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Abstract

The use of magnetic nanoparticles for cancer therapy re-
quires an appreciable heating power generated by the applied
magnetic field. Therefore, it is of great importance to enhance
the efficiency of the heating mechanism for example by deter-
mining an ideal choice of input parameters (e.g. material prop-
erties). Another way to increase the heat generation is related
to the applied field. We show that a rotating applied field, (as
distinct from the oscillating one) in magnetic nanoparticles with
uniaxial anisotropy, can produce for us a more efficient heating.
This is found in calculations of the energy loss per cycle previ-
ous to the steady state known as the long-time solution of the
Landau-Lifshitz-Gilbert equation.

I. Introduction

Magnetic nanoparticles have numerous medical applications, of which we
are concerned with hyperthermia, heat treatment. The unique feature of
magnetic nanoparticle hyperthermia is that the energy is transported in
the body by means of an ac magnetic field. The nanoparticles absorb the
energy and turn it in heat. The magnetic moment of the particles enable also
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targeting: they can be directed towards the cancer tumors by a magnetic
field.

Hyperthermia therapy for cancer is a medical treatment in which tis-
sue temperatures are elevated for the purpose of damaging or destroying
cancer cells. A sustained temperature between 41 ◦C and 45 ◦C can cause
irreversible damage to cell function, which predominantly lead to prepro-
grammed cell death, know as apoptosis. Apoptosis is form of intentional
cell death based on a genetic mechanism. A sustained temperature above
45 ◦C causes another form of cell death, commonly referred to as necrosis,
the general term for the path to cell death.

Although hyperthermic cancer treatment is able to heat the tumor re-
gion to apoptotic temperatures (which lead to apoptotic cell death) but it is
used mainly together with chemotherapy or radiotherapy. Since particular
tumor cells are sensible for heating, magnetic nanoparticles can be used for
hyperthermia which receives important applications in cancer therapy espe-
cially when the ordinary treatments are not applicable. For instance brain
tumors are among the most difficult forms of cancer to treat, although fever
therapy is know to be very effective. But fever therapy is a form of whole-
body hyperthermia. Limiting the heat to the brain would be desirable, but
that would require very accurate controle of temperature. Concerns of this
nature delay the wide introduction of magnetic nanoparticle hyperthermia
in cancer treatment. Hence, the study of relaxation mechanisms of mag-
netic nanoparticles is a very active research field both in the theoretical and
material-science aspects.

The research to be reported below is part of the studies on the relaxation
of magnetic nanoparticle systems under oscillating and rotating polarization
of the applied field. A theoretical investigation of the isotropic, single-
particle case has been done and the results have been published [1].

This work was based on the Landau-Lifshitz-Gilbert (LLG) equation
which has been widely used to investigate the nonlinear dynamics of mag-
netisation and the specific power loss of magnetic nanoparticles systems
and it was followed by a similar work based on the modified Bloch equation
[2]. Apart from following the response of the magnetization of nanopar-
ticles to the applied ac field, the frequency dependence of the energy loss
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(i.e. the heat gain) was determined. For both models, is was found in the
low frequency limit, the energy loss per cycle is larger in oscillating ap-
plied field than in rotating field. However, the comparison to experimental
data [3] requires the generalization of the previously obtained results to the
anisotropic case. The purpose of our recent paper [4] was to determine the
effect of anisotropy on the heat production of magnetic nanoparticles un-
der rotating field. Numerical calculations on the LLG equation have shown
that the power loss decreases under the anisotropy. The outcome of our
research was that in the low frequency limit in rotating field it is impossible
to increase the energy loss by means of inserting an anisotropic term into
the potential energy into the LLG Eq.(1).

Here we will show that a rotating applied field, (unlike an oscillating
field) in uniaxially anisotropic magnetic nanoparticles can produce us a more
efficient heating if the energy loss per cycle is calculated outside the steady
state of the solution of the Gilbert (or equivalently the LLG) equation.

