Correlations after quantum quenches in the XXZ spin chain: Failure of the Generalized Gibbs Ensemble

Gábor Takács

Department of Theoretical Physics
Budapest University of Technology and Economics
and
MTA-BME “Momentum” Statistical Field Theory Research Group

B. Pozsgay, M. Mestyán, M. A. Werner, M. Kormos, G. Zaránd and G. Takács:
Correlations after quantum quenches in the XXZ spin chain: Failure of the Generalized Gibbs Ensemble
Phys. Rev. Lett. 113 (2014) 117203

28th April, 2015
HAS Institute for Nuclear Research, Debrecen
1. Introduction
2. Quantum quenches in the XXZ spin chain
3. Moment of truth: comparing to real time evolution
4. The overlap TBA
5. Follow-up
6. Conclusions
Outline

1 Introduction
 - Thermalization in isolated classical systems
 - Thermalization in isolated quantum systems
 - Integrable systems and the GGE hypothesis

2 Quantum quenches in the XXZ spin chain

3 Moment of truth: comparing to real time evolution

4 The overlap TBA

5 Follow-up

6 Conclusions
Outline

1 Introduction
 - Thermalization in isolated classical systems
 - Thermalization in isolated quantum systems
 - Integrable systems and the GGE hypothesis

2 Quantum quenches in the XXZ spin chain

3 Moment of truth: comparing to real time evolution

4 The overlap TBA

5 Follow-up

6 Conclusions
Thermalization in isolated classical systems

Isolated classical system: N degrees of freedom, energy E, volume V

\rightarrow microcanonical ensemble

Phase space $\Gamma : (q_1, \ldots, q_N, p_1, \ldots, p_N)$

Dynamics: Hamiltonian H

$$\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}$$

Fundamental postulate of statistical physics

The probability density in equilibrium is

$$\rho(q, p) = \begin{cases} \text{const.} & (q, p) \in \Gamma(N, E, V) \\ 0 & \text{otherwise} \end{cases}$$
Thermalization in isolated classical systems

Isolated classical system: N degrees of freedom, energy E, volume V

\[\rightarrow \text{microcanonical ensemble} \]

Phase space \(\Gamma : (q_1, \ldots, q_N, p_1, \ldots, p_N) \)

Dynamics: Hamiltonian \(H \)

\[
\dot{q}_i = \frac{\partial H}{\partial p_i} \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}
\]

Fundamental postulate of statistical physics

The probability density in equilibrium is

\[
\rho(q, p) = \begin{cases}
\text{const.} & (q, p) \in \Gamma(N, E, V) \\
0 & \text{otherwise}
\end{cases}
\]
Thermalization in isolated classical systems

Isolated classical system: N degrees of freedom, energy E, volume V

\rightarrow microcanonical ensemble

Phase space $\Gamma : (q_1, \ldots, q_N, p_1, \ldots, p_N)$
Dynamics: Hamiltonian H

\[\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i} \]

Fundamental postulate of statistical physics

The probability density in equilibrium is

\[\rho(q, p) = \begin{cases} \text{const.} & (q, p) \in \Gamma(N, E, V) \\ 0 & \text{otherwise} \end{cases} \]
Thermalization in isolated classical systems

Isolated classical system: N degrees of freedom, energy E, volume V

\[\rightarrow \textit{microcanonical ensemble} \]

Phase space \(\Gamma : (q_1, \ldots, q_N, p_1, \ldots, p_N) \)

Dynamics: Hamiltonian \(H \)

\[
\dot{q}_i = \frac{\partial H}{\partial p_i} \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}
\]

Fundamental postulate of statistical physics

The probability density in equilibrium is

\[
\rho(q, p) = \begin{cases}
\text{const.} & (q, p) \in \Gamma(N, E, V) \\
0 & \text{otherwise}
\end{cases}
\]
Boltzmann ergodic hypothesis

Boltzmann (1871): *ergodic hypothesis*

For an observable $A(q, p)$

- **Time average:**
 \[
 \tilde{A} = \lim_{T \to \infty} \int_0^T dt A(q(t), p(t))
 \]

- **MC average:**
 \[
 \langle A \rangle_{mc} = \frac{1}{\text{vol}(\Gamma(N, E, V))} \int_{\Gamma(N,E,V)} d^N q d^N p A(q, p)
 \]

Ergodicity:

\[
\tilde{A} = \langle A \rangle_{mc}
\]

justifies use of microcanonical ensemble.

It results from dynamical chaos:

individual trajectory homogeneously spreads over $\Gamma(N, E, V)$
Boltzmann ergodic hypothesis

Boltzmann (1871): *ergodic hypothesis*

For an observable $A(q, p)$

Time average:

$$\bar{A} = \lim_{T \to \infty} \int_0^T dt A(q(t), p(t))$$

mc average:

$$\langle A \rangle_{\text{mc}} = \frac{1}{\text{vol}(\Gamma(N, E, V))} \int_{\Gamma(N, E, V)} d^N q d^N p A(q, p)$$

Ergodicity:

$$\bar{A} = \langle A \rangle_{\text{mc}}$$

justifies use of microcanonical ensemble.

It results from dynamical chaos:

individual trajectory homogeneously spreads over $\Gamma(N, E, V)$
Boltzmann ergodic hypothesis

Boltzmann (1871): *ergodic hypothesis*
For an observable $A(q, p)$

time average: $\bar{A} = \lim_{T \to \infty} \int_0^T dt A(q(t), p(t))$

mc average: $\langle A \rangle_{mc} = \frac{1}{\text{vol}(\Gamma(N, E, V))} \int_{\Gamma(N, E, V)} d^N q d^N p A(q, p)$

Ergodicity:

$\bar{A} = \langle A \rangle_{mc}$

justifies use of microcanonical ensemble.
It results from dynamical chaos:
individual trajectory homogeneously spreads over $\Gamma(N, E, V)$
1 Introduction
 - Thermalization in isolated classical systems
 - Thermalization in isolated quantum systems
 - Integrable systems and the GGE hypothesis

2 Quantum quenches in the XXZ spin chain

3 Moment of truth: comparing to real time evolution

4 The overlap TBA

5 Follow-up

6 Conclusions
Quantum systems differ fundamentally from classical ones:
if thermalization occurs, it must have a fundamentally different explanation as time evolution is linear!

\[
|\psi(t = 0)\rangle = \sum_{\alpha} C_{\alpha} |\psi_{\alpha}\rangle \quad C_{\alpha} : \text{overlaps}
\]

\[
H|\psi_{\alpha}\rangle = E_{\alpha} |\psi_{\alpha}\rangle
\]

Time evolution
\[
|\psi(t)\rangle = \sum_{\alpha} C_{\alpha} e^{-\frac{i}{\hbar} E_{\alpha} t} |\psi_{\alpha}\rangle
\]

Observables
\[
\langle A(t) \rangle = \langle \psi(t)|A|\psi(t)\rangle = \sum_{\alpha} C_{\alpha}^{*} C_{\beta} e^{-\frac{i}{\hbar} (E_{\alpha} - E_{\beta}) t} A_{\alpha\beta}
\]

\[
A_{\alpha\beta} = \langle \psi_{\alpha}|A|\psi_{\beta}\rangle
\]
Quantum systems differ fundamentally from classical ones: if thermalization occurs, it must have a fundamentally different explanation as time evolution is linear!

\[
|\psi(t = 0)\rangle = \sum_\alpha C_\alpha |\psi_\alpha\rangle \quad C_\alpha : \text{overlaps}
\]

\[
H|\psi_\alpha\rangle = E_\alpha |\psi_\alpha\rangle
\]

Time evolution

\[
|\psi(t)\rangle = \sum_\alpha C_\alpha e^{-iE_\alpha t} |\psi_\alpha\rangle
\]

Observables

\[
\langle A(t) \rangle = \langle \psi(t)|A|\psi(t)\rangle = \sum_\alpha C_\alpha^* C_\beta e^{-i(E_\alpha - E_\beta) t} A_{\alpha\beta}
\]

\[
A_{\alpha\beta} = \langle \psi_\alpha|A|\psi_\beta\rangle
\]
Quantum systems differ fundamentally from classical ones:
if thermalization occurs, it must have a fundamentally different explanation as time evolution is linear!

\[|\psi(t = 0)\rangle = \sum_\alpha C_\alpha |\psi_\alpha\rangle \]

\(C_\alpha : \) overlaps

\[H|\psi_\alpha\rangle = E_\alpha |\psi_\alpha\rangle \]

Time evolution

\[|\psi(t)\rangle = \sum_\alpha C_\alpha e^{-i\frac{E_\alpha}{\hbar}t} |\psi_\alpha\rangle \]

Observables

\[\langle A(t) \rangle = \langle \psi(t)|A|\psi(t)\rangle = \sum_\alpha C_\alpha^* C_\beta e^{-i\frac{(E_\alpha - E_\beta)}{\hbar}t} A_{\alpha\beta} \]

\[A_{\alpha\beta} = \langle \psi_\alpha|A|\psi_\beta\rangle \]
Quantum systems differ fundamentally from classical ones:
if thermalization occurs, it must have a fundamentally different explanation as time evolution is linear!

\[|\psi(t = 0)\rangle = \sum_{\alpha} C_{\alpha} |\psi_\alpha\rangle \quad C_{\alpha} : \text{overlaps} \]
\[H |\psi_\alpha\rangle = E_{\alpha} |\psi_\alpha\rangle \]

Time evolution
\[|\psi(t)\rangle = \sum_{\alpha} C_{\alpha} e^{-i\frac{\hbar}{\hbar}E_{\alpha} t} |\psi_\alpha\rangle \]

Observables
\[\langle A(t) \rangle = \langle \psi(t) |A| \psi(t) \rangle = \sum_{\alpha} C_{\alpha}^* C_{\beta} e^{-i\frac{\hbar}{\hbar}(E_{\alpha} - E_{\beta}) t} A_{\alpha\beta} \]
\[A_{\alpha\beta} = \langle \psi_\alpha |A| \psi_\beta \rangle \]
The diagonal ensemble

Microcanonical setting: start with narrow energy distribution

\[\langle E \rangle = \sum_{\alpha} |C_\alpha|^2 E_\alpha \]

\[\Delta E = \sqrt{\sum_{\alpha} |C_\alpha|^2 (E_\alpha - \langle E \rangle)^2} \ll \langle E \rangle \]

Time average

\[\langle A(t) \rangle = \sum_{\alpha} C_\alpha^* C_\beta e^{-i \frac{\hbar}{\epsilon} (E_\alpha - E_\beta) t} A_{\alpha\beta} \]

\[\bar{A} = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt \langle A(t) \rangle = \sum_{\alpha} |C_\alpha|^2 A_{\alpha\alpha} \]

Diagonal ensemble

\[\bar{A} = \text{Tr} \rho_{DE} A \]

\[\rho_{DE} = \sum_{\alpha} |C_\alpha|^2 |\psi_\alpha\rangle \langle \psi_\alpha| \]
The diagonal ensemble

