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Abstract

In the fragmentation process of heterogeneous solids the mass
(size) distribution of pieces is described by a power law func-
tional form. The exponent of the distribution displays a high
degree of universality depending solely on the dimensionality
and on the brittle-ductile mechanical response of the system.
Based on large scale computer simulations here we uncover a
possible mechanism that can lead to the emergence of recently
reported energy dependence in fragmentation processes resolv-
ing contraversal issues on the problem: studying the impact
induced breakup of plate-like objects with varying thickness we
show that energy dependence naturally occurs when a lower di-
mensional fragmenting object is embedded into a higher dimen-
sional space. This apparent non-universality of fragmentation
is the result of blending universal partial processes.



I. Introduction

Fragmentation occurs when a large amount of energy is imparted to
a heterogeneous solid within a short time leading to rapid breakup [1].
Fragmentation processes have a high importance for industrial applications
especially in mining and ore processing. During the past decades research on
fragmentation focused on the statistics of fragment masses (sizes) [1]. The
power law functional form describing the mass distribution of fragments was
confirmed by a large number of experimental [1, 8, 7] and theoretical studies
[5] . The exponent is determined by the dimensionality of the system [7, 5]
and by the brittle or ductile mechanical response of the material [6], but
is independent of the type of materials, amount of input energy and of the
way the energy is imparted to the system [1].

Recently, in experiments on the fragmentation of long thin glass rods
[2] and freely-hanging glass plates [3, 4] the exponent was found to in-
crease logarithmically with the imparted energy [2, 3, 4]. These novel find-
ings question the universality and hence the phase transition interpretation
of fragmentation phenomena. Computer simulations of spheres impacting
against a hard wall showed a counter example, i.e. steeper fragment mass
distributions were obtained, however, rescaling with the average fragment
mass the apparent energy dependence could be transformed out. This study
highlighted the importance of finite size scaling in fragmentation studies [5].

In order to resolve these controversal issues on the universality of frag-
ment mass distributions, here we study the impact induced breakup of
heterogeneous materials by large scale computer simulations. Our results
demonstrate that energy dependence naturally occurs when the fragment-
ing object is embedded in a higher dimensional space. We uncover a robust
scenario which leads to the energy dependence of energy dependent mass
distribution exponents but it still underlines the importance of universality.

II. Discrete element model of fragmentation

For the calculations we use a discrete element model (DEM) of heteroge-
neous materials which has recently been developed. A rectangular sample
was generated by sedimenting spherical particles with randomly selected
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diameters. The interaction of contacting particles is described by the Hertz
contact law. Cohesive interaction is introduced by beams which connect
the particles along the edges of a Delaunay triangulation of the initial par-
ticle positions. In 3D the total deformation of a beam is calculated as the
superposition of elongation, torsion, as well as bending and shearing. Crack
formation is captured such that the beams can be broken according to a
physical breaking rule, which takes into account the stretching and bending
of contacts (

εij
εth

)2

+
max(Θi,Θj)

Θth
≥ 1. (1)

where εij denotes the axial strain of the beam between particles i and j,
while Θi, and Θj are the bending angles of the beam ends. The parameters
εth and Θth control the relative importance of the two breaking modes
[5]. Energy dissipation arises from the released energy stored in a beam
just before breaking. The breaking thresholds are constant, therefore, only
structural disorder is present, where the physical properties of beams are
determined by the random particle packing. At the broken beams along the
surface of the spheres cracks are generated inside the solid and as a result of
the successive beam breaking the solid falls apart. The fragments are defined
as sets of discrete particles connected by the remaining intact beams. The
time evolution of the fragmenting solid is obtained by solving the equations
of motion of the individual particles until the entire system relaxes meaning
that no beam breaking occurs during one thousand consecutive time steps
and there is no energy stored in deformation. For more details of the model
construction see Ref. [5].

To initiate the breakup process, a surface particle with its contacting
neighbors lying in the middle of one of the side walls got an initial velocity
~v0 pointing towards the center of mass of the sample. This is equivalent to
an experimental setup where the impactor does not penetrate the target, as
in Refs. [4]. Computer simulations were performed to determine the sound
speed c of the model material. In the presentation of the results lengths
and velocities are made dimensionless by dividing them with the average
particle diameter 〈d〉 and with the sound speed c, respectively.
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Figure 1: (a) For thin plates H/ 〈d〉 = 5 the value of the exponent changes from
1.7 to 2.4 depending strongly on the energy of the impact. (b) For thick plates
H/ 〈d〉 = 7, . . . , 15 a unique exponent 1.9 is obtained.

