Hadronic total cross section, Wilson loop correlators and the QCD spectrum

Matteo Giordano

Institute for Nuclear Research (ATOMKI)
Debrecen

Department of Physics - Debrecen University
Debrecen, 14/10/2014

MG and E. Meggiolaro

JHEP 03 (2014) 002
Rising Total Cross Sections

\[\sigma_{tot}^{(pp)} = B \log^2 \frac{s}{s_M} + Z + Y_1 \left(\frac{s_M}{s} \right)^{\eta_1} - Y_2 \left(\frac{s_M}{s} \right)^{\eta_2} \]

\[\sigma_{tot}^{(p\bar{p})} = B \log^2 \frac{s}{s_M} + Z + Y_1 \left(\frac{s_M}{s} \right)^{\eta_1} + Y_2 \left(\frac{s_M}{s} \right)^{\eta_2} \]

\[\sigma^{(hh)}(s) \sim B \log^2 s \]

\(B \approx 0.3 \text{ mb universal} \), independent of the colliding hadrons

Consistent with Froissart bound (unitarity + mass gap) [Froissart (1961)]

\[\sigma_{tot}^{(hh)}(s) \leq \frac{\pi}{m_T^2} \log^2 \frac{s}{s_0} \]
Total cross sections related to forward elastic amplitudes via optical theorem

\[\sigma_{\text{tot}} \sim \frac{1}{s} \text{Im} \mathcal{M}(s, t = 0) \]

Soft high-energy hadron-hadron scattering: \(s \to \infty, |t| \leq 1 \text{GeV}^2 \)

One of the oldest unsolved problems of strong interactions

Impact parameter representation

\[[t = -\vec{q}_\perp^2] \]

\[\mathcal{M}(s, t) = i \, 2s \int d^2 \vec{b}_\perp e^{i\vec{q}_\perp \cdot \vec{b}_\perp} A(s, \vec{b}_\perp) \]

\[\sigma_{\text{tot}} = 2 \Re \int d^2 \vec{b}_\perp A(s, \vec{b}_\perp) \]

Unitarity: \(|A(s, \vec{b}_\perp) - 1| \leq 1 \)
Total cross sections related to forward elastic amplitudes via optical theorem

\[\sigma_{\text{tot}} \underset{s \to \infty}{\approx} \frac{1}{s} \Im \mathcal{M}(s, t = 0) \]

Soft high-energy hadron-hadron scattering: \(s \to \infty, \ |t| \leq 1 \text{GeV}^2 \)
One of the oldest unsolved problems of strong interactions

Impact parameter representation for unpolarised scattering \([t = -\vec{q}^2] \]

\[\mathcal{M}(s, t) = i \ 4\pi s \int_0^\infty dbb \ J_0(bq) A(s, b) \]

\[\sigma_{\text{tot}} = 4\pi \Re \int_0^\infty dbb \ A(s, b) \]

Unitarity: \[|A(s, b) - 1| \leq 1 \]
How to Obtain a Rising Total Cross Section

Typical shape: \(A \to 0 \) at large \(b \), for \(b > b_c(s) \) the amplitude is “negligible”

\[
\sigma_{\text{tot}} \sim b_c(s)^2: \text{ how does } b_c \text{ change with } s?
\]
How to Obtain a Rising Total Cross Section

Typical shape: $A \rightarrow 0$ at large b, for $b > b_c(s)$ the amplitude is “negligible”

$\sigma_{tot} \sim b_c(s)^2$: how does b_c change with s? $b_c(s) \rightarrow 0$

$\sigma_{tot} \rightarrow 0$
Typical shape: \(A \to 0 \) at large \(b \), for \(b > b_c(s) \) the amplitude is “negligible”

\[
\sigma_{\text{tot}} \sim b_c(s)^2: \text{ how does } b_c \text{ change with } s? \quad b_c(s) \to \text{const.}
\]

\[
\sigma_{\text{tot}} \to \text{const.}
\]
How to Obtain a Rising Total Cross Section

Typical shape: $A \to 0$ at large b, for $b > b_c(s)$ the amplitude is “negligible”

$\sigma_{\text{tot}} \sim b_c(s)^2$: how does b_c change with s? $b_c(s) \to \infty$

$$\sigma_{\text{tot}} = 4\pi b_c(s)^2 \Re \int_0^\infty dx \times A(s, b_c(s)x) \to 4\pi b_c(s)^2 C$$
How to Obtain a Rising Total Cross Section