Microcanonical setting: start with narrow energy distribution

\[\langle E \rangle = \sum_\alpha |C_\alpha|^2 E_\alpha \]

\[\Delta E = \sqrt{\sum_\alpha |C_\alpha|^2 (E_\alpha - \langle E \rangle)^2} \ll \langle E \rangle \]

Time average

\[\langle A(t) \rangle = \sum_\alpha C_\alpha^* C_\beta e^{- \frac{i}{\hbar} (E_\alpha - E_\beta) t} A_{\alpha\beta} \]

\[\tilde{A} = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt \langle A(t) \rangle = \sum_\alpha |C_\alpha|^2 A_{\alpha\alpha} \]

Diagonal ensemble

\[\tilde{A} = \text{Tr} \rho_{DE} A \]

\[\rho_{DE} = \sum_\alpha |C_\alpha|^2 |\psi_\alpha\rangle \langle \psi_\alpha| \]
The diagonal ensemble

Microcanonical setting: start with narrow energy distribution

\[\langle E \rangle = \sum_{\alpha} |C_{\alpha}|^2 E_{\alpha} \]

\[\Delta E = \sqrt{\sum_{\alpha} |C_{\alpha}|^2 (E_{\alpha} - \langle E \rangle)^2} \ll \langle E \rangle \]

Time average

\[\langle A(t) \rangle = \sum_{\alpha} C_{\alpha}^* C_{\beta} e^{-i \frac{\hbar}{\Delta}(E_{\alpha} - E_{\beta})t} A_{\alpha\beta} \]

\[\Rightarrow \]

\[\bar{A} = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt \langle A(t) \rangle = \sum_{\alpha} |C_{\alpha}|^2 A_{\alpha\alpha} \]

Diagonal ensemble

\[\bar{A} = \text{Tr} \rho_{\text{DE}} A \]

\[\rho_{\text{DE}} = \sum_{\alpha} |C_{\alpha}|^2 \langle \psi_{\alpha} \rangle \langle \psi_{\alpha} | \]
Eigenstate thermalization hypothesis

Stationary state: for large t

$$A(t) = \sum_\alpha C_\alpha^* C_\beta e^{-\frac{i}{\hbar} (E_\alpha - E_\beta) t} A_{\alpha\beta} \rightarrow \bar{A} = \sum_\alpha |C_\alpha|^2 A_{\alpha\alpha}$$

Microcanonical average

$$\langle A \rangle_{mc} = \frac{1}{N(\langle E \rangle, \Delta E)} \sum_{\alpha: E_\alpha \in I} A_{\alpha\alpha} \quad I = [\langle E \rangle - \Delta E, \langle E \rangle + \Delta E]$$

$$\sum_\alpha |C_\alpha|^2 A_{\alpha\alpha} = \frac{1}{N(\langle E \rangle, \Delta E)} \sum_{\alpha: E_\alpha \in I} A_{\alpha\alpha}$$

Eigenstate thermalization hypothesis, ETH (Srednicki, 1994)

$$A_{\alpha\alpha} = \langle A \rangle_{mc} (E_\alpha) \quad \forall \alpha$$

Supposed to hold for large systems (thermodynamic limit – TDL)
Eigenstate thermalization hypothesis

Stationary state: for large t

$$A(t) = \sum_{\alpha} C_\alpha^* C_\beta e^{-\frac{i}{\hbar}(E_\alpha - E_\beta)t} A_{\alpha\beta} \rightarrow \tilde{A} = \sum_{\alpha} |C_\alpha|^2 A_{\alpha\alpha}$$

Microcanonical average

$$\langle A \rangle_{mc} = \frac{1}{N(\langle E \rangle, \Delta E)} \sum_{\alpha : E_\alpha \in I} A_{\alpha\alpha} \quad I = [\langle E \rangle - \Delta E, \langle E \rangle + \Delta E]$$

$$\sum_{\alpha} |C_\alpha|^2 A_{\alpha\alpha} = \frac{1}{N(\langle E \rangle, \Delta E)} \sum_{\alpha : E_\alpha \in I} A_{\alpha\alpha}$$

Eigenstate thermalization hypothesis, ETH (Srednicki, 1994)

$$A_{\alpha\alpha} = \langle A \rangle_{mc}(E_\alpha) \quad \forall \alpha$$

Supposed to hold for large systems (thermodynamic limit – TDL)
Eigenstate thermalization hypothesis

Stationary state: for large t

$$A(t) = \sum_{\alpha} C_\alpha^* C_\beta e^{-\frac{i}{\hbar}(E_\alpha - E_\beta)t} A_{\alpha\beta} \rightarrow \tilde{A} = \sum_{\alpha} |C_\alpha|^2 A_{\alpha\alpha}$$

Microcanonical average

$$\langle A \rangle_{mc} = \frac{1}{N(\langle E \rangle, \Delta E)} \sum_{\alpha: E_\alpha \in I} A_{\alpha\alpha} \quad I = [\langle E \rangle - \Delta E, \langle E \rangle + \Delta E]$$

$$\sum_{\alpha} |C_\alpha|^2 A_{\alpha\alpha} = \frac{1}{N(\langle E \rangle, \Delta E)} \sum_{\alpha: E_\alpha \in I} A_{\alpha\alpha}$$

Eigenstate thermalization hypothesis, ETH (Srednicki, 1994)

$$A_{\alpha\alpha} = \langle A \rangle_{mc} (E_\alpha) \quad \forall \alpha$$

Supposed to hold for large systems (thermodynamic limit – TDL)
Eigenstate thermalization hypothesis

Stationary state: for large t

$$A(t) = \sum_\alpha C_\alpha^* C_\beta e^{-\frac{i}{\hbar} (E_\alpha - E_\beta) t} A_{\alpha\beta} \quad \rightarrow \quad \bar{A} = \sum_\alpha |C_\alpha|^2 A_{\alpha\alpha}$$

Microcanonical average

$$\langle A \rangle_{mc} = \frac{1}{N(\langle E \rangle, \Delta E)} \sum_{\alpha : E_\alpha \in I} A_{\alpha\alpha} \quad I = [\langle E \rangle - \Delta E, \langle E \rangle + \Delta E]$$

$$\sum_\alpha |C_\alpha|^2 A_{\alpha\alpha} = \frac{1}{N(\langle E \rangle, \Delta E)} \sum_{\alpha : E_\alpha \in I} A_{\alpha\alpha}$$

Eigenstate thermalization hypothesis, ETH (Srednicki, 1994)

$$A_{\alpha\alpha} = \langle A \rangle_{mc} (E_\alpha) \quad \forall \alpha$$

Supposed to hold for large systems (thermodynamic limit – TDL)
Eigenstate thermalization hypothesis

Stationary state: for large t

$$A(t) = \sum_{\alpha} C_\alpha^* C_{\beta} e^{-\frac{i}{\hbar} (E_\alpha - E_\beta)t} A_{\alpha\beta} \rightarrow \bar{A} = \sum_{\alpha} |C_\alpha|^2 A_{\alpha\alpha}$$

Microcanonical average

$$\langle A \rangle_{mc} = \frac{1}{N(\langle E \rangle, \Delta E)} \sum_{\alpha: E_\alpha \in I} A_{\alpha\alpha} \quad I = [\langle E \rangle - \Delta E, \langle E \rangle + \Delta E]$$

$$\sum_{\alpha} |C_\alpha|^2 A_{\alpha\alpha} = \frac{1}{N(\langle E \rangle, \Delta E)} \sum_{\alpha: E_\alpha \in I} A_{\alpha\alpha}$$

Eigenstate thermalization hypothesis, ETH (Srednicki, 1994)

$$A_{\alpha\alpha} = \langle A \rangle_{mc} (E_\alpha) \quad \forall \alpha$$

Supposed to hold for large systems (thermodynamic limit – TDL)
ETH is time independent: every eigenstate of Hamiltonian is already thermal. It is masked by quantum coherence, but revealed by dephasing effect of time evolution.

Quantum ergodic theorem (Neumann): for a typical finite family of commuting observables, every initial wave function from a microcanonical shell evolves so that for most times the averages of the given observables is close to their microcanonical value.

Rigol & Srednicki, 2012:

Neumann’s main technical assumption is equivalent to the Eigenstate Thermalization Hypothesis

What observables?

- local
- few-body
1 Introduction
 - Thermalization in isolated classical systems
 - Thermalization in isolated quantum systems
 - Integrable systems and the GGE hypothesis

2 Quantum quenches in the XXZ spin chain

3 Moment of truth: comparing to real time evolution

4 The overlap TBA

5 Follow-up

6 Conclusions
Integrable systems violate ergodicity

Fermi-Pasta-Ulam (1953; Los Alamos technical report 1955)

\[m \ddot{x}_j = k (x_{j+1} + x_{j-1} - 2x_j) \left[1 + \alpha (x_{j+1} - x_{j-1}) \right] \quad j = 1, \ldots, N \]

Exciting a vibration mode: thermalization expected.

Found instead: complicated quasi-periodic behaviour!

Reason: system is integrable! (discretized version of KdV)

Integrability: action-angle variables exist

\[[Q_i, Q_j] = 0 \quad H \in \{ Q_i \}_{i=1, \ldots, N} \]

The quantities are conserved: motion along tori in phase space \(\rightarrow \)

Lissajous orbits with frequencies \(\omega_1, \ldots, \omega_N \)

\(\rightarrow \) may be ergodic on the tori

\(\rightarrow \) ? microcanonical ensemble on the tori?
Integrable systems violate ergodicity

Fermi-Pasta-Ulam (1953; Los Alamos technical report 1955)

\[m\ddot{x}_j = k(x_{j+1} + x_{j-1} - 2x_j)[1 + \alpha(x_{j+1} - x_{j-1})] \quad j = 1, \ldots, N \]

Exciting a vibration mode: thermalization expected.

Found instead: complicated quasi-periodic behaviour!

Reason: system is integrable! (discretized version of KdV)

Integrability: action-angle variables exist

\[[Q_i, Q_j] = 0 \quad H \in \{Q_i\}_{i=1,\ldots,N} \]

The quantities are conserved: motion along tori in phase space \(\rightarrow \)
Lissajous orbits with frequencies \(\omega_1, \ldots, \omega_N \)
\(\rightarrow \) may be ergodic on the tori
\(\rightarrow \) ? microcanonical ensemble on the tori ?
Integrable systems violate ergodicity

Fermi-Pasta-Ulam (1953; Los Alamos technical report 1955)

\[m\ddot{x}_j = k(x_{j+1} + x_{j-1} - 2x_j) \left[1 + \alpha(x_{j+1} - x_{j-1}) \right] \quad j = 1, \ldots, N \]

Exciting a vibration mode: thermalization expected. **Found instead: complicated quasi-periodic behaviour!**

Reason: system is integrable! (discretized version of KdV)

Integrability: action-angle variables exist

\[[Q_i, Q_j] = 0 \quad H \in \{Q_i\}_{i=1,\ldots,N} \]

The quantities are conserved: motion along tori in phase space \(\rightarrow \)

Lissajous orbits with frequencies \(\omega_1, \ldots, \omega_N \)

\(\rightarrow \) may be ergodic on the tori

\(\rightarrow \) ? microcanonical ensemble on the tori ?
Integrable systems violate ergodicity

Fermi-Pasta-Ulam (1953; Los Alamos technical report 1955)

\[m\ddot{x}_j = k(x_{j+1} + x_{j-1} - 2x_j) [1 + \alpha(x_{j+1} - x_{j-1})] \quad j = 1, \ldots, N \]

Exciting a vibration mode: thermalization expected.
Found instead: complicated quasi-periodic behaviour!