II. Landau-Lifshitz-Gilbert equation

Out of the many phenomenological equations of motion for the relaxation
of magnetization [5] the Gilbert equation [6] has proved to give the most
realistic description of the dynamics of single-domain magnetic particles at
strong damping. Such a particle, being too small to accommodate a domain
wall, can be fully characterized with a single vector, its magnetic moment
m. An important feature of Larmor precession is that the magnitude of
m does not change under the influence of the external field, including the
anisotropy field. Hence it is convenient to rewrite the equation of motion of
the magnetization m of a single-domain particle in terms of the unit vector
M = m/mS , mS being the saturation magnetic moment. Then the Gilbert
equation reads as

d

dt
M = γ0M×

[
∇V + µ0η

d

dt
M

]
, (1)

where γ0 = 1.76×1011 Am2/Js is the gyromagnetic ratio of the electron spin
(with opposite sign), µ0 = 4π × 10−7 Tm/A (or N/A2) is the permeability
of free space, V is the potential energy and η is the damping factor, both of
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them normalized for unit M . To describe the system, the potential energy
must contain the Zeeman energy in the magnetic field and the anisotropy
energy (µ0/2)MHa sin

2(θ) [7]. We define the vector H, which contains the
external applied magnetic field (here we chose a circularly polarized one)
and the effect of the anisotropy of the magnetic particle

H = H0 (cos(ωt), sin(ωt), λeffMz), (2)

where ω is the angular frequency of the applied field,Mz is the z-component
of the normalized magnetization vector and λeff = Ha/H0 is the measure of
the strength of the anisotropy field Ha with respect of the applied H0 field.

The Gilbert equation can be rewritten in such a way that it has a func-
tional form similar to the Landau-Lifshitz equation. This is called the
Landau-Lifshitz-Gilbert (LLG) equation,

d

dt
M = −γ′[M×H] + α′[[M×H]×M], (3)

where γ′ = µ0γ0/(1 + α2) and α′ = γ′α with the dimensionless damping
factor α = µ0γ0ηmS .

The magnitude of the magnetization vector being constant, the M com-
ponent of the Gilbert equation (or equivalently the LLG equation (3)) is
useless. It can be shown that the equations of motion of the θ and ϕ com-
ponents of the unit magnetization are

d

dt
Mθ = −ω′L sin(ϕ− ωt)− α

d

dt
Mϕ,

d

dt
Mϕ = −ω′L cos θ cos(ϕ− ωt) + ωa sin θ cos θ + α

d

dt
Mθ, (4)

Here we have introduced, the Larmor frequency ω′L = µ0γ0H0 and an anal-
ogous frequency parameter related to the anisotropy field previously used
by Denisov et al. [6] ωa = µ0γ0Ha (note that γ0 > 0). By using

d

dt
Mθ =

d

dt
θ,

d

dt
Mϕ = sin(θ)

d

dt
ϕ (5)
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the equations of motion of the polar coordinates reads as

dθ

dt
= ωL sinφ+ αN cos θ cosφ− αNλeff sin θ cos θ,

dφ

dt
= ωL cosφ

cos θ

sin θ
+ ω − αN

sinφ

sin θ
− ωLλeff cos θ (6)

where ωL = H0γ
′ = ω′L/(1 + α′2), λeff = ωa/ω

′
L and αN = H0α

′ = αωL.
Here, ωt, the circular motion of the magnetic field, is subtracted from the
azimuthal ϕ, leaving the lag of M behind H. As M rotates behind H, we
introduce φ = (ωt − ϕ) as the measure of lagging. The latest definition
shows that the Larmor term in both equations under (6) is dominating
over the second term, because α′, Landau-Lifshitz’s “dimensionless damping
constant”, is supposed to be small (� 1). On the other hand, the last term
may be the overdog in both equations. The anisotropy field of magnetite is
more than 40 kA/m, and if we reckon with the shape anisotropy as well, as
suggested by Bertotti et al. [7], a much stronger effect can be expected.

III. Steady state solution of the LLG equation

The solution of Eq. (4) (which is derived from the Gilbert or the equivalent
LLG equation) is shown in Fig. 1 (for the construction of orbit maps and
the appearance of steady states therein see [10]). The set of parameters used
in the figure are listed in the caption. Here λeff is closely below the critical
value, beyond which there are two attractive fixed points. The attractive
fixed point of Fig. 1 corresponds to a steady state solution of the original
(unrotated) Gilbert or LLG equation,

Mx(t) = ux0 cos(ωt)− uy0 sin(ωt),

My(t) = ux0 sin(ωt) + uy0 cos(ωt),

Mz(t) = uz0. (7)

where ux0 and uy0 are determined by ω, ωL, αN and λeff . The loss energy
per cycle is calculated by determining these attractive fixed point solutions.
Then the energy dissipated in a single cycle is given as