Typical shape: $A \to 0$ at large b, for $b > b_c(s)$ the amplitude is "negligible"

\[\sigma_{\text{tot}} \sim b_c(s)^2: \text{ how does } b_c \text{ change with } s? \quad b_c(s) \to \infty \]

\[\sigma_{\text{tot}} = 4\pi b_c(s)^2 \Re \int_0^\infty dx \times A(s, b_c(s) x) \to 4\pi b_c(s)^2 C \]

- $b_c(s)$ gives the energy dependence
- large b ($\gg m^{-1}$) is relevant
QCD: fundamental theory, should explain the rise of total cross sections

$$|t| \lesssim 1 \text{GeV}^2$$, PT not fully reliable \(\rightarrow\) NP approach \([Nachtmann\ (1991)]\)

1. **Partonic description of hadrons over a small time–window** (~ 2 fm)
2. **Partons do not split or annihilate**, treated as in/out states of a scattering process
3. **Lightlike trajectories approx. unchanged** in the process, only soft gluon exchange
4. **Hadronic amplitude after folding with hadronic wave function**
QCD: fundamental theory, should explain the rise of total cross sections

\[|t| \lesssim 1 \text{GeV}^2, \text{PT not fully reliable} \rightarrow \text{NP approach} \quad [\text{Nachtmann (1991)}]

1. Partonic description of hadrons over a small time–window (\(\sim 2 \text{fm} \))
2. Partons do not split or annihilate, treated as in/out states of a scattering process
3. Lightlike trajectories approx. unchanged in the process, only soft gluon exchange
4. Hadronic amplitude after folding with hadronic wave function
QCD: fundamental theory, should explain the rise of total cross sections

|t| \lesssim 1\text{GeV}^2, \text{PT not fully reliable} \rightarrow \text{NP approach [Nachtmann (1991)]}

1. Partonic description of hadrons over a small time–window (\sim 2\text{fm})
2. Partons do not split or annihilate, treated as in/out states of a scattering process
3. Lightlike trajectories approx. unchanged in the process, only soft gluon exchange
4. Hadronic amplitude after folding with hadronic wave function
Nonperturbative Approach

Partonic scattering amplitudes from the correlation function of infinite lightlike Wilson lines [Nachtmann (1991)]

To avoid IR divergences \rightarrow hadronic amplitudes

- mesons as wave packets of transverse colourless dipoles
- dipole scattering amplitudes from the correlation function of infinite lightlike Wilson loops [Dosch et al. (1996)]

Intermediate regularisation: finite hyperbolic angle χ and length $2T$ [Verlinde, Verlinde (1993)]

Extends to baryon-baryon scattering adopting a quark-diquark description [Rueter, Dosch (1996)]
Elastic meson-meson from dipole-dipole scattering \cite{Dosch et al. (1996)}

\[A(s, \vec{b}_\perp) = \langle\langle A^{(dd)}(s, \vec{b}_\perp; \nu_1, \nu_2)\rangle\rangle \]

\(\nu_i = (f_i, \vec{R}_{i\perp}) \), \(f_i \) longitudinal momentum fraction, \(\vec{R}_{i\perp} \) transverse size

\(\langle\langle . . . \rangle\rangle \): average over \(\nu_{1,2} \) with mesonic wave functions, \(\langle\langle 1 \rangle\rangle = 1 \)

\textit{dd} scattering amplitude in \(b \)-space \(\leftrightarrow \) Wilson-loop correlation function

\[-A^{(dd)}(s, \vec{b}_\perp; \nu_1, \nu_2) = \lim_{\chi \to \infty} C_M(\chi; \vec{b}_\perp, \nu_1, \nu_2) \]

\[\chi \overset{\sim}{=} \log \frac{s}{m^2} \]

\[G_M(\chi; T; \vec{b}_\perp, \nu_1, \nu_2) \equiv \frac{\langle \mathcal{W}_{C_1} \mathcal{W}_{C_2} \rangle}{\langle \mathcal{W}_{C_1} \rangle \langle \mathcal{W}_{C_2} \rangle} - 1 \]

\[C_M \equiv \lim_{T \to \infty} G_M \]

\(\langle . . . \rangle \): expectation value in the functional integral formalism
Wilson Loop Correlation Function

\[G_M(\chi; T; \vec{b}_\perp, \nu_1, \nu_2) \equiv \frac{\langle \mathcal{W}_{C_1} \mathcal{W}_{C_2} \rangle}{\langle \mathcal{W}_{C_1} \rangle \langle \mathcal{W}_{C_2} \rangle} - 1, \quad C_M \equiv \lim_{T \to \infty} G_M \]
Wilson Loop Correlation Function