Reason: system is integrable! (discretized version of KdV)

Integrability: action-angle variables exist

\[[Q_i, Q_j] = 0 \quad H \in \{Q_i\}_{i=1,\ldots,N} \]

The quantities are conserved: motion along tori in phase space →
Lissajous orbits with frequencies \(\omega_1, \ldots, \omega_N \)
→ may be ergodic on the tori
→ ? microcanonical ensemble on the tori?
Integrable systems violate ergodicity

Fermi-Pasta-Ulam (1953; Los Alamos technical report 1955)

\[m\ddot{x}_j = k(x_{j+1} + x_{j-1} - 2x_j) \left[1 + \alpha(x_{j+1} - x_{j-1}) \right] \quad j = 1, \ldots, N \]

Exciting a vibration mode: thermalization expected.
Found instead: complicated quasi-periodic behaviour!
Reason: system is integrable! (discretized version of KdV)

Integrability: action-angle variables exist

\[[Q_i, Q_j] = 0 \quad H \in \{ Q_i \}_{i=1,\ldots,N} \]

The quantities are conserved: motion along tori in phase space \(\longrightarrow \)
Lissajous orbits with frequencies \(\omega_1, \ldots, \omega_N \)
\(\rightarrow \) may be ergodic on the tori
\(\rightarrow \) ? microcanonical ensemble on the tori ?
Integrable systems violate ergodicity

Fermi-Pasta-Ulam (1953; Los Alamos technical report 1955)

\[m \ddot{x}_j = k(x_{j+1} + x_{j-1} - 2x_j) \left[1 + \alpha(x_{j+1} - x_{j-1}) \right] \quad j = 1, \ldots, N \]

Exciting a vibration mode: thermalization expected.

Found instead: complicated quasi-periodic behaviour!

Reason: system is integrable! (discretized version of KdV)

Integrability: action-angle variables exist

\[[Q_i, Q_j] = 0 \quad H \in \{ Q_i \}_{i=1,\ldots,N} \]

The quantities are conserved: motion along tori in phase space \(\rightarrow \)

Lissajous orbits with frequencies \(\omega_1, \ldots, \omega_N \)

\(\rightarrow \) may be ergodic on the tori

\(\rightarrow \) ? microcanonical ensemble on the tori ?
Integrable systems violate ergodicity

Fermi-Pasta-Ulam (1953; Los Alamos technical report 1955)

\[m\ddot{x}_j = k(x_{j+1} + x_{j-1} - 2x_j) \left[1 + \alpha(x_{j+1} - x_{j-1}) \right] \quad j = 1, \ldots, N \]

Exciting a vibration mode: thermalization expected.

Found instead: complicated quasi-periodic behaviour!

Reason: system is integrable! (discretized version of KdV)

Integrability: action-angle variables exist

\[[Q_i, Q_j] = 0 \quad H \in \{Q_i\}_{i=1,\ldots,N} \]

The quantities are conserved: motion along tori in phase space \(\rightarrow \)

Lissajous orbits with frequencies \(\omega_1, \ldots, \omega_N \)

\(\rightarrow \) may be ergodic on the tori

\(\rightarrow \) ? microcanonical ensemble on the tori ?
Ergodicity on tori

⇒ at quantum level:

Generalized Eigenstate Thermalization Hypothesis (GETH)
ETH holds on Q-shells i.e. subspaces determined by fixing the Q_i
Generalized Eigenstate Thermalization Hypothesis (GETH)

ETH holds on Q-shells i.e. subspaces determined by fixing the Q_i
Gibbs and generalized Gibbs ensembles

Nonintegrable system: steady state is thermal
DE is equivalent to a Gibbs ensemble for relevant observables

\[\text{Tr} \rho_{\text{DE}} A = \text{Tr} \rho_{\text{GE}} A \]

\[\rho_{\text{GE}} = \frac{1}{Z} e^{-\beta H} \quad Z = \text{Tr} e^{-\beta H} \]

Determining the temperature: \(\text{Tr} \rho_{\text{GE}} H = \langle \psi(0)|H|\psi(0)\rangle \rightarrow \beta \)

Generalized Gibbs Ensemble (GGE)

natural assumption: in integrable systems quantum ergodicity holds on common eigensubspaces of \(Q_i \)

\[\rho_{\text{GGE}} = \frac{1}{Z} e^{-\sum \beta_i Q_i} \quad Z = \text{Tr} e^{-\sum \beta_i Q_i} \]

Generalized temperatures/chemical potentials

\[\text{Tr} \rho_{\text{GGE}} Q_i = \langle \psi(0)|Q_i|\psi(0)\rangle \quad i = 1, \ldots, N \rightarrow \{\beta_i\}_{i=1,\ldots,N} \]

GE/GGE: follow from conditional maximum entropy principle.
Gibbs and generalized Gibbs ensembles

Nonintegrable system: steady state is thermal
DE is equivalent to a Gibbs ensemble for relevant observables

\[
\text{Tr } \rho_{DE} A = \text{Tr } \rho_{GE} A \\
\rho_{GE} = \frac{1}{Z} e^{-\beta H} \quad Z = \text{Tr } e^{-\beta H}
\]

Determining the temperature:

\[
\text{Tr } \rho_{GE} H = \langle \psi(0) | H | \psi(0) \rangle \rightarrow \beta
\]

Generalized Gibbs Ensemble (GGE)

natural assumption: in integrable systems quantum ergodicity holds
on common eigensubspaces of \(Q_i \)

\[
\rho_{GGE} = \frac{1}{Z} e^{-\sum_i \beta_i Q_i} \quad Z = \text{Tr } e^{-\sum_i \beta_i Q_i}
\]

Generalized temperatures/chemical potentials

\[
\text{Tr } \rho_{GGE} Q_i = \langle \psi(0) | Q_i | \psi(0) \rangle \quad i = 1, \ldots, N \rightarrow \{ \beta_i \}_{i=1,\ldots,N}
\]

GE/GGE: follow from conditional maximum entropy principle
Gibbs and generalized Gibbs ensembles

Nonintegrable system: steady state is thermal
DE is equivalent to a Gibbs ensemble for relevant observables

\[\text{Tr} \rho_{\text{DE}} A = \text{Tr} \rho_{\text{GE}} A \]
\[\rho_{\text{GE}} = \frac{1}{Z} e^{-\beta H} \]
\[Z = \text{Tr} e^{-\beta H} \]

Determining the temperature: \(\text{Tr} \rho_{\text{GE}} H = \langle \psi(0)|H|\psi(0)\rangle \rightarrow \beta \)

Generalized Gibbs Ensemble (GGE)

natural assumption: in integrable systems quantum ergodicity holds on common eigensubspaces of \(Q_i \)

\[\rho_{\text{GGE}} = \frac{1}{Z} e^{-\sum_i \beta_i Q_i} \]
\[Z = \text{Tr} e^{-\sum_i \beta_i Q_i} \]

Generalized temperatures/chemical potentials

\[\text{Tr} \rho_{\text{GGE}} Q_i = \langle \psi(0)|Q_i|\psi(0)\rangle \quad i = 1, \ldots, N \rightarrow \{\beta_i\}_{i=1,\ldots,N} \]

GE/GGE: follow from conditional maximum entropy principle.
Gibbs and generalized Gibbs ensembles

Nonintegrable system: steady state is thermal
DE is equivalent to a Gibbs ensemble for relevant observables

\[
\text{Tr } \rho_{\text{DE}} A = \text{Tr } \rho_{\text{GE}} A \\
\rho_{\text{GE}} = \frac{1}{Z} e^{-\beta H} \quad Z = \text{Tr } e^{-\beta H}
\]

Determining the temperature: \(\text{Tr } \rho_{\text{GE}} H = \langle \psi(0) | H | \psi(0) \rangle \rightarrow \beta \)

Generalized Gibbs Ensemble (GGE)

natural assumption: in integrable systems quantum ergodicity holds on common eigensubspaces of \(Q_i \)

\[
\rho_{\text{GGE}} = \frac{1}{Z} e^{-\sum_i \beta_i Q_i} \quad Z = \text{Tr } e^{-\sum_i \beta_i Q_i}
\]

Generalized temperatures/chemical potentials

\[
\text{Tr } \rho_{\text{GGE}} Q_i = \langle \psi(0) | Q_i | \psi(0) \rangle \quad i = 1, \ldots, N \rightarrow \{ \beta_i \}_{i=1,\ldots,N}
\]

GE/GGE: follow from conditional maximum entropy principle.
Nonintegrable system: steady state is thermal
DE is equivalent to a Gibbs ensemble for relevant observables

\[\text{Tr} \, \rho_{\text{DE}} A = \text{Tr} \, \rho_{\text{GE}} A \]
\[\rho_{\text{GE}} = \frac{1}{Z} e^{-\beta H} \quad Z = \text{Tr} \, e^{-\beta H} \]

Determining the temperature: \(\text{Tr} \, \rho_{\text{GE}} H = \langle \psi(0) | H | \psi(0) \rangle \rightarrow \beta \)

Generalized Gibbs Ensemble (GGE)

natural assumption: in integrable systems quantum ergodicity holds on common eigensubspaces of \(Q_i \)

\[\rho_{\text{GGE}} = \frac{1}{Z} e^{-\sum_i \beta_i Q_i} \quad Z = \text{Tr} \, e^{-\sum_i \beta_i Q_i} \]

Generalized temperatures/chemical potentials

\[\text{Tr} \, \rho_{\text{GGE}} Q_i = \langle \psi(0) | Q_i | \psi(0) \rangle \quad i = 1, \ldots, N \quad \rightarrow \quad \{ \beta_i \}_{i=1,\ldots,N} \]

GE/GGE: follow from conditional maximum entropy principle.
Closed quantum systems in reality

Can be realized with cold atoms...
Closed quantum systems in reality

Can be realized with cold atoms... ...which sometimes do not thermalize
Closed quantum systems in reality

Can be realized with cold atoms... ...which sometimes do not thermalize

T. Kinoshita, T. Wenger and D.S. Weiss:
1 Introduction

2 Quantum quenches in the XXZ spin chain
 - Integrability, Bethe Ansatz and thermodynamics
 - Quantum quench
 - GGE in the XXZ spin chain