E = µ0mS

∫ 2π
ω

0
dt

(
H · dM

dt

)
= µ02πmSH(−uy0), (8)
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Figure 1: Orbit map in the rotating frame obtained by solving the LLG
equation, slightly below the critical value of anisotropy. The parameters are
αN = 0.1, ω = −0.01, ωL = 0.2 and λeff = 1.175. One finds a similar orbit
map by changing the direction of the rotating external field (−ω), see Fig.1
of [9]. A single attractive (black dot) and a single repulsive fixed points exist
below the crtical value of the anisotropy parameter. Another (attractive)
fixed point emerges but only with λeff above the critical anisotropy, however,
its “effect” can be seen on the figure since some of the trajectories merge
into a single one before reaching the attractive fixed point.
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(see also Eq. (12) in [4]) which has the form in the low-frequency limit,
ω � αN , and small anisotropy |λeff | � 1 limits where one finds a single
attract fixed point with

uy0 ≈ −
αNω

ω2
L + α2

N

+
αNω

2
Lω

3

(ω2
L + α2

N )
3
(1 + 2λeff). (9)

Inserting (9) into the expression of the energy loss per cycle (8) one finds,

E = 2πµ0mSH

[
αNω

ω2
L + α2

N

−
αNω

2
Lω

3

(ω2
L + α2

N )
3
(1 + 2λeff)

]
. (10)

Let us note that for axial geometrical anisotropy λeff > 0 the nanoparticle
has a “cigar-shape” which means it is a prolate ellipsoidal particle and for
planar geometrical anisotropy λeff< 0 it has a “lens-shape” which means it is
an oblate ellipsoidal particle. It is clear that for positive (negative) lambda,
the energy per cycle is decreased (increased) by the anisotropy but only for
relatively large frequencies.

IV. Out of steady state solution of the LLG equation

Previously we argued that if one relies on the steady state solution of the
LLG equation, i.e. the fixed point solution of Eq. (6), the energy loss per
cylce cannot be increased by the anisotropy (for low frequencies) in case of
a rotating external field. However, it is not the case if the energy loss per
cycle is calculated out of the steady states. Indeed, it was shown in [10]
that if one plots the energy loss per cycle as a function of various starting
points on the (θ − φ) plane, a ‘well’ is found on the 3D graphics which
corresponds to the attractive fixed point (i.e. it shows that the steady state
solution produces us the lowest energy loss per cycle). While the ‘hill’ of
the 3D graphics, where the energy loss is the maximum, is related to initial
conditions taken at the repulsive fixed point. Numerical results are shown
for small anisotropy, see Fig. 3 of [10].

Here we repeat the same calculation (same as Fig. 3 of [10]) but for large
values of the anisotropy parameter (closer to the critical one), see Fig. 2. It
is shown that one finds a similar 3D structure for low anisotropy and for
closer to the critical one. The only difference is that closer to the critical
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Figure 2: On this 3D graphics one finds the energy loss obtained in the first
cycle of the rotating applied field as a function of the initial conditions on the
(θ− φ) plane. Numerical results are obtained for relatively high anisotropy
which is close to (but below) the critical value. The ‘hill’ corresponds to the
largest energy loss found to be situated at the repulsive fixed point. The
deepest ‘well’ is related to the lowest energy loss and found at the attractive
fixed point.

value of the anisotropy paremeter two ‘wells’ appear, but only the lowest is
still the one which corresponds to the attractive fixed point (steady state
solution). The new ‘well’ is the consequence of another (attractive) fixed
point emerges (only!) above the critical anisotropy, however, its ‘effect’ can
be seen on the Fig. 2 since some of the trajectories merge into a single one
before reaching the attractive fixed point and the flow becomes ‘slow’.

V. Conclusion

In this work we considered energy losses of magnetic nanoparticles under
rotating applied field. The energy loss is calculated in the first cycle of the
rotating applied field as a function of the initial conditions on the (θ − φ)
plane. It is shown that under a rotating applied field, the energy loss per
cycle obtained for anisotropic magnetic nanoparticle is maximized if the
initial position of the magnetic moment of the particle is chosen to be at
the repulsive fixed point of Eq. (6). It is demonstrated that one finds a
similar 3D "structure" for low anisotropies and for those closer (but below)
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to the critical one, i.e. the energy loss has a maximum at the repulsive and
a minimum at the attractive fixed points.
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