NP techniques available in Euclidean space \Rightarrow Euclidean formulation

$[\text{Meggiolaro (1997), Meggiolaro (2005)}]$

$$\mathcal{G}_E(\theta; T; \vec{b}_\perp, \nu_1, \nu_2) \equiv \frac{\langle \mathcal{W}_{C_1} \mathcal{W}_{C_2} \rangle}{\langle \mathcal{W}_{C_1} \rangle \langle \mathcal{W}_{C_2} \rangle} - 1,$$

$$C_E \equiv \lim_{T \to \infty} \mathcal{G}_E$$
Analytic Continuation to Euclidean Space

Analytic continuation relations [Meggiolaro (2005), MG, Meggiolaro (2009)]

\[C_M(\chi) = C_E(\theta \rightarrow -i\chi) \]

AC + Euclidean symmetries \(\Rightarrow\) crossing relations [MG, Meggiolaro (2006)]

\[C_M(i\pi - \chi; \vec{R}_1\perp, \vec{R}_2\perp) = C_M(\chi; \vec{R}_1\perp, -\vec{R}_2\perp) \]
Nonperturbative Models

Euclidean formulation opens the way to NP techniques:

- **Stochastic Vacuum Model** [Berger, Nachtmann (1999), Shoshi et al. (2003)]
- **Instanton Liquid Model** [Shuryak, Zahed (2000), MG, Meggiolaro (2010)]
- **AdS/CFT Correspondence** [Janik, Peschanski (2000a,b), MG, Peschanski (2010)]
- **Lattice Gauge Theory** [MG, Meggiolaro (2008), MG, Meggiolaro (2010)]

Formulas

Stochastic Vacuum Model (SVM)

\[C_E = \frac{2}{3} e^{-\frac{1}{3} \cot \theta K_{SVM}} + \frac{1}{3} e^{\frac{2}{3} \cot \theta K_{SVM}} - 1 \]

Instanton Liquid Model (ILM)

\[C_E = \frac{K_{ILM}}{\sin \theta} \]

Perturbation Theory (PT)

\[C_E = K_{PT} \cot^2 \theta \]

ILM + PT (ILMp)

\[C_E = \frac{K_{ILMp}}{\sin \theta} + K'_{ILMp}(\cot \theta)^2 \]

AdS/CFT correspondence

\[C_E = e^{\frac{K_{AdS}}{\sin \theta}} + K'_{AdS} \cot \theta + K''_{AdS} \cos \theta \cot \theta - 1 \]
Lattice calculations give “true” prediction of QCD (within errors) ⇒ test analytic NP calculations

Are the analytic NP calculations compatible with the lattice results?

- SVM/ILM do not match/fit well the data and $\sigma_{\text{SVM,ILM}}^{\text{tot}} \rightarrow \text{const.}$ as $s \rightarrow \infty$.
- ILM+PT gives improved best fits but $\sigma_{\text{ILM+PT}}^{\text{tot}} \rightarrow \text{const.}$ as $s \rightarrow \infty$.
- AdS/CFT: $\sigma_{\text{tot}} \propto s^{\frac{1}{3}}$ but for onium-onium scattering in $\mathcal{N} = 4$ SYM [MG, Peschanski (2010)]

Are the lattice results compatible with rising total cross sections?

- More general fits, but care is needed because of the AC
- Constrain admissible fitting functions with physical requirements (unitarity, crossing symmetry, . . .)
- Parameterisations fitting well the data and leading to rising total cross sections exist [MG, Meggiolaro, Moretti (2012)]
NP Models, Lattice Results and Rising Cross Sections

Lattice calculations give “true” prediction of QCD (within errors) ⇒ test analytic NP calculations

Are the analytic NP calculations compatible with the lattice results?

- SVM/ILM do not match/fit well the data and \(\sigma_{tot}^{SVM,ILM} \rightarrow const. \) as \(s \rightarrow \infty \).
- ILM+PT gives improved best fits but \(\sigma_{tot}^{ILM+PT} \rightarrow const. \) as \(s \rightarrow \infty \).
- AdS/CFT: \(\sigma_{tot} \propto s^{\frac{1}{3}} \) but for onium-onium scattering in \(\mathcal{N} = 4 \) SYM [MG, Peschanski (2010)]

Are the lattice results compatible with rising total cross sections?