3 Moment of truth: comparing to real time evolution

4 The overlap TBA

5 Follow-up

6 Conclusions
1 Introduction

2 Quantum quenches in the XXZ spin chain
 - Integrability, Bethe Ansatz and thermodynamics
 - Quantum quench
 - GGE in the XXZ spin chain

3 Moment of truth: comparing to real time evolution

4 The overlap TBA

5 Follow-up

6 Conclusions
The Heisenberg XXZ spin chain

A paradigmatic integrable model: chain of $1/2$ spins

\[\cdots \uparrow \downarrow \uparrow \uparrow \downarrow \cdots \rightarrow \mathcal{H} = \bigotimes_{L} \mathbb{C}^2 \downarrow \]

\[H_{XXZ} = \sum_{i=1}^{L} \left(\sigma_{i}^{x} \sigma_{i+1}^{x} + \sigma_{i}^{y} \sigma_{i+1}^{y} + \Delta \sigma_{i}^{z} \sigma_{i+1}^{z} \right) \quad \text{PBC: } \sigma_{L+1}^{k} = \sigma_{1}^{k} \]

- $\Delta > 1$: gapped phase, $\Delta \rightarrow \infty$: quantum Ising chain
- $-1 < \Delta < 1$: gapless phase (Luttinger liquid)

The chain is integrable and can be diagonalized by Bethe Ansatz:

\[|\lambda_1, \ldots, \lambda_N \rangle = B(\lambda_1) \ldots B(\lambda_M) |\Omega \rangle \]

\[|\Omega \rangle = |\cdots \uparrow \uparrow \uparrow \cdots \rangle \quad \text{pseudovacuum} \]

\[\left(\frac{\sin (\lambda_j + i\eta/2)}{\sin (\lambda_j - i\eta/2)} \right)^L = \prod_{k \neq j}^{M} \frac{\sin (\lambda_j - \lambda_k + i\eta)}{\sin (\lambda_j - \lambda_k - i\eta)} \quad \Delta = \cosh \eta \]

\[Q_n |\lambda_1, \ldots, \lambda_N \rangle = \sum_{i=1}^{n} q_n(\lambda_i) |\lambda_1, \ldots, \lambda_N \rangle \]

The conserved charges Q_n are local \rightarrow additivity!
The Heisenberg XXZ spin chain

A paradigmatic integrable model: chain of 1/2 spins

\[
\cdots \uparrow \downarrow \downarrow \uparrow \downarrow \cdots \quad \rightarrow \quad \mathcal{H} = \bigotimes_{L} \mathbb{C}^{2}
\]

\[
H_{\text{XXZ}} = \sum_{i=1}^{L} \left(\sigma_{i}^{x} \sigma_{i+1}^{x} + \sigma_{i}^{y} \sigma_{i+1}^{y} + \Delta \sigma_{i}^{z} \sigma_{i+1}^{z} \right)
\]

PBC: \(\sigma_{L+1}^{k} \equiv \sigma_{1}^{k} \)

- \(\Delta > 1 \): gapped phase, \(\Delta \rightarrow \infty \): quantum Ising chain
- \(-1 < \Delta < 1\): gapless phase (Luttinger liquid)

The chain is integrable and can be diagonalized by Bethe Ansatz:

\[
|\lambda_{1}, \ldots, \lambda_{N}\rangle = B(\lambda_{1}) \ldots B(\lambda_{M}) |\Omega\rangle
\]

\[
|\Omega\rangle = |\cdots \uparrow \uparrow \uparrow \cdots\rangle \quad \text{pseudovacuum}
\]

\[
\left(\frac{\sin (\lambda_{j} + i\eta/2)}{\sin (\lambda_{j} - i\eta/2)} \right)^{L} = \prod_{k \neq j}^{M} \frac{\sin (\lambda_{j} - \lambda_{k} + i\eta)}{\sin (\lambda_{j} - \lambda_{k} - i\eta)} \quad \Delta = \cosh \eta
\]

\[
Q_{n}|\lambda_{1}, \ldots, \lambda_{N}\rangle = \sum_{i=1}^{n} q_{n}(\lambda_{i})|\lambda_{1}, \ldots, \lambda_{N}\rangle
\]

The conserved charges \(Q_{n} \) are local \(\rightarrow \) additivity.
The Heisenberg XXZ spin chain

A paradigmatic integrable model: chain of $1/2$ spins

$$\ldots \uparrow \downarrow \downarrow \uparrow \downarrow \uparrow \ldots \quad \rightarrow \quad \mathcal{H} = \bigotimes_L \mathbb{C}^2$$

$$H_{\text{XXZ}} = \sum_{i=1}^{L} \left(\sigma_i^x \sigma_{i+1}^x + \sigma_i^y \sigma_{i+1}^y + \Delta \sigma_i^z \sigma_{i+1}^z \right) \quad \text{PBC: } \sigma_{L+1}^k \equiv \sigma_1^k$$

- $\Delta > 1$: gapped phase, $\Delta \to \infty$: quantum Ising chain
- $-1 < \Delta < 1$: gapless phase (Luttinger liquid)

The chain is integrable and can be diagonalized by Bethe Ansatz:

$$|\lambda_1, \ldots, \lambda_N\rangle = B(\lambda_1) \ldots B(\lambda_M)|\Omega\rangle$$

$$|\Omega\rangle = |\ldots \uparrow \uparrow \uparrow \ldots\rangle \quad \text{pseudovacuum}$$

$$\left(\frac{\sin (\lambda_j + i\eta/2)}{\sin (\lambda_j - i\eta/2)} \right)^L = \prod_{k \neq j}^{M} \frac{\sin (\lambda_j - \lambda_k + i\eta)}{\sin (\lambda_j - \lambda_k - i\eta)} \quad \Delta = \cosh \eta$$

$$Q_n|\lambda_1, \ldots, \lambda_N\rangle = \sum_{i=1}^{n} q_n(\lambda_i)|\lambda_1, \ldots, \lambda_N\rangle$$

The conserved charges Q_n are local \rightarrow additivity!
Excitations and string hypothesis

\[S^z = \frac{L}{2} - M \]

Ground state: unique solution with \(M = L/2 \) and all \(\lambda_i \) real

\[|0\rangle = B(\lambda_1) \cdots B(\lambda_{L/2})|\Omega\rangle \quad \lambda_i \in \mathbb{R} \]

Excitations: can be holes in the Dirac sea, or

\[n \text{-string configurations} \]

\[\lambda_j = \lambda + \frac{i\eta}{2}(n + 1 - 2j) \]
\[+ O(1/L) \]
\[j = 1, \ldots, n \]

String hypothesis

Thermodynamics can be described by string degrees of freedom
Excitations and string hypothesis

\[S^z = \frac{L}{2} - M \]

Ground state: unique solution with \(M = L/2 \) and all \(\lambda_i \) real

\[|0\rangle = B(\lambda_1) \ldots B(\lambda_{L/2})|\Omega\rangle \quad \lambda_i \in \mathbb{R} \]

Excitations: can be holes in the Dirac sea, or

\[\lambda_j = \lambda + \frac{i\eta}{2}(n + 1 - 2j) \]

\[+ O(1/L) \]

\[j = 1, \ldots, n \]

String hypothesis

Thermodynamics can be described by string degrees of freedom
Excitations and string hypothesis

\[S^z = \frac{L}{2} - M \]

Ground state: unique solution with \(M = L/2 \) and all \(\lambda_i \) real

\[|0\rangle = B(\lambda_1) \ldots B(\lambda_{L/2})|\Omega\rangle \quad \lambda_i \in \mathbb{R} \]

Excitations: can be holes in the Dirac sea, or

\[\lambda_j = \lambda + \frac{i\eta}{2}(n + 1 - 2j) + O(1/L) \]

\[j = 1, \ldots, n \]

String hypothesis

Thermodynamics can be described by string degrees of freedom
Excitations and string hypothesis

\[S^z = \frac{L}{2} - M \]

Ground state: unique solution with \(M = L/2 \) and all \(\lambda_i \) real

\[|0\rangle = B(\lambda_1) \ldots B(\lambda_{L/2})|\Omega\rangle \quad \lambda_i \in \mathbb{R} \]

Excitations: can be holes in the Dirac sea, or

\(n \)-string configurations

\[\lambda_j = \lambda + \frac{i\eta}{2}(n + 1 - 2j) + O(1/L) \]

\(j = 1, \ldots, n \)

String hypothesis

Thermodynamics can be described by string degrees of freedom
Number of n-strings centered in an interval $[\lambda, \lambda + d\lambda]$: $L\rho_n(\lambda)d\lambda$

Number of n-string holes in an interval $[\lambda, \lambda + d\lambda]$: $L\rho_n^h(\lambda)d\lambda$

Thermodynamic limit of BA: Bethe-Takahashi equations

\[
\rho_n(\lambda) + \rho_n^h(\lambda) = a_n(\lambda) - \sum_{m=1}^{\infty} (T_{nm} * \rho_m)(\lambda)
\]

\[
a_n(\lambda) = \frac{1}{\pi} \frac{\sinh n\eta}{\cosh n\eta - \cos 2\lambda}
\]

\[
T_{nm}(\lambda) = \begin{cases}
 a_{|n-m|}(\lambda) + 2a_{|n-m|+2}(\lambda) + \cdots & m \neq n \\
 +2a_{n+m-2}(\lambda) + a_{n+m}(\lambda) & m = n
\end{cases}
\]

\[
(f \ast g)(\lambda) = \int_{-\pi/2}^{\pi/2} d\lambda' f(\lambda - \lambda')g(\lambda')
\]
Thermodynamic limit of Bethe Ansatz

Number of n-strings centered in an interval $[λ, λ + dλ]$: $L\rho_n(λ)dλ$

Number of n-string holes in an interval $[λ, λ + dλ]$: $L\rho_n^h(λ)dλ$

Thermodynamic limit of BA: Bethe-Takahashi equations

$$ρ_n(λ) + ρ_n^h(λ) = a_n(λ) - \sum_{m=1}^{∞} (T_{nm} \ast ρ_m)(λ)$$

$$a_n(λ) = \frac{1}{\pi} \frac{\sinh nη}{\cosh nη - \cos 2λ}$$

$$T_{nm}(λ) = \begin{cases}
2a_2(λ) + \cdots + 2a_{2n−2}(λ) + a_{2n}(λ) & m = n \\
a_n−m(λ) + 2a_n−m+2(λ) + \cdots & m \neq n
\end{cases}$$

$$(f \ast g)(λ) = \int_{−\pi/2}^{\pi/2} dλ' f(λ − λ')g(λ')$$
Thermodynamic limit of Bethe Ansatz

Number of n-strings centered in an interval $[\lambda, \lambda + d\lambda]$: $L\rho_n(\lambda)d\lambda$

