

∫
p

k2 (V ′′′
k )2

12

(
− 8z1

D4
0

+
48z1C0p

2 + 2C2
0 + 48z21p

4

D5
0

−6C3
0p

2 + 32z1C
2
0p

4

D6
0

+
3C4

0p
4

D7
0

)
. (18)
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Performing the projection we obtain

k∂kz =
k2u2

2

∫
p

−(C0 + 4z1p
2)a1

(a21 − u2)
5
2

+
p2C2

0 (4a
2
1 + u2)

4(a21 − u2)
7
2

,

k∂kz1 =

∫
p

k2u2

24

(
a2a1

(a21 − u2)
5
2

+
a3(4a

2
1 + u2)

4(a21 − u2)
7
2

+
a4a1

√
a1+u
a1−u(4a

2
1 + 3u2)

4(a1 − u)4(a1 + u)5
+

a5(8a
4
1 + 12a21u

2 + u4)

8(a21 − u2)
11
2

)
, (19)

where

a1 = zp2 + z1p
4 + k2,

a2 = −8z1,

a3 = 48z1C0p
2 + 2C2

0 + 48z21p
4,

a4 = −6C3
0p

2 − 32z1C
2
0p

4,

a5 = 3C4
0p

4. (20)

The projection

P1 =
1

2π

∫ 2π

0
dϕ cosϕ. (21)

for the the dimensionless coupling ũ gives

k∂kũ = −2ũ+
1

ũ

∫
p̃
2

(
ã1√

(ã1)2 − ũ2
− 1

)
, (22)

where tildes denote dimensionless quantities, e.g. ũ = u/k2. The leading
order evolution equations in ũ are

k∂kũ =


ũ
4π

1
z̃21

x̃2
2−x̃2

1+2x̃1x̃2ln
(

x̃1
x̃2

)
x̃1x̃2(x̃1−x̃2)3

− 2ũ if D < 0,

ũ
4π

1
z̃21

(
− 1

3x̃3
1

)
− 2ũ if D = 0,

ũ
4π

(
4z̃1

D
√
D

(
π
2 − tan−1( z̃√

D
)
)
− z̃

D

)
− 2ũ if D > 0,

(23)
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where

z̃ = z,

z̃1 = z1k
2,

D = 4z̃1 − z̃2,

x̃1 =
−z̃ +

√
−D

2z̃1
,

x̃2 =
−z̃ −

√
−D

2z̃1
. (24)

As is known [1] if we neglect the scaling of z1 then the limit ũ → 0 is
determined by z, i.e. ũ scales in relevant manner for 1/z < 8π and in
irrelevant manner for 1/z > 8π. Coupling z1 scales in irrelevant manner
according to its mass dimension and if z1 is su�ciently large then the scaling
of ũ can change and we can get a relevant scaling even in the region 1/z >
8π. We numerically obtained that the initial condition 1

8πz(k=1) = 1.33,
ũ(k = 1) = 0.1, z1(k = 1) = 0 gives such a trajectory.

IV. Summary

We derived evolution equations for the momentum dependent and �eld
independent wavefunction renormalization in the case of the css regulator.
The coupling z̃1 scales in an irrelevant manner according to its mass dimen-
sion. The SG model is asymptotically safe and it is questionable whether
the �ow of z̃1 gives in�nity in the UV limit or not. This issue will be treated
in a forthcoming publication.
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