- More general fits, but care is needed because of the AC
- Constrain admissible fitting functions with physical requirements (unitarity, crossing symmetry, . . .)
- Parameterisations fitting well the data and leading to rising total cross sections exist [MG, Meggiolaro, Moretti (2012)]
Summary and Questions

- $\sigma_{\text{tot}} \sim$ large-b behaviour of elastic scattering amplitudes in impact-parameter space $A(s, b)$
- QCD at large-s and small-t: $A(s, b) \sim$ Wilson loop correlation function
- Analytic models fail to reproduce the lattice data and to capture the rising behaviour of σ_{tot}
- Lattice data compatible with rising behaviour, but large arbitrariness in the parameterisations

1. What are the large-s and large-b behaviour of $A(s, b)$?
2. What sets the physical scale in σ_{tot}?
3. How does σ_{tot} relate to the hadronic spectrum?
Relating Total Cross Sections and the QCD Spectrum

How to extract θ and b dependencies?

Basic idea: insert a complete set of states between the Wilson loops

$$\langle 0 | O_1(t) O_2(0) | 0 \rangle = \sum_n e^{-E_n t} \langle 0 | O_1(0) | n \rangle \langle n | O_2(0) | 0 \rangle$$

Complications: nonlocal operators, nontrivial angular dependence

Use asymptotic states with simple transformation properties

$$|\alpha\rangle = |\{n_a(\alpha)\}, \{\vec{p}\}, \{s_3\}\rangle$$

$\{n_a(\alpha)\}$: particle content, $\{\vec{p}\}$: momenta, $\{s_3\}$: 3rd component of spin

$$\sum_n |n\rangle \langle n| = \sum_\alpha \mathcal{P}_\alpha \sum_{\{s_3\}_\alpha} \int d\Omega_\alpha |\alpha\rangle \langle \alpha|$$

$$\mathcal{P}_\alpha = \frac{1}{\prod_a n_a(\alpha)!} \text{ symmetry factor, } d\Omega_\alpha \text{ phase space measure}$$
Sketch of Derivation 1

Rotate Euclidean time along the impact parameter (equivalent description)

\[G_E(\theta; T; \vec{b}_\perp, \nu_1, \nu_2) \equiv \frac{\langle \mathcal{W}_C^1 \mathcal{W}_C^2 \rangle}{\langle \mathcal{W}_C^1 \rangle \langle \mathcal{W}_C^2 \rangle} - 1 \]
Sketch of Derivation 1

Rotate Euclidean time along the impact parameter (equivalent description)

\[\tilde{G}_E(\theta; T; b; \nu_1, \nu_2) \equiv \frac{\langle \mathcal{W}_C \mathcal{W}_{\tilde{C}} \rangle}{\langle \mathcal{W}_{\tilde{C}} \rangle \langle \mathcal{W}_C \rangle} - 1 \]
Use Wilson loop operators

\[\tilde{G}_E(\theta; T; b; \nu_1, \nu_2) \equiv \frac{\langle \mathcal{W}\tilde{C}_1 \mathcal{W}\tilde{C}_2 \rangle}{\langle \mathcal{W}\tilde{C}_1 \rangle \langle \mathcal{W}\tilde{C}_2 \rangle} - 1 = \frac{\langle 0 | T \{ \hat{\mathcal{W}}\tilde{C}_1, \hat{\mathcal{W}}\tilde{C}_2 \} | 0 \rangle}{\langle 0 | \hat{\mathcal{W}}\tilde{C}_1 | 0 \rangle \langle 0 | \hat{\mathcal{W}}\tilde{C}_2 | 0 \rangle} - 1 \]
Consider loops with no temporal overlap ($b > b_0$)

$$\tilde{G}_E(\theta; T; b; \nu_1, \nu_2) \equiv \frac{\langle \mathcal{W}\tilde{C}_1 \mathcal{W}\tilde{C}_2 \rangle}{\langle \mathcal{W}\tilde{C}_1 \rangle \langle \mathcal{W}\tilde{C}_2 \rangle} - 1 = \frac{\langle 0|\hat{\mathcal{W}}\tilde{C}_1 \hat{\mathcal{W}}\tilde{C}_2 |0 \rangle}{\langle 0|\hat{\mathcal{W}}\tilde{C}_1 |0 \rangle \langle 0|\hat{\mathcal{W}}\tilde{C}_2 |0 \rangle} - 1$$
Sketch of Derivation 4