Number of n-string holes in an interval $[\lambda, \lambda + d\lambda]$: $L\rho_n^h(\lambda)d\lambda$

Thermodynamic limit of BA: Bethe-Takahashi equations

\[
\rho_n(\lambda) + \rho_n^h(\lambda) = a_n(\lambda) - \sum_{m=1}^{\infty} (T_{nm} * \rho_m)(\lambda)
\]

\[
a_n(\lambda) = \frac{1}{\pi} \frac{\sinh n\eta}{\cosh n\eta - \cos 2\lambda}
\]

\[
T_{nm}(\lambda) = \begin{cases}
 a_{|n-m|}(\lambda) + 2a_{|n-m|+2}(\lambda) + \cdots & m \neq n \\
 +2a_{n+m-2}(\lambda) + a_{n+m}(\lambda) \\
 2a_2(\lambda) + \cdots + 2a_{2n-2}(\lambda) + a_{2n}(\lambda) & m = n
\end{cases}
\]

\[
(f * g)(\lambda) = \int_{-\pi/2}^{\pi/2} d\lambda' f(\lambda - \lambda')g(\lambda')
\]
Outline

1 Introduction

2 Quantum quenches in the XXZ spin chain
 • Integrability, Bethe Ansatz and thermodynamics
 • Quantum quench
 • GGE in the XXZ spin chain

3 Moment of truth: comparing to real time evolution

4 The overlap TBA

5 Follow-up

6 Conclusions
Selection of initial states: the quantum quench paradigm

Quantum quench

\[H(g_0) \xrightarrow{t=0} H(g) \]

ground state \xrightarrow{} time evolution \xrightarrow{} steady state

large \(t \)

Role of locality in our considerations
- Start from ground state of \textit{local} Hamiltonian
- Evolved by a \textit{local} Hamiltonian
- Relevant observables: \textit{local} operators
- Expect \textit{local} charges to play a role

Example starting states for XXZ quenches:
- Neel: \(|\uparrow\downarrow\uparrow\downarrow \ldots \uparrow\downarrow\rangle \) – ground state at \(\Delta = \infty \)
- Dimer:
\[
\left(\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \right) \otimes \left(\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \right) \otimes \cdots \otimes \left(\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \right)
\]
ground state of Majumdar-Ghosh Hamiltonian
Selection of initial states: the quantum quench paradigm

Quantum quench

\[
H(g_0) \xrightarrow{t=0} H(g)
\]

ground state \xrightarrow{} time evolution \xrightarrow{} steady state
large \(t \)

Role of locality in our considerations

- Start from ground state of *local* Hamiltonian
- Evolved by a *local* Hamiltonian
- Relevant observables: *local* operators
- Expect *local* charges to play a role

Example starting states for XXZ quenches:

- Neel: \(|\uparrow\downarrow\uparrow\downarrow\ldots\uparrow\downarrow\rangle \) – ground state at \(\Delta = \infty \)
- Dimer:

\[
\left(\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \right) \otimes \left(\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \right) \otimes \cdots \otimes \left(\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \right)
\]

ground state of Majumdar-Ghosh Hamiltonian
Selection of initial states: the quantum quench paradigm

Quantum quench

\[H(g_0) \xrightarrow{t=0} H(g) \]

ground state \xrightarrow{} time evolution \xrightarrow{} steady state

large \(t\)

Role of locality in our considerations

- Start from ground state of \textit{local} Hamiltonian
- Evolved by a \textit{local} Hamiltonian
- Relevant observables: \textit{local} operators
- Expect \textit{local} charges to play a role

Example starting states for XXZ quenches:

- Neel: \(|\uparrow\downarrow\uparrow\downarrow\ldots\uparrow\downarrow\rangle\) – ground state at \(\Delta = \infty\)
- Dimer:

\[
\left(\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) \right) \otimes \left(\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) \right) \otimes \ldots \otimes \left(\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) \right)
\]

ground state of Majumdar-Ghosh Hamiltonian
Outline

1. Introduction

2. Quantum quenches in the XXZ spin chain
 - Integrability, Bethe Ansatz and thermodynamics
 - Quantum quench
 - GGE in the XXZ spin chain

3. Moment of truth: comparing to real time evolution

4. The overlap TBA

5. Follow-up

6. Conclusions
Previously: GGE only for theories equivalent to free particles.
Pozsgay (2013): truncated GGE for XXZ chain
– the first GGE realization in a genuinely interacting model

Idea:
- use the quantum transfer method (QTM) to solve the chain
- keep first few (up to 6) even charges $Q_2(=H), Q_4, Q_6, Q_8, Q_{10}, Q_{12}$
- use QTM formula to predict correlators

Observations:
- converges fast in truncation level (improved by extrapolation)
- truncated GGE is "the GGE" as a matter of principle

Fagotti & Essler (2013): construct full/untruncated GGE
Fagotti, Collura, Essler & Calabrese (2013):
compare GGE to tDMRG → some puzzles:
translational invariance is not restored for dimer
Truncated GGE

Previously: GGE only for theories equivalent to free particles.
Pozsgay (2013): truncated GGE for XXZ chain
– the first GGE realization in a genuinely interacting model

Idea:
- use the quantum transfer method (QTM) to solve the chain
- keep first few (up to 6) even charges $Q_2 (= H), Q_4, Q_6, Q_8, Q_{10}, Q_{12}$
- use QTM formula to predict correlators

Observations:
- converges fast in truncation level (improved by extrapolation)
- truncated GGE is “the GGE” as a matter of principle

Fagotti & Essler (2013): construct full/untruncated GGE
Fagotti, Collura, Essler & Calabrese (2013):
- compare GGE to tDMRG
 → some puzzles:
 translational invariance is not restored for dimer
Truncated GGE

Previously: GGE only for theories equivalent to free particles. Pozsgay (2013): truncated GGE for XXZ chain – the first GGE realization in a genuinely interacting model

Idea:

- use the quantum transfer method (QTM) to solve the chain
- keep first few (up to 6) even charges $Q_2 (= H), Q_4, Q_6, Q_8, Q_{10}, Q_{12}$
- use QTM formula to predict correlators

Observations:

- converges fast in truncation level (improved by extrapolation)
- truncated GGE is “the GGE” as a matter of principle

Fagotti & Essler (2013): construct full/untruncated GGE
Fagotti, Collura, Essler & Calabrese (2013):

compare GGE to tDMRG \rightarrow some puzzles:
translational invariance is not restored for dimer
Truncated GGE

Previously: GGE only for theories equivalent to free particles.

Pozsgay (2013): truncated GGE for XXZ chain

– the first GGE realization in a genuinely interacting model

Idea:

- use the quantum transfer method (QTM) to solve the chain
- keep first few (up to 6) even charges
 \[Q_2 = H, \, Q_4, \, Q_6, \, Q_8, \, Q_{10}, \, Q_{12} \]
- use QTM formula to predict correlators

Observations:

- converges fast in truncation level (improved by extrapolation)
- truncated GGE is "the GGE" as a matter of principle

Fagotti & Essler (2013): construct full/untruncated GGE

Fagotti, Collura, Essler & Calabrese (2013):

compare GGE to tDMRG → some puzzles:
translational invariance is not restored for dimer
Truncated GGE

Previously: GGE only for theories equivalent to free particles. Pozsgay (2013): truncated GGE for XXZ chain – the first GGE realization in a genuinely interacting model

Idea:

- use the quantum transfer method (QTM) to solve the chain
- keep first few (up to 6) even charges
 \[Q_2(= H), Q_4, Q_6, Q_8, Q_{10}, Q_{12} \]
- use QTM formula to predict correlators

Observations:

- converges fast in truncation level (improved by extrapolation)
- truncated GGE is "the GGE" as a matter of principle

Fagotti & Essler (2013): construct full/untruncated GGE

Fagotti, Collura, Essler & Calabrese (2013):

compare GGE to tDMRG → some puzzles: translational invariance is not restored for dimer
Previously: GGE only for theories equivalent to free particles. Pozsgay (2013): truncated GGE for XXZ chain – the first GGE realization in a genuinely interacting model

Idea:
- use the quantum transfer method (QTM) to solve the chain
- keep first few (up to 6) even charges $Q_2(= H), Q_4, Q_6, Q_8, Q_{10}, Q_{12}$
- use QTM formula to predict correlators

Observations:
- converges fast in truncation level (improved by extrapolation)
- truncated GGE is “the GGE” as a matter of principle

Fagotti & Essler (2013): construct full/untruncated GGE
Fagotti, Collura, Essler & Calabrese (2013):
- compare GGE to tDMRG → some puzzles: translational invariance is not restored for dimer
1 Introduction
2 Quantum quenches in the XXZ spin chain
3 Moment of truth: comparing to real time evolution
 - Previous results: problems with dimer case
 - Compare to iTEBD (Werner & Zaránd)
4 The overlap TBA
5 Follow-up
6 Conclusions
1. Introduction
2. Quantum quenches in the XXZ spin chain
3. Moment of truth: comparing to real time evolution
 - Previous results: problems with dimer case
 - Compare to iTEBD (Werner & Zaránd)
4. The overlap TBA
5. Follow-up
6. Conclusions
Problems with the dimer state

Translation invariance seems broken: no relaxation at all?
Problems with the dimer state

Translation invariance seems broken: no relaxation at all?
Outline

1 Introduction
2 Quantum quenches in the XXZ spin chain
3 Moment of truth: comparing to real time evolution
 - Previous results: problems with dimer case
 - Compare to iTEBD (Werner & Zaránd)
4 The overlap TBA
5 Follow-up
6 Conclusions
Result of iTEBD

\[\langle \sigma^z_i, \sigma^z_{i+2} \rangle \]

Time

Neel \(\Delta = 3 \)
Result of iTEBD compared to thermal

\[\langle \sigma^z_i, \sigma^z_{i+2} \rangle \]

Neel \(\Delta = 3 \)
Result of iTEBD compared to thermal and GGE

\[\langle \sigma_z^i \sigma_z^{i+2} \rangle \]

Neel \(\Delta = 3 \)
Result of iTEBD

Dimer $\Delta = 3$
Result of iTEBD compared to GGE

Dimer $\Delta = 3$
Outline

1 Introduction
2 Quantum quenches in the XXZ spin chain
3 Moment of truth: comparing to real time evolution
4 The overlap TBA
 • Quench action method
 • Initial states and exact overlaps
 • Overlap TBA
 • Spin-spin correlations
5 Follow-up
6 Conclusions
The quench action

\[\overline{A} = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt \langle A(t) \rangle = \sum_\alpha |C_\alpha|^2 A_{\alpha\alpha} \quad C_\alpha = \langle \psi(0) | \alpha \rangle \]

\[\overline{A} = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt \langle A(t) \rangle = \sum_\alpha |C_\alpha|^2 A_{\alpha\alpha} \quad C_\alpha = \langle \psi(0) | \alpha \rangle \]