III. Results

Large scale computer simulations were performed in the three-dimensional
space on plate-like objects varying the plate thickness H/ 〈d〉 and the im-
pact velocity v0/c = 0.03 − 0.5 in broad ranges. Computer simulations
revealed that for thin plates the power law exponent of the fragment mass
distribution strongly depends on the impact velocity: power law with an
exponent τ = 1.7 appears at the critical velocity of impact, and further in-
creasing the impact velocity gradually changes the exponent up to τ = 2.4.
However, for thick plates a unique exponent is obtained τ = 1.9, depen-
dence on the impact velocity can only be pointed out for the cutoff of the
distributions. Figure 1 provides an overview of fragment mass distributions
obtained at different impact velocities for two thicknesses. The velocity
dependent exponent can be explained by the interplay of the geometry of
the sample and of the dimensionality of the system which gives rise to a
crossover between two different fragmentation mechanisms. In the vicinity
of the critical velocity the interference of elastic waves generates a crack
pattern which is essentially two-dimensional. The high degree of regularity
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Figure 2: The probability distribution of the mass of fragments at the critical
impact velocity vc where complete breakup first occurs. The local maxima corre-
spond to different spatial regions of origin. Inset: final reassembled sample where
fragments are colored according to the regime of the distribution they give domi-
nating contribution to.

of the crack structure gives rise to local maxima on the power law functional
form of the fragment mass distribution (see Fig. 2). At increasing impact
velocities bulk cracking gets activated so that the crack structure becomes
three-dimensional with a high degree of randomness.

The fragments can be grouped into bulk, surface and spanning pieces
depending on the location of their bounding boxes with respect to that of
the complete sample as it is illustrated in Fig. 3(c). The formation of these
subsets of fragments is governed by different cracking mechanisms. Scaling
analysis showed a striking universality of the mass distributions of bulk and
surface fragments, with exponents τ = 1.7 and τ = 2.4, respectively. The
results imply that for thin plates the velocity dependence of the exponent of
the complete mass distribution is caused by the mixing of the contributions
of the subsets of fragments, where the mixing ratio depends on v0 (see Fig.
3). Our results have the general consequence that energy dependence of the
mass distribution exponent of fragmentation phenomena can be expected
when a low dimensional object is embedded into a higher dimensional space
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Figure 3: Scaling plot of the mass distribution of surface (a) and bulk (b) frag-
ments. The high quality collapse implies that the mass distribution exponents of
the subsets of fragments do not have any energy dependence. The non-universality
of the complete distribution originates from the mixing of these universal contri-
butions where the mixing ratio depends on v0.

allowing for the emergence of a transition in the spatial structure of cracks
generated by the initial shock wave [9].

IV. Summary

We presented a detailed study of the fragmentation of three-dimensional
brittle solids focusing on the mass distribution of fragments and on the un-
derlying mechanism of breakup. Large scale computer simulations revealed
that energy dependence occurs when a lower dimensional fragmenting ob-
ject is embedded into a higher dimensional space. The reason is a transition
between two distinct cracking mechanisms driven by the impact velocity. In
the vicinity of the critical impact velocity the interference pattern of elastic
waves gives rise to a two-dimensional crack structure. Increasing impact ve-
locity activates bulk cracking leading to a three-dimensional crack structure
with a high degree of universality. Selecting fragments in different spatial
regions of the sample, we showed that the cracking mechanisms result in
universal mass distributions. The observed non-universality of the complete
distributions is the consequence of blending the contributions of universal
partial processes. Studying the impact induced breakup of thin glass plates,
in the experiments of Ref. [3] an increase of the mass distribution exponent
was reported with increasing impact velocity. The authors argued that the

6



effect can be attributed to the increase of the fractal dimension of the crack
pattern, i.e. as the crack structure gets more-and-more space filling the
mass distribution exponent increases and approaches a limit value [3]. Our
results clarify the background of these experimental findings unveiling the
underlying mechanism [9].
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