Insert a complete set of states

\[\tilde{G}_E(\theta; T; b; \nu_1, \nu_2) = \frac{\langle 0|\hat{W}_{\tilde{C}_1} \hat{W}_{\tilde{C}_2}|0\rangle}{\langle 0|\hat{W}_{\tilde{C}_1}|0\rangle \langle 0|\hat{W}_{\tilde{C}_2}|0\rangle} - 1 = \sum_{n \neq 0} \frac{\langle 0|\hat{W}_{\tilde{C}_1}|n\rangle \langle n|\hat{W}_{\tilde{C}_2}|0\rangle}{\langle 0|\hat{W}_{\tilde{C}_1}|0\rangle \langle 0|\hat{W}_{\tilde{C}_2}|0\rangle} \]
Sketch of Derivation 5

Rotate around 3-axis and translate centres to the origin, $|n_{\pm \frac{\theta}{2}}\rangle = e^{\pm i \hat{J}_3 \frac{\theta}{2}} |n\rangle$

$$\tilde{G}_E(\theta; T; b; \nu_1, \nu_2) = \sum_{n \neq 0} e^{-bE_n} e^{i \theta S_3 n} \frac{\langle 0 | \hat{\mathcal{W}}_0(\nu_1) | n_{\frac{\theta}{2}} \rangle \langle n_{-\frac{\theta}{2}} | \hat{\mathcal{W}}_0(\nu_2) | 0 \rangle}{\langle 0 | \hat{\mathcal{W}}_0(\nu_1) | 0 \rangle \langle 0 | \hat{\mathcal{W}}_0(\nu_2) | 0 \rangle}$$
Sketch of Derivation 5

Rotate around 3-axis and translate centres to the origin, \(|n_{\pm\frac{\theta}{2}}\rangle = e^{\pm i\hat{J}_3\frac{\theta}{2}} |n\rangle \)

\[
\tilde{G}_E(\theta; T; b; \nu_1, \nu_2) = \sum_{n \neq 0} e^{-bE_n} e^{i\theta S_3 n} \frac{\langle 0|\hat{W}_0(\nu_1) |n_{\theta/2}\rangle \langle n_{-\theta/2}|\hat{W}_0(\nu_2)|0\rangle}{\langle 0|\hat{W}_0(\nu_1)|0\rangle \langle 0|\hat{W}_0(\nu_2)|0\rangle}
\]
Take $T \to \infty$

$$\tilde{C}_E(\theta; b; \nu_1, \nu_2) = \sum_{n \neq 0} e^{-bE_n} e^{i\theta S_{3n}} \frac{\langle 0|\hat{W}_0(\nu_1)|n_{\theta} \rangle \langle n_{-\theta}^2|\hat{W}_0(\nu_2)|0\rangle}{\langle 0|\hat{W}_0(\nu_1)|0\rangle \langle 0|\hat{W}_0(\nu_2)|0\rangle}$$

$$= \sum_{\alpha \neq 0} P_\alpha \sum_{\{s_3\}_\alpha} e^{i\theta S_{3\alpha}} \int d\Omega_\alpha e^{-bE_\alpha} W_\alpha^+ (\{\vec{p}_{\theta/2}\}, \{s_3\}; \nu_1) W_\alpha^- (\{\vec{p}_{-\theta/2}\}, \{s_3\}; \nu_2)$$

$E_\alpha, S_{3\alpha}$: total energy and 3rd component of spin in state α

$\{\vec{p}_{\pm \theta/2}\}$: all momenta rotated around 3-axis

Selection rule: W_α^\pm nonzero only for vanishing discrete charges (electric charge, baryon number, strangeness, . . .)

$$Q = B = S = \ldots = 0$$
Sketch of Derivation 7

Change of variables (\sim momentum components along the original loops)

\[x_\pm = (\vec{p}_{\pm \theta})_1 = \cos \frac{\theta}{2} p_1 \pm \sin \frac{\theta}{2} p_2 \quad \vec{p}_{\pm \theta} = (x_\pm, \pm \cot \theta x_\pm \mp \frac{1}{\sin \theta} x_\mp, p_3) \]

\[\tilde{C}_E(\theta; b; \nu_1, \nu_2) = \sum_{\alpha \neq 0} \mathcal{P}_\alpha \sum_{\{s_3\}_\alpha} e^{i\theta S_{3\alpha}} \int d\Omega'_\alpha e^{-bE_\alpha} \]