Replace sum: \[\sum_\alpha \longrightarrow \int \prod_n D\rho_n(\lambda) e^{L_s[\{\rho_n(\lambda)\}]} \]

\[e^{L_s[\{\rho_n(\lambda)\}]} : \text{number of Bethe states scaling to } \{\rho_n(\lambda)\} \text{ in the TDL.} \]

Supposing that \(C_\alpha \) and \(A_{\alpha\alpha} \) only depend on \(\{\rho_n(\lambda)\} \) in the TDL:

\[\overline{A} = \int \prod_n D\rho_n(\lambda) e^{-L(-\frac{2}{L} \text{Re} \ln \langle \psi(0) | \{\rho_n(\lambda)\} \rangle - s[\{\rho_n(\lambda)\}]) \langle \{\rho_n(\lambda)\} | A | \{\rho_n(\lambda)\} \rangle} \]

In TDL: determined by saddle point of quench action functional

\[S[\{\rho_n(\lambda)\}] = -\frac{2}{L} \text{Re} \ln \langle \psi(0) | \{\rho_n(\lambda)\} \rangle - s[\{\rho_n(\lambda)\}] \]

\[\overline{A} = \langle \{\rho_n^*(\lambda)\} | A | \{\rho_n^*(\lambda)\} \rangle \]

J.-S. Caux & F.H.L. Essler, 2013
The quench action

\[\bar{A} = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt \langle A(t) \rangle = \sum_{\alpha} |C_{\alpha}|^2 A_{\alpha \alpha} \quad C_{\alpha} = \langle \psi(0) | \alpha \rangle \]

Replace sum: \[\sum_{\alpha} \longrightarrow \int \prod_{n=1}^{\infty} D \rho_n(\lambda) e^{Ls[\{\rho_n(\lambda)\}]} \]

\[e^{Ls[\{\rho_n(\lambda)\}]}: \text{number of Bethe states scaling to} \ \{\rho_n(\lambda)\} \ \text{in the TDL}. \]

Supposing that \(C_{\alpha} \) and \(A_{\alpha \alpha} \) only depend on \(\{\rho_n(\lambda)\} \) in the TDL:

\[\bar{A} = \int \prod_{n=1}^{\infty} D \rho_n(\lambda) e^{-L(-\frac{2}{L} \text{Re} \ln \langle \psi(0) | \{\rho_n(\lambda)\} \rangle - s[\{\rho_n(\lambda)\}])} \langle \{\rho_n(\lambda)\} | A | \{\rho_n(\lambda)\} \rangle \]

In TDL: determined by saddle point of quench action functional

\[S[\{\rho_n(\lambda)\}] = -\frac{2}{L} \text{Re} \ln \langle \psi(0) | \{\rho_n(\lambda)\} \rangle - s[\{\rho_n(\lambda)\}] \]

\[\bar{A} = \langle \{\rho_n^*(\lambda)\} | A | \{\rho_n^*(\lambda)\} \rangle \]

J.-S. Caux & F.H.L. Essler, 2013
The quench action

\[\bar{A} = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt \langle A(t) \rangle = \sum_\alpha |C_\alpha|^2 A_{\alpha\alpha} \quad C_\alpha = \langle \psi(0)|\alpha \rangle \]

Replace sum:

\[\sum_\alpha \longrightarrow \int \prod_{n=1}^{\infty} D\rho_n(\lambda) e^{Ls[\{\rho_n(\lambda)\}]} \]

\[e^{Ls[\{\rho_n(\lambda)\}]}: \text{number of Bethe states scaling to } \{\rho_n(\lambda)\} \text{ in the TDL.} \]

Supposing that \(C_\alpha \) and \(A_{\alpha\alpha} \) only depend on \(\{\rho_n(\lambda)\} \) in the TDL:

\[\bar{A} = \int \prod_{n=1}^{\infty} D\rho_n(\lambda) e^{-L(-\frac{2}{L} \text{Re } \ln \langle \psi(0)|\{\rho_n(\lambda)\}\rangle - s[\{\rho_n(\lambda)\}])} \langle \{\rho_n(\lambda)\}|A|\{\rho_n(\lambda)\}\rangle \]

In TDL: determined by saddle point of quench action functional

\[S[\{\rho_n(\lambda)\}] = -\frac{2}{L} \text{Re } \ln \langle \psi(0)|\{\rho_n(\lambda)\}\rangle - s[\{\rho_n(\lambda)\}] \]

\[\bar{A} = \langle \{\rho_n^*(\lambda)\}|A|\{\rho_n^*(\lambda)\}\rangle \]

J.-S. Caux & F.H.L. Essler, 2013
The quench action

\[\bar{A} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} dt \langle A(t) \rangle = \sum_{\alpha} |C_{\alpha}|^2 A_{\alpha \alpha} \quad C_{\alpha} = \langle \psi(0)|\alpha \rangle \]

Replace sum: \(\sum_{\alpha} \longrightarrow \int \prod_{n=1}^{\infty} D\rho_n(\lambda) e^{Ls[\{\rho_n(\lambda)\}]} \)

\[e^{Ls[\{\rho_n(\lambda)\}]}: \text{number of Bethe states scaling to } \{\rho_n(\lambda)\} \text{ in the TDL.} \]

Supposing that \(C_{\alpha} \) and \(A_{\alpha \alpha} \) only depend on \(\{\rho_n(\lambda)\} \) in the TDL:

\[\bar{A} = \int \prod_{n=1}^{\infty} D\rho_n(\lambda) e^{-L(-\frac{2}{L} \text{Re} \ln \langle \psi(0)|\{\rho_n(\lambda)\}\rangle - s[\{\rho_n(\lambda)\}])} \langle \{\rho_n(\lambda)\}|A|\{\rho_n(\lambda)\}\rangle \]

In TDL: determined by saddle point of quench action functional

\[S[\{\rho_n(\lambda)\}] = -\frac{2}{L} \text{Re} \ln \langle \psi(0)|\{\rho_n(\lambda)\}\rangle - s[\{\rho_n(\lambda)\}] \]

\[\bar{A} = \langle \{\rho_n^*(\lambda)\}|A|\{\rho_n^*(\lambda)\}\rangle \]

J.-S. Caux & F.H.L. Essler, 2013
Initial states and overlap

Initial states: translation invariant Neel and dimer states
(\hat{T} is translation by one site)

$$|\Psi_N\rangle = \frac{1 + \hat{T}}{\sqrt{2}} \bigotimes_{L/2} |\uparrow\downarrow\rangle \quad |\Psi_D\rangle = \frac{1 + \hat{T}}{\sqrt{2}} \bigotimes_{L/2} \left(\frac{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle}{\sqrt{2}} \right)$$

Only overlaps with $S^z = 0$ states built upon “Cooper pairs”:

$$|\{\lambda_k\}\rangle_C = |\lambda_1, -\lambda_1, \lambda_2, -\lambda_2, \ldots, \lambda_{L/4}, -\lambda_{L/4}\rangle$$

Neel overlaps (Brockmann, De Nardis, Wouters & Caux, 2014)

$$\frac{\langle \Psi_N|\{\lambda_k\}\rangle_C}{\sqrt{c\langle\{\lambda_k\}|\{\lambda_k\}\rangle_C}} = \prod_{j=1}^{L/4} \frac{\sqrt{\tan(\lambda_j + i\eta/2)\tan(\lambda_j - i\eta/2)}}{2\sin(2\lambda_j)} \times \text{(Fredholm det)}$$

Dimer overlaps (Pozsgay, 2014)

$$\langle \Psi_D|\{\lambda_k\}\rangle = \langle \Psi_N|\{\lambda_k\}\rangle \prod_k \frac{1}{\sqrt{2}} \left(1 - \frac{\sin(\lambda_j - i\eta/2)}{\sin(\lambda_j + i\eta/2)} \right)$$
Initial states and overlap

Initial states: translation invariant Neel and dimer states
(\hat{T} is translation by one site)

$$|\Psi_N\rangle = \frac{1 + \hat{T}}{\sqrt{2}} \bigotimes_{L/2} |\uparrow\downarrow\rangle$$

$$|\Psi_D\rangle = \frac{1 + \hat{T}}{\sqrt{2}} \bigotimes_{L/2} \left(\frac{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle}{\sqrt{2}} \right)$$

Only overlaps with $S^z = 0$ states built upon “Cooper pairs”:

$$|\{\lambda_k\}\rangle_C = |\lambda_1, -\lambda_1, \lambda_2, -\lambda_2, \ldots, \lambda_{L/4}, -\lambda_{L/4}\rangle$$

Neel overlaps (Brockmann, De Nardis, Wouters & Caux, 2014)

$$\frac{\langle \Psi_N|\{\lambda_k\}\rangle_C}{\sqrt{c} \langle \{\lambda_k\}|\{\lambda_k\}\rangle_C} = \prod_{j=1}^{L/4} \frac{\sqrt{\tan(\lambda_j + i\eta/2)\tan(\lambda_j - i\eta/2)}}{2\sin(2\lambda_j)} \times \text{(Fredholm det)}$$

Dimer overlaps (Pozsgay, 2014)

$$\langle \Psi_D|\{\lambda_k\}\rangle = \langle \Psi_N|\{\lambda_k\}\rangle \prod_k \frac{1}{\sqrt{2}} \left(1 - \frac{\sin(\lambda_j - i\eta/2)}{\sin(\lambda_j + i\eta/2)} \right)$$
Initial states and overlap

Initial states: translation invariant Neel and dimer states
(\hat{T} is translation by one site)

$$|\Psi_N\rangle = \frac{1 + \hat{T}}{\sqrt{2}} \bigotimes_{L/2} |\uparrow\downarrow\rangle$$ $$|\Psi_D\rangle = \frac{1 + \hat{T}}{\sqrt{2}} \bigotimes_{L/2} \left(\frac{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle}{\sqrt{2}} \right)$$

Only overlaps with $S^z = 0$ states built upon “Cooper pairs”:

$$|\{\lambda_k\}\rangle_C = |\lambda_1, -\lambda_1, \lambda_2, -\lambda_2, \ldots, \lambda_{L/4}, -\lambda_{L/4}\rangle$$

Neel overlaps (Brockmann, De Nardis, Wouters & Caux, 2014)

$$\frac{\langle \Psi_N | \{\lambda_k\} \rangle_C}{\sqrt{c \langle \{\lambda_k\} | \{\lambda_k\} \rangle_C}} = \prod_{j=1}^{L/4} \sqrt{\frac{\tan(\lambda_j + i\eta/2) \tan(\lambda_j - i\eta/2)}{2 \sin(2\lambda_j)}} \times \text{(Fredholm det)}$$

Dimer overlaps (Pozsgay, 2014)

$$\langle \Psi_D | \{\lambda_k\} \rangle = \langle \Psi_N | \{\lambda_k\} \rangle \prod_k \frac{1}{\sqrt{2}} \left(1 - \frac{\sin(\lambda_j - i\eta/2)}{\sin(\lambda_j + i\eta/2)} \right)$$
Initial states and overlap

