Introduction	Our proposal o	LLG equation	Steady state	New results	Thermal effect	Summary 00

Enhanced and super-localised magnetic hyperthermia

Iszály Zsófia

Márián István Gábor, Szabó István, Nándori István

University of Debrecen, MTA-DE Particle Physics Research Group

Material Science Day, conference, 2018

Magnetic nanoparticles are a class of nanoparticle that can be manipulated using magnetic fields.

MNP is in the focus of much research recently:

- magnetic particle imaging,
- data storage,
- medical diagnostics and treatments,

• indirekt - synergic effect

Iron oxide nanoparticles $(e.g.Fe_3O_4)$ are the most explored magnetic nanoparticles up to date. -> biomedical applicition.

Introduction ••••	Our proposal o	LLG equation	Steady state	New results	Thermal effect	Summary 00
MAGNETIC NAN	OPARTICLE (MNP)					

Physical properties of magnetic nanoparticles:

- superparamagnetic
- diameter $\sim 10 nm 200 nm$
- single domain
- $T < T_{Curie}$ and $T_{Curie} \sim 44 \,^{\circ}\text{C}$
- biocompatible external coating
- shape anisotropy: λ_{eff}
 - $\lambda_{\rm eff} = 0$ spherical (isotropic) nanoparticle
 - $\lambda_{eff} < 0$ oblate (lens shape) nanoparticle
 - $\lambda_{\rm eff} > 0$ prolate (cigar shape) nanoparticle

Introduction	Our proposal o	LLG equation	Steady state	New results	Thermal effect	Summary 00
ADVANTAGES						

Advantages of hyperthermia:

- well localized
- no side effects
- not toxic

• several methods exist for preparing magnetic nanoparticle

Charité - Universitätsmedizin Berlin

 $f \leq 100 kHz, H = 18 kA/m$

Introduction	Our proposal	LLG equation	Steady state	New results	Thermal effect	Summary
0000	0	00		000	000	00
GOAL OF THE RE	ESEARCH					

MNP + applied field = heat generation Improve efficiency! \rightarrow by a new type of external field

- isotropic case, T = 0: rotating field \leq oscillating field [1]
- isotropic case, $T \neq 0$: rotating field \simeq oscillating field [2]
- *T* = 0: anisotropic rotating, (when it ⊥ rotating field) ≤ isotropic rotating [3,4]

Always the oscillating is the best?

[1] P.F. de Chatel, I. Nándori, J. Hakl, S. Mészáros, K. Vad, J. Phys. Cond. Matter 21, 124202 (2009).

[2] Yu. L. Raikher, V. I. Stepanov, Physical Review E 83, 021401 (2011).

[3] I. Nándori, J. Rácz, Physical Review E 86, 061404 (2012).

[4] J. Rácz, P. F. de Châtel, I. A. Szabó, L. Szunyogh, I. Nándori, Phys. Rev. E 93, 012607 (2016).

Introduction	Our proposal	LLG equation	Steady state	New results	Thermal effect	Summary 00
COMBINED MAG	NETIC FIELD					

Two cases are considered: (T = 0)A) $b_0 \perp$ rotating field **?** rotating field $(b_0 = 0)$ B) $b_0 \parallel$ rotating field **?** rotating field $(b_0 = 0)$

Introduction	Our proposal o	LLG equation ●○	Steady state	New results	Thermal effect	Summary 00			
LANDAU-LIFSCH	LANDAU-LIFSCHITZ-GILBERT EQUATION								

Deterministic Landau-Lifschitz-Gilbert (LLG) equation

Magnetic dynamics of a single-domain MNP (no thermal fluctuations)

$$\frac{\mathrm{d}}{\mathrm{d} t}\mathbf{M} = -\gamma' [\mathbf{M}\times\mathbf{H}_{\mathrm{eff}}] + \alpha' [[\mathbf{M}\times\mathbf{H}_{\mathrm{eff}}]\times\mathbf{M}]$$

Magnitude is unchanged \Rightarrow unit vector $\mathbf{M} = \mathbf{m}/m_S$

Parameters:

- dimensionless damping factor: α
- gyromagnetic ratio: $\gamma_0 = 1.76 \times 10^{11} \text{ Am}^2/\text{Js}$
- permeability of free space: $\mu_0 = 4\pi \times 10^{-7} \text{ Tm/A (or N/A^2)}$

•
$$\Rightarrow \gamma' = \mu_0 \gamma_0 / (1 + \alpha^2)$$

•
$$\Rightarrow \alpha' = \alpha \mu_0 \gamma_0 / (1 + \alpha^2)$$

Introduction	Our proposal	LLG equation	Steady state	New results	Thermal effect	Summary		
		00						

Rotating, static magnetic field and the effect of anisotropy:

A)
$$\mathbf{H}_{\text{eff}} = H_0 \ (\cos(\omega t), \sin(\omega t), \lambda_{\text{eff}}M_z + b_0),$$

B)
$$\mathbf{H}_{\text{eff}} = H_0 \ (\cos(\omega t) + b_0 + \lambda_{\text{eff}} \mathbf{M}_z, \sin(\omega t), 0),$$

- ω angular frequency,
- *M_z* z-component of the magnetization,
- $\lambda_{\rm eff}$ anisotropy parameter
- b₀ stands for the static stabilising field

Dimensionless parameters for hyperthermia: ($t_0 = 0.5 \times 10^{-10}$ s, $\omega_L = H_0 \gamma'$, $\alpha_N = H_0 \alpha'$)

$$\omega \rightarrow \omega t_0 = 2.5 \times 10^{-5},$$

 $\omega_L \rightarrow \omega_L t_0 = 0.2,$
 $\alpha_N \rightarrow \alpha_N t_0 = 0.02$

Introduction	Our proposal	LLG equation	Steady state	New results	Thermal effect	Summary
			•			

LLG equation has attracitve steady state solutions. We can rewrite LLG equation in polar coordinates in a rotating frame $(M, \theta, \varphi) \rightarrow$ but M = constant.