\[\times \mathcal{W}^+ \left(\{(x_+, \cot \theta x_+ - \frac{1}{\sin \theta} x_-, p_3)\}, \{s_3\}; \nu_1 \right) \]

\[\times \mathcal{W}^- \left(\{(x_-, -\cot \theta x_- + \frac{1}{\sin \theta} x_+, p_3)\}, \{s_3\}; \nu_2 \right) \]

\[d\Omega_\alpha = \prod_{a,i} \left[\frac{d^3p}{(2\pi)^3 2\varepsilon} \right]_{a,i} \rightarrow \prod_{a,i} \frac{1}{\sin \theta} \left[\frac{dx_+ dx_- dp_3}{(2\pi)^3 2\varepsilon} \right]_{a,i} = \frac{d\Omega'_\alpha}{(\sin \theta)^{\mathcal{N}_\alpha}} \]

\[\varepsilon = \sqrt{m^2 + \vec{p}^2} = \sqrt{m^2 + \left(\frac{x_+ + x_-}{2 \cos(\theta/2)} \right)^2 + \left(\frac{x_+ - x_-}{2 \sin(\theta/2)} \right)^2 + p_3^2} = \varepsilon(\theta) \]
Assumptions:

1. The analytic continuation can be performed term by term
 [crucial assumption, requires good convergence properties]

2. W^{\pm}_{α} expressed in terms of x_{\pm} are analytic in θ
 [$\delta(\sum x_{+})$ and $\delta(\sum x_{-})$ in W^{\pm}_{α} due to translation invariance]

Complex $z = \theta - i\chi$

\[
\frac{e^{izS_{3\alpha}}}{(\sin z)^{N_{\alpha}}} \int d\Omega' e^{-bE_{\alpha}} W^{+}_{\alpha} \left(\{(x_{+}, \cot z x_{+} - \frac{1}{\sin z} x_{-}, p_{3})\}, \{s_{3}\}; \nu_{1} \right) \\
\times W^{-}_{\alpha} \left(\{(x_{-}, -\cot z x_{-} + \frac{1}{\sin z} x_{+}, p_{3})\}, \{s_{3}\}; \nu_{2} \right)
\]
Analytic Continuation and Large-χ Limit

Assumptions:

1. the analytic continuation can be performed term by term
 [crucial assumption, requires good convergence properties]

2. W_{α}^{\pm} expressed in terms of x_{\pm} are analytic in θ
 [$\delta(\sum x_{\pm})$ and $\delta(\sum x_{\pm})$ in W_{α}^{\pm} due to translation invariance]

Complex $z = \theta - i\chi$

$$e^{izS_{3\alpha}} \int \frac{d\Omega_{\alpha}^{\prime} e^{-bE_{\alpha}} W_{\alpha}^{+}(\{ (x_{+}, \cot z x_{+} - \frac{1}{\sin z} x_{-}, p_{3}) \}, \{ s_{3} \}; \nu_{1})}{(\sin z)^{N_{\alpha}}} \times W_{\alpha}^{-}(\{ (x_{-}, - \cot z x_{-} + \frac{1}{\sin z} x_{+}, p_{3}) \}, \{ s_{3} \}; \nu_{2})$$

Integration is convergent as $\Re \varepsilon > 0$ for $\theta \in (0, \pi)$ [$E_{\alpha} = \sum \varepsilon$]
Analytic Continuation and Large-χ Limit

Assumptions:

1. the analytic continuation can be performed term by term
 [crucial assumption, requires good convergence properties]

2. \(W_{\alpha}^{\pm} \) expressed in terms of \(x_{\pm} \) are analytic in \(\theta \)
 \[\delta(\sum x_{+}) \text{ and } \delta(\sum x_{-}) \text{ in } W_{\alpha}^{\pm} \text{ due to translation invariance} \]

Complex \(z = \theta - i\chi \)

\[
e^{izS_{3\alpha}} \frac{1}{(\sin z)^{N_{\alpha}}} \int d\Omega^{\prime}_{\alpha} e^{-bE_{\alpha}} W_{\alpha}^{+}(\{(x_{+}, \cot zx_{+} - \frac{1}{\sin z} x_{-}, p_{3})\}, \{s_{3}\}; \nu_{1})
\]
\[
	imes W_{\alpha}^{-}(\{(x_{-}, -\cot zx_{-} + \frac{1}{\sin z} x_{+}, p_{3})\}, \{s_{3}\}; \nu_{2})
\]