Initial states: translation invariant Neel and dimer states
(\hat{T} is translation by one site)

$$\left| \Psi_N \right\rangle = \frac{1 + \hat{T}}{\sqrt{2}} \bigotimes_{L/2} |\uparrow\downarrow\rangle \quad \left| \Psi_D \right\rangle = \frac{1 + \hat{T}}{\sqrt{2}} \bigotimes_{L/2} \left(\frac{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle}{\sqrt{2}} \right)$$

Only overlaps with $S^z = 0$ states built upon “Cooper pairs”:

$$\left| \{\lambda_k\} \right\rangle_C = |\lambda_1, -\lambda_1, \lambda_2, -\lambda_2, \ldots, \lambda_{L/4}, -\lambda_{L/4}\rangle$$

Neel overlaps (Brockmann, De Nardis, Wouters & Caux, 2014)

$$\frac{\langle \Psi_N | \{\lambda_k\} \rangle_C}{\sqrt{c \langle \{\lambda_k\} | \{\lambda_k\} \rangle_C}} = \prod_{j=1}^{L/4} \frac{\sqrt{\tan(\lambda_j + i\eta/2)\tan(\lambda_j - i\eta/2)}}{2\sin(2\lambda_j)} \times \text{(Fredholm det)}$$

Dimer overlaps (Pozsgay, 2014)

$$\langle \Psi_D | \{\lambda_k\} \rangle = \langle \Psi_N | \{\lambda_k\} \rangle \prod_k \frac{1}{\sqrt{2}} \left(1 - \frac{\sin(\lambda_j - i\eta/2)}{\sin(\lambda_j + i\eta/2)} \right)$$
Integral form for $L \to \infty$

\[-2\text{Re} \ln \langle \psi(0) | \{ \rho_n(\lambda) \} \rangle = \sum_{n=1}^{\infty} \int_{-\pi/2}^{\pi/2} d\lambda \rho_n(\lambda) g_{n}^{\psi}(\lambda)\]

\[g_{n}^{\psi}(\lambda) = \sum_{j=1}^{n} g_{1}^{\psi} \left(\lambda + \frac{i\eta}{2} (n + 1 - 2j) \right)\]

For our translation invariant Neel and dimer states

\[g_{1}^{N}(\lambda) = -\ln \left(\frac{\tan(\lambda + i\eta/2) \tan(\lambda - i\eta/2)}{4 \sin^2(2\lambda)} \right)\]

\[g_{1}^{N}(\lambda) = -\ln \left(\frac{\sinh^4(\eta/2) \cot(\lambda)}{\sin(2\lambda + i\eta) \sin(2\lambda - i\eta)} \right)\]
Integral form for $L \to \infty$

$$-2 \text{Re} \ln \langle \psi(0)|\{\rho_n(\lambda)\} \rangle = \sum_{n=1}^{\infty} \int_{-\pi/2}^{\pi/2} d\lambda \rho_n(\lambda) g_n^{\psi}(\lambda)$$

$$g_n^{\psi}(\lambda) = \sum_{j=1}^{n} g_1^{\psi} \left(\lambda + \frac{i\eta}{2} (n + 1 - 2j) \right)$$

For our translation invariant Neel and dimer states

$$g_1^N(\lambda) = -\ln \left(\frac{\tan(\lambda + i\eta/2) \tan(\lambda - i\eta/2)}{4 \sin^2(2\lambda)} \right)$$

$$g_1^N(\lambda) = -\ln \left(\frac{\sinh^4(\eta/2) \cot(\lambda)}{\sin(2\lambda + i\eta) \sin(2\lambda - i\eta)} \right)$$
1 Introduction
2 Quantum quenches in the XXZ spin chain
3 Moment of truth: comparing to real time evolution
4 The overlap TBA
 - Quench action method
 - Initial states and exact overlaps
 - Overlap TBA
 - Spin-spin correlations
5 Follow-up
6 Conclusions
The overlap TBA equations

Entropy: 1/2 of Yang-Yang expression (only paired states!)

\[
s[\{\rho_n(\lambda)\}] = \frac{1}{2} \sum_{n=1}^{\infty} \int_{-\pi/2}^{\pi/2} d\lambda \left[\rho_n(\lambda) \ln \left(1 + \frac{\rho_n^h(\lambda)}{\rho_n(\lambda)} \right) + \rho_n^h(\lambda) \ln \left(1 + \frac{\rho_n(\lambda)}{\rho_n^h(\lambda)} \right) \right]
\]

Compute saddle point of quench action

\[
S[\{\rho_n(\lambda)\}] = -\frac{2}{L} \text{Re} \ln \langle \psi(0)|\{\rho_n(\lambda)\}\rangle - s[\{\rho_n(\lambda)\}]
\]

with the condition that the Bethe-Takahashi equations must hold

\[
\rho_n(\lambda) + \rho_n^h(\lambda) = a_n(\lambda) - \sum_{m=1}^{\infty} (T_{nm} \ast \rho_m)(\lambda)
\]

Result: the overlap thermodynamic Bethe Ansatz equations

\[
\log \eta_n(\lambda) = g_n^\psi(\lambda) - \mu n + \sum_{m=1}^{\infty} T_{nm} \ast \ln (1 + \eta_m^{-1}) \quad \eta_n(\lambda) = \frac{\rho_n^h(\lambda)}{\rho_n(\lambda)}
\]

\(\mu\): chemical potential for \(S^z\) (external magnetic field).

Independently obtained for the Neel case by Caux et al. before us.
The overlap TBA equations

Entropy: 1/2 of Yang-Yang expression (only paired states!)

\[s[\{\rho_n(\lambda)\}] = \frac{1}{2} \sum_{n=1}^{\infty} \int_{-\pi/2}^{\pi/2} d\lambda \left[\rho_n(\lambda) \ln \left(1 + \frac{\rho_n(\lambda)}{\rho_n^h(\lambda)} \right) + \rho_n^h(\lambda) \ln \left(1 + \frac{\rho_n^h(\lambda)}{\rho_n(\lambda)} \right) \right] \]

Compute saddle point of quench action

\[S[\{\rho_n(\lambda)\}] = -\frac{2}{L} \Re \ln \langle \psi(0) | \{\rho_n(\lambda)\} \rangle - s[\{\rho_n(\lambda)\}] \]

with the condition that the Bethe-Takahashi equations must hold

\[\rho_n(\lambda) + \rho_n^h(\lambda) = a_n(\lambda) - \sum_{m=1}^{\infty} (T_{nm} \ast \rho_m)(\lambda) \]

Result: the overlap thermodynamic Bethe Ansatz equations

\[\log \eta_n(\lambda) = g_n^\psi(\lambda) - \mu n + \sum_{m=1}^{\infty} T_{nm} \ast \ln(1 + \eta_m^{-1}) \]

\[\eta_n(\lambda) = \frac{\rho_n^h(\lambda)}{\rho_n(\lambda)} \]

\(\mu \): chemical potential for \(S^z \) (external magnetic field).

Independently obtained for the Neel case by Caux et al. before us.
The overlap TBA equations

Entropy: 1/2 of Yang-Yang expression (only paired states!)

\[
s[\{\rho_n(\lambda)\}] = \frac{1}{2} \sum_{n=1}^{\infty} \int_{-\pi/2}^{\pi/2} d\lambda \left[\rho_n(\lambda) \ln \left(1 + \frac{\rho_n^h(\lambda)}{\rho_n(\lambda)}\right) + \rho_n^h(\lambda) \ln \left(1 + \frac{\rho_n(\lambda)}{\rho_n^h(\lambda)}\right) \right]
\]

Compute saddle point of quench action

\[
S[\{\rho_n(\lambda)\}] = -\frac{2}{L} \text{Re} \ln \langle \psi(0) | \{\rho_n(\lambda)\} \rangle - s[\{\rho_n(\lambda)\}]
\]

with the condition that the Bethe-Takahashi equations must hold

\[
\rho_n(\lambda) + \rho_n^h(\lambda) = a_n(\lambda) - \sum_{m=1}^{\infty} (T_{nm} * \rho_m)(\lambda)
\]

Result: the overlap thermodynamic Bethe Ansatz equations

\[
\log \eta_n(\lambda) = g_n^\psi(\lambda) - \mu n + \sum_{m=1}^{\infty} T_{nm} * \ln(1 + \eta_m^{-1}) \quad \eta_n(\lambda) = \frac{\rho_n^h(\lambda)}{\rho_n(\lambda)}
\]

\(\mu\): chemical potential for \(S^z\) (external magnetic field).

Independently obtained for the Neel case by Caux et al. before us.
Outline

1 Introduction
2 Quantum quenches in the XXZ spin chain
3 Moment of truth: comparing to real time evolution
4 The overlap TBA
 - Quench action method
 - Initial states and exact overlaps
 - Overlap TBA
 - Spin-spin correlations
5 Follow-up
6 Conclusions
Correlations on the XXZ chain

We want observables: spin-spin correlators

\[\langle \sigma_i \sigma_{i+n} \rangle \]

But: it was only known how to get these in the QTM formalism!

1st idea: get from oTBA to QTM.

May 2014: conference lecture by J-S Caux in New York:
discrepancy between GGE and oTBA densities \(\{ \rho_n(\lambda) \} \)

\[\rightarrow \text{first idea killed :(} \]

2nd idea: Hellmann-Feynman theorem

\[
H_{\text{XXZ}} = \sum_{i=1}^{L} \left(\sigma_i^x \sigma_{i+1}^x + \sigma_i^y \sigma_{i+1}^y + \Delta \sigma_i^z \sigma_{i+1}^z \right)
\]

\[
\Rightarrow \frac{\partial E_\Psi}{\partial \Delta} = L \langle \psi \left| (\sigma_1^z \sigma_2^z - 1) \right| \psi \rangle
\]
Correlations on the XXZ chain

We want observables: spin-spin correlators

$$\langle \sigma_i \sigma_{i+n} \rangle$$

But: it was only known how to get these in the QTM formalism!

1st idea: get from oTBA to QTM.

May 2014: conference lecture by J-S Caux in New York:
discrepancy between GGE and oTBA densities \(\{\rho_n(\lambda)\}\)

\[\rightarrow \text{first idea killed :(

2nd idea: Hellmann-Feynman theorem

\[H_{XXZ} = \sum_{i=1}^{L} \left(\sigma_i^x \sigma_{i+1}^x + \sigma_i^y \sigma_{i+1}^y + \Delta \sigma_i^z \sigma_{i+1}^z \right) \]

\[\Rightarrow \frac{\partial E_\Psi}{\partial \Delta} = L \langle \Psi | (\sigma_1^z \sigma_2^z - 1) | \Psi \rangle \]
Correlations on the XXZ chain

We want observables: spin-spin correlators

\[\langle \sigma_i \sigma_{i+n} \rangle \]

But: it was only known how to get these in the QTM formalism!