 \Rightarrow fixed points in the rotating frame, i.e., in the (θ , ϕ) plane:

Loss energy in a single cycle (steady state solutions)

$$\boldsymbol{E} = \mu_0 \boldsymbol{m}_S \int_0^{\frac{2\pi}{\omega}} \mathrm{d}t \left(\mathbf{H}_{\mathrm{eff}} \cdot \frac{d\mathbf{M}}{dt} \right) \Rightarrow \boldsymbol{E}(\lambda_{\mathrm{eff}}, \boldsymbol{b}_0, \omega, \alpha_N, \omega_L)$$

Introduction	Our proposal	LLG equation	Steady state	New results	Thermal effect	Summary
				000		
A) STATIC FIELD) PERPENDICULA	R TO THE PLANE C	F ROTATION			

A) Static field perpendicular to the plane of rotation

Any static field (b_0) decreases the energy loss!

\rightarrow NEGATIVE RESULT

Introduction	Our proposal o	LLG equation	Steady state	New results ○●○	Thermal effect	Summary 00
B) STATIC FIELD	IN THE PLANE OF	ROTATION				

B) Static field in the plane of rotation

No fixed point solutions, but attractive limit cycles! The limit cycle depends on the strength of the static applied field and the strength of the anisotropy parameter.

 \longrightarrow The change in the shape is enhanced when $|b_0| \sim 1, \lambda_{\rm eff} \sim 2$.

Introduction	Our proposal	LLG equation	Steady state	New results	Thermal effect	Summary
				000		
	-					

The energy loss depends on the strenght of the static applied field and the anisotropy. For positive anisotropy the energy loss over the limit cycle has been enhanced only if b_0 and λ_{eff} fulfil the following relation.

$$|b_0|+\frac{1}{2}\lambda_{\rm eff}-1=0$$

The energy loss has a very large maximum ($\lambda_{eff} = 0$). [5]

[5] Zs. Iszály, K. Lovász, I. Nagy, I. G. Márián, J. Rácz, I. A. Szabó, L. Tóth, N. F. Vas, V. Vékony, I. Nándori, JMMM 466, 452-462 (2018).

Introduction	Our proposal o	LLG equation	Steady state	New results	Thermal effect ●○○	Summary 00
STOCHASTIC LL	G RESULT					

Stochastic Landau-Lifschitz-Gilbert (LLG) equation

For experimental realisation it is a necessary to consider the influence of thermal fluctuations.

$$\frac{\mathrm{d}}{\mathrm{dt}}\mathbf{M} = -\gamma'[\mathbf{M}\times(\mathbf{H}_{\mathrm{eff}} + \mathbf{H})] + \alpha'[[\mathbf{M}\times(\mathbf{H}_{\mathrm{eff}} + \mathbf{H})]\times\mathbf{M}]$$

where the stochastic field, $\mathbf{H} = (H_x; H_y; H_z)$ consists of Cartesian components which are independent Gaussian white noise variables.

Introduction	Our proposal o	LLG equation	Steady state o	New results	Thermal effect ○●○	Summary 00	
STOCHASTIC LLG RESULT							

When the anisotropy field is assumed to be parallel to the z-axis.

Stophastic LLC equation in the processo

Stochastic LLG equation in the presence of the applied magnetic field which is a combination of static and rotating ones (in plane). The effective applied field (isotropic nanoparticle):

 $\mathbf{H}_{\rm eff} = H_0 \, \left(\cos(\omega t) + b_0, \sin(\omega t), 0 \right)$

 \longrightarrow Thermal fluctuations do not violate the enhancement and super-localisation effect!

Introduction	Our proposal o	LLG equation	Steady state	New results	Thermal effect	Summary ●○		
"SUPER-LOCALISE"								

Summary

If the static applied field is in the plane of rotation and the magnitudes of the static and rotating fields have a certain ratio (should be the same for isotropic case)

 \Rightarrow significant increase in the energy loss/cycle is observed;

 \Rightarrow it can be used to "super-localise" and enhanced the heat transfere!

In case of an inhomogeneous applied static field, tissues are heated up only where the magnitudes of the static and rotating fields are equal to each other.

 \Rightarrow experiments in progress...

Introduction	Our proposal o	LLG equation	Steady state	New results	Thermal effect	Summary ⊙●
REFERENCES						

Thank you for your attention!

https://youtu.be/v5z_HB1WzCc

This work is supported by the European COST action TD1402 (RADIOMAG). The authors gratefully thank Tombácz Etelka and for useful discussions.