Take \(\theta \to 0 \)
Analytic Continuation and Large-χ Limit

Assumptions:

1. the analytic continuation can be performed term by term
 [crucial assumption, requires good convergence properties]

2. W_{\pm}^{α} expressed in terms of x_{\pm} are analytic in θ
 [$\delta(\sum x_{+})$ and $\delta(\sum x_{-})$ in W_{\pm}^{α} due to translation invariance]

Complex $z = \theta - i\chi$

$$i^{N_{\alpha}}e^{\chi S_{3\alpha}}/(\sinh \chi)^{N_{\alpha}} \int d\Omega' e^{-bE_{\alpha}} W_{\alpha}^{+}(\{(x_{+}, i\coth \chi x_{+} - i\frac{1}{\sinh \chi} x_{-}, p_{3})\}, \{s_{3}\}; \nu_{1})$$

$$\times W_{\alpha}^{-}(\{(x_{-}, -i\coth \chi x_{-} + i\frac{1}{\sinh \chi} x_{+}, p_{3})\}, \{s_{3}\}; \nu_{2})$$

Take $\theta \to 0$, $\chi \to \infty$
Analytic Continuation and Large-χ Limit

Assumptions:

1. the analytic continuation can be performed term by term
 [crucial assumption, requires good convergence properties]
2. W_{α}^{\pm} expressed in terms of x_{\pm} are analytic in θ
 [$\delta(\sum x_{+})$ and $\delta(\sum x_{-})$ in W_{α}^{\pm} due to translation invariance]

Complex $z = \theta - i\chi$

$$(2i)^{N_{\alpha}} e^{\chi(S_{3\alpha} - N_{\alpha})} \int d\Omega'_{\alpha} e^{-\tilde{E}_{\alpha}} W_{\alpha}^{+}(\{(x_{+}, ix_{+}, p_{3})\}, \{s_{3}\}; \nu_{1})$$

$$\times W_{\alpha}^{-}(\{(x_{-}, -ix_{-}, p_{3})\}, \{s_{3}\}; \nu_{2})$$

Take $\theta \rightarrow 0$, $\chi \rightarrow \infty$: integrand independent of χ

For $\chi \rightarrow \infty$, $\varepsilon \rightarrow \sqrt{m^2 + p_{3}^2} = \tilde{\varepsilon}$, independent of χ; set $\tilde{E}_{\alpha} = \sum \tilde{\varepsilon}$
Analytic Continuation and Large-χ Limit

Assumptions:

1. The analytic continuation can be performed term by term [crucial assumption, requires good convergence properties]

2. W_{α}^{\pm} expressed in terms of x_{\pm} are analytic in θ [$\delta(\sum x_{+})$ and $\delta(\sum x_{-})$ in W_{α}^{\pm} due to translation invariance]

Complex $z = \theta - i\chi$

$$\begin{align*}
(2i)^{N_{\alpha}} e^{\chi(S_{3\alpha} - N_{\alpha})} & \int d\tilde{\Omega}_{\alpha} e^{-b\tilde{E}_{\alpha}} \int dX_{\alpha}^{+} W_{\alpha}^{+}(\{(x_{+}, ix_{+}, p_{3})\}, \{s_{3}\}; \nu_{1}) \\
& \times \int dX_{\alpha}^{-} W_{\alpha}^{-}(\{(x_{-}, -ix_{-}, p_{3})\}, \{s_{3}\}; \nu_{2}) \\
\end{align*}$$

$$d\tilde{\Omega}_{\alpha} = \prod_{a,i} \left[\frac{dp_{3}}{(2\pi)^{2\varepsilon}} \right]_{a,i} \quad dX_{\alpha}^{\pm} = \prod_{a,i} \left[\frac{dx_{\pm}}{(2\pi)^{2\varepsilon}} \right]_{a,i}$$
Analytic Continuation and Large-\(\chi\) Limit

Assumptions:

1. The analytic continuation can be performed term by term [crucial assumption, requires good convergence properties]
2. \(W^\pm_\alpha\) expressed in terms of \(x^\pm\) are analytic in \(\theta\)
 \([\delta(\sum x^+) \text{ and } \delta(\sum x^-) \text{ in } W^\pm_\alpha \text{ due to translation invariance}]