1st idea: get from oTBA to QTM.

May 2014: conference lecture by J-S Caux in New York: discrepancy between GGE and oTBA densities \(\{ \rho_n(\lambda) \} \)

\[\rightarrow \text{first idea killed :(} \]

2nd idea: Hellmann-Feynman theorem

\[H_{XXZ} = \sum_{i=1}^{L} (\sigma_i^x \sigma_{i+1}^x + \sigma_i^y \sigma_{i+1}^y + \Delta \sigma_i^z \sigma_{i+1}^z) \]

\[\Rightarrow \frac{\partial E_{\psi}}{\partial \Delta} = L \langle \psi | (\sigma_1^z \sigma_2^z - 1) | \psi \rangle \]
Correlations on the XXZ chain

We want observables: spin-spin correlators

\[\langle \sigma_i \sigma_{i+n} \rangle \]

But: it was only known how to get these in the QTM formalism!

1st idea: get from oTBA to QTM.

May 2014: conference lecture by J-S Caux in New York:

\{ \rho_n(\lambda) \} → first idea killed :(

2nd idea: Hellmann-Feynman theorem

\[
H_{XXZ} = \sum_{i=1}^{L} \left(\sigma_i^x \sigma_{i+1}^x + \sigma_i^y \sigma_{i+1}^y + \Delta \sigma_i^z \sigma_{i+1}^z \right)
\]

\[
\frac{\partial E_\Psi}{\partial \Delta} = L \langle \Psi | (\sigma_1^z \sigma_2^z - 1) | \Psi \rangle
\]
Correlations on the XXZ chain

3rd idea: a real stroke of genius (B. Pozsgay)

Hellmann-Feynman result analogous to QTM correlator formulas can be extended to a conjecture for all $\langle \sigma_i \sigma_{i+n} \rangle$

M. Mestyán and B. Pozsgay,

How does it work? (without formulas)

1. Solve oTBA for the η_n functions.
2. Solve Bethe-Takahashi for the ρ_n and ρ_n^h.
3. Check that $\langle Q_i \rangle$ agree with initial state (+ overlap sum rule $S[\{\rho^*_n(\lambda)\}] = 0$. GGE gives $-\infty$!)
4. Solve auxiliary integral equations for some auxiliary functions
5. Substitute auxiliary functions into the place of their analogues in the QTM correlator formulas
6. Compute correlator
Correlations on the XXZ chain

3rd idea: a real stroke of genius (B. Pozsgay)

Hellmann-Feynman result analogous to QTM correlator formulas
→ can be extended to a conjecture for all $\langle \sigma_i \sigma_{i+n} \rangle$

M. Mestyán and B. Pozsgay,

How does it work? (without formulas)

1. Solve oTBA for the η_n functions.
2. Solve Bethe-Takahashi for the ρ_n and ρ_n^h.
3. Check that $\langle Q_i \rangle$ agree with initial state
 (+ overlap sum rule $S[\{\rho_n^*(\lambda)\}] = 0$. GGE gives $-\infty$!)
4. Solve auxiliary integral equations for some auxiliary functions
5. Substitute auxiliary functions into the place of their analogues
 in the QTM correlator formulas
6. Compute correlator
Correlations on the XXZ chain

3rd idea: a real stroke of genius (B. Pozsgay)

Hellmann-Feynman result analogous to QTM correlator formulas can be extended to a conjecture for all $\langle \sigma_i \sigma_{i+n} \rangle$

M. Mestyán and B. Pozsgay,
How does it work? (without formulas)

1. Solve oTBA for the η_n functions.
2. Solve Bethe-Takahashi for the ρ_n and ρ^h_n.
3. Check that $\langle Q_i \rangle$ agree with initial state (+ overlap sum rule $S[\{\rho^*_n(\lambda)\}] = 0$. GGE gives $-\infty$!)
4. Solve auxiliary integral equations for some auxiliary functions
5. Substitute auxiliary functions into the place of their analogues in the QTM correlator formulas
6. Compute correlator
Correlations on the XXZ chain

3rd idea: a real stroke of genius (B. Pozsgay)

Hellmann-Feynman result analogous to QTM correlator formulas can be extended to a conjecture for all \(\langle \sigma_i \sigma_{i+n} \rangle \)

M. Mestyán and B. Pozsgay,

How does it work? (without formulas)

1. Solve oTBA for the \(\eta_n \) functions.
2. Solve Bethe-Takahashi for the \(\rho_n \) and \(\rho_n^h \).
3. Check that \(\langle Q_i \rangle \) agree with initial state
 (+ overlap sum rule \(S[\{\rho_n^*(\lambda)\}] = 0. \) GGE gives \(-\infty!\))
4. Solve auxiliary integral equations for some auxiliary functions
5. Substitute auxiliary functions into the place of their analogues in the QTM correlator formulas
6. Compute correlator
Result of iTEBD compared to GGE and oTBA

This is very strong evidence for breakdown of GGE

1. \(n = 2 \): sublattice independent (projection is immaterial)
2. Agreement with oTBA shows system has relaxed
Dimer correlators as function of Δ

Remarks:
1. oTBA \neq GGE for Neel as well (observed also by Caux et al.)
 ... but difference is too small for iTEBD to resolve
2. xx correlators show same patterns, but iTEBD is less accurate
Dimer correlators as function of Δ

Remarks:

1. $\text{oTBA} \neq \text{GGE}$ for Neel as well (observed also by Caux et al.)
 ... but difference is too small for iTEBD to resolve
2. xx correlators show same patterns, but iTEBD is less accurate
Outline

1. Introduction
2. Quantum quenches in the XXZ spin chain
3. Moment of truth: comparing to real time evolution
4. The overlap TBA
5. Follow-up
 - Role of bound states
 - Breakdown of the GETH
6. Conclusions
Outline

1. Introduction
2. Quantum quenches in the XXZ spin chain
3. Moment of truth: comparing to real time evolution
4. The overlap TBA
5. Follow-up
 - Role of bound states
 - Breakdown of the GETH
6. Conclusions
Role of bound states

XXZ spectrum: \(n \geq 2 \) strings are bound states of \(n = 1 \) magnons in such a case the \(Q_i \) do not uniquely determine the \(\rho \).

GGE: maximum entropy with given \(Q_i \).

... but that is irrelevant (\(S[\{\tilde{k}\}] = -\infty \)!)

\[
\begin{align*}
|\{k_1\}\rangle & \rightarrow \rho^n_1 \\
|\{k_2\}\rangle & \rightarrow \rho^n_2 \\
|\{k_3\}\rangle & \rightarrow \rho^n_3 \\
& \vdots \\
|\{k_N\}\rangle & \rightarrow \rho^n_N \\
\end{align*}
\]

\[
I_i^0 \rightarrow \rho_{GGE} \rightarrow |\{\tilde{k}\}\rangle
\]

G. Goldstein and N. Andrei: Phys. Rev. A 90, 043625
Outline

1. Introduction
2. Quantum quenches in the XXZ spin chain
3. Moment of truth: comparing to real time evolution
4. The overlap TBA
5. Follow-up
 - Role of bound states
 - Breakdown of the GETH
6. Conclusions
Breakdown of GETH

However: if GETH held, any state (including GGE) on the shell

$$\Gamma(\psi(0)) = \{|\{\rho_n(\lambda)\}\rangle : \langle\{\rho_n(\lambda)\}|Q_i|\{\rho_n(\lambda)\}\rangle = \langle\psi(0)|Q_i|\psi(0)\rangle\}$$

would give the same expectation value for local operators!

Indeed, this is how non-integrable systems thermalize.

However: GETH is broken!

This also shows that GGE is broken for almost all initial states!

GGE seems to work in systems without bound states

Breakdown of GETH

However: if GETH held, any state (including GGE) on the shell

\[\Gamma(\psi(0)) = \{ |\{\rho_n(\lambda)\}\rangle : \langle \{\rho_n(\lambda)\}|Q_i|\{\rho_n(\lambda)\}\rangle = \langle \psi(0)|Q_i|\psi(0)\rangle \} \]

would give the same expectation value for local operators!
Indeed, this is how non-integrable systems thermalize.

However: GETH is broken!
This also shows that GGE is broken for almost all initial states!

GGE seems to work in systems without bound states
Breakdown of GETH

However: if GETH held, any state (including GGE) on the shell

$$\Gamma(\psi(0)) = \{ |\{\rho_n(\lambda)\}\rangle : \langle\{\rho_n(\lambda)\}|Q_i|\{\rho_n(\lambda)\}\rangle = \langle\psi(0)|Q_i|\psi(0)\rangle\}$$

would give the same expectation value for local operators! Indeed, this is how non-integrable systems thermalize.

However: GETH is broken!

This also shows that GGE is broken for almost all initial states!

GGE seems to work in systems without bound states

Breakdown of GETH

However: if GETH held, any state (including GGE) on the shell

$$\Gamma(\psi(0)) = \{|\{\rho_n(\lambda)\}\rangle : \langle\{\rho_n(\lambda)\}|Q_i|\{\rho_n(\lambda)\}\rangle = \langle\psi(0)|Q_i|\psi(0)\rangle \}$$

would give the same expectation value for local operators!
Indeed, this is how non-integrable systems thermalize.

However: GETH is broken!

This also shows that GGE is broken for almost all initial states!

GGE seems to work in systems without bound states

Outline

1 Introduction
2 Quantum quenches in the XXZ spin chain
3 Moment of truth: comparing to real time evolution
4 The overlap TBA
5 Follow-up
6 Conclusions
The GGE description is not generally valid for genuinely interacting integrable systems.

Failure of GGE is caused by failure of the generalized eigenstate thermalization hypothesis. (Classical version: ergodicity on action-angle tori.)

Failure of GGE seems to be tied with existence of bound states.

The quench action correctly captures the steady state. However, it is a microscopic description!
Open issues

1. Are there more local charges? Very-very likely: NO!

2. Non-local charges?
 Known to exist for $-1 < \Delta < 1$, recently also for $\Delta > 1$!
 Must be careful (!) under what condition they can play a role:
 derivation of canonical from microcanonical ensemble assumes subsystem additivity of conserved quantities (e.g. energy)!
 Additivity is needed in TDL only: quasi-local charges?

3. Any other ideas?

The quest is open:
the ensemble describing the steady state of integrable systems is presently unknown.
Open issues

1. Are there more local charges? Very-very likely: NO!

2. Non-local charges?
 Known to exist for $-1 < \Delta < 1$, recently also for $\Delta > 1$!

 Must be careful (!) under what condition they can play a role:

 derivation of canonical from microcanonical ensemble assumes
 subsystem additivity of conserved quantities (e.g. energy)!

 Additivity is needed in TDL only: quasi-local charges?

3. Any other ideas?

The quest is open:
the ensemble describing the steady state of integrable systems is presently unknown.