Zoltán Péli

Curriculum Vitae

Education

2015-2018 Ph.D. in Physicsal Sciences, University of Debrecen summa cum laude

Thesis: Functional renormalization group for ordinary and ghost O(N) models, with higher

order gradient term

Supervisor: Dr. Kornél Sailer

2013-2015 M.Sc. in Physics, University of Debrecen graded with honour

Thesis: Particle in a Cavity in Finite Bandwidth Quantum Mechanics

Supervisor: Dr. Kornél Sailer

2010-2013 B.Sc. in Physics, University of Debrecen

Thesis: Finite bandwidth Quantum Mechanics

Supervisor: Dr. Kornél Sailer

2006-2010 Pál Vasvári Secondary School, Nyíregyháza

Professional Career

2018-2022 Postdoctoral Research Fellow in the MTA-DE Particle Physics Research Group

2015-2018 Ph.D. student in the Particle Physics Doctoral School in the University of Debrecen

Awards and scholarships

2017 Hungarian National Excellence Program

2015 Medallion of the Faculty of Science in the University of Debrecen

Schools attended

2021 ELFT Winter School, Physics beyond the Standard Model: Modern Approaches 01-05 February, Budapest

2020 GGI Lectures on the Theory of Fundamental Interactions 2020 07-24 January, Florence

2019 Summer school on BSM particle physics and cosmology

Teaching experience

- 2020 Lecturer on Cosmological Inflation in Astroparticle Physics PhD course, participation in the making of the corresponding lecture notes, Eötvös Lorand University
- 2016 Tutor, Quantum Mechanics Advanced Course, University of Debrecen
- 2015 Tutor, Quantum Mechanics Beginner Course, University of Debrecen

Languages

Hungarian Native

English Fluent, B2 level certificate

German Basic, B1 level certificate

Computer Skills

Advanced Mathematica, Latex

Intermediate C

Basic C++, Python

Talks/Posters

- 2021 Particle physics model of inflation
 Invited speaker, 2 hours lecture at ELFT Winter School
- 2020 Derivative expansion for computing critical exponents of ${\cal O}(N)$ symmetric models at NNLO accuracy
 - Invited speaker, 45 minute talk at ELTE Seminars
- 2019 Particle physics model of curvaton inflation in a stable universe Invited speaker, 45 minute talk at ELTE Seminars
- 2019 Stability of the Higgs-vacuum as constraint on U(1) extensions of the Standard Model
 - Poster at the Summer school on BSM particle physics and cosmology, Ljubljana
- 2018 Stability of the Higgs-vacuum as constraint on U(1) extensions of the Standard Model
 - Poster at 14th Vienna Central European Seminar, Vienna
- 2017 Effect of the quartic gradient terms on the critical exponents of the Wilson-Fisher fixed point in the ${\cal O}(N)$ models
 - Talk at the Physicist Doctorands Conference (DOFFI), Balatonfenyves
- 2016 Analysis of the ghost O(2) model
 - Talk at the Physicist Doctorands Conference (DOFFI), Balatonfenyves

Publications

- [1] Z. Péli, I. Nándori, and Z. Trócsányi, Particle physics model of curvaton inflation in a stable universe, Phys. Rev. D 101, 063533 (2020)
- [2] Z. Péli, S. Nagy, K. Sailer, Phase structure of the Euclidean three-dimensional O(1) ghost model, Int. J. Mod. Phys. A34 no.02, 1950021 (2019)
- [3] S. Nagy, B. Fazekas, Z. Péli, I. Steib, K. Sailer, Regulator dependence of fixed points in quantum Einstein gravity with \mathbb{R}^2 truncation, Class.Quant.Grav. 35, no.5, 055001 (2018)
- [4] Z. Péli, S. Nagy, K. Sailer, Effect of the quartic gradient terms on the critical exponents of the Wilson-Fisher fixed point in O(N) models, Eur. Phys. J. A 54:20 (2018).
- [5] Z. Péli, S. Nagy, K. Sailer, Phase structure of the O(2) ghost model with higher-order gradient term, Phys. Rev. D 94, 065021 (2016), hep-th/1605.07836.
- [6] Z. Péli, S. Nagy, K. Sailer, Triple point in the O(2) ghost model with higher-order gradient term, Phys. Rev. D 94, 065037 (2016), hep-th/1608.02080.
- [7] K. Sailer, Z. Péli, S. Nagy, Particle in a cavity in one-dimensional bandlimited quantum mechanics, J. Phys. A 48, 075305 (2015), hep-th/1410.0175.
- [8] K. Sailer, Z. Péli, S. Nagy, Some consequences of the generalized uncertainty principle induced ultraviolet wave-vector cutoff in one-dimensional quantum mechanics, Phys. Rev. D 87, 084056 (2013), math-ph/1301.6913.