Complex \(z = \theta - i\chi\)

\[
(2i)^{N_\alpha} e^{\chi(S^\text{max}_{3\alpha} - N_\alpha)} \int d\tilde{\Omega}_\alpha e^{-b\tilde{E}_\alpha} \int dX^+_\alpha W^+_\alpha (\{(x^+, ix^+, p_3)\}, \{s\}; \nu_1) \times \int dX^-_\alpha W^-_\alpha (\{(x^-, -ix^-, p_3)\}, \{s\}; \nu_2)
\]

Leading contribution at large \(\chi\) from maximal \(S^\text{max}_{3\alpha} = \sum_a n_a(\alpha)s^{(a)}\), with \(s^{(a)i} = s^{(a)}\) for all particles
Large-b Expansion

We are interested in $b \gg m^{-1}$: set $p_3 = \frac{\tilde{p}_3}{\sqrt{bm}}$

$$\tilde{\varepsilon} = \sqrt{m^2 + p_3^2} = m \left(1 + \frac{1}{2bm} \left(\frac{\tilde{p}_3}{m} \right)^2 + \mathcal{O} \left(\frac{1}{(bm)^2} \right) \right)$$

$$\frac{dp_3}{2\pi \tilde{\varepsilon}} = \frac{d\tilde{p}_3}{4\pi m \sqrt{bm}} \left(1 + \mathcal{O} \left(\frac{1}{bm} \right) \right)$$

$$\int dX^\pm_\alpha W^\pm_\alpha \left(\{ x_\pm, \pm ix_\pm, \frac{\tilde{p}_3}{\sqrt{bm}} \} \right), \{ s_3^{(a)} \}; \nu) = \mathcal{F}^\pm_\alpha (\nu) + \ldots$$

For large b the integration in $d\tilde{p}_3$ becomes Gaussian

$$\frac{dp_3}{2\pi \tilde{\varepsilon}} e^{-b\tilde{\varepsilon}} \rightarrow \frac{d\tilde{p}_3}{4\pi m \sqrt{bm}} e^{-bm - \frac{1}{2} \left(\frac{\tilde{p}_3}{m} \right)^2} = \frac{e^{-bm}}{2\sqrt{2\pi bm}}$$

If $\mathcal{F}^\pm_\alpha (\nu_{1,2})$ vanish \rightarrow extra inverse powers of bm and constant factors
Asymptotic Behaviour of the Correlator

At large χ and large b, setting $\tilde{C}_M(\chi; b; \nu_1, \nu_2) \equiv \tilde{C}_E(-i\chi; b; \nu_1, \nu_2)$

$$\tilde{C}_M(\chi; b; \nu_1, \nu_2) \sim \sum_{\chi \to \infty, b \to \infty} \mathcal{P}_\alpha i^{N_\alpha} \mathcal{F}_\alpha^+(\nu_1) \mathcal{F}_\alpha^-(\nu_2) \prod_a w_a n_a(\alpha)$$

up to $\mathcal{O}(e^{-\chi})$ and $\mathcal{O}(b^{-1})$

$$w_a(\chi, b) = \frac{1}{\sqrt{2\pi bm(a)}} e^{\chi [s^{(a)} - 1]} e^{-bm(a)} = \frac{1}{\sqrt{2\pi bm(a)}} e^{[R_{\text{eff}}^{(a)}(s) - b]m(a)}$$

Reminiscent of exchange of spin-J particle \rightarrow contribution $\propto s^{J-1}$

Contribution of state α non-negligible only for

$$b \lesssim R_{\text{eff}}^{[\alpha]} = \frac{\sum_a n_a(\alpha) m^{(a)} R^{(a)}(s)}{\sum_a n_a(\alpha) m^{(a)}} \quad R^{(a)}(s) \equiv \frac{s^{(a)} - 1}{m^{(a)}}$$
\(\tilde{C}_M \) enters the expression for \(\sigma_{\text{tot}} \):
\[
\sigma_{\text{tot}} = 2 \text{Re} \int d^2 \vec{b}_\perp A(s, \vec{b}_\perp) = -4\pi \text{Re} \int_0^\infty dbb \langle\langle \tilde{C}_M(\chi; b; \nu_1, \nu_2) \rangle\rangle
\]

What is the characteristic \(b_c \)?
\[
b_c(s) = \max_{\alpha} R_{\text{eff}}^{[\alpha]}(s) = \max_a R_{\text{eff}}^{(a)}(s) = \left[\max_a \frac{s^{(a)} - 1}{m^{(a)}} \right] \chi = \frac{\tilde{s} - 1}{\tilde{m}} \chi
\]

If higher-spin \((s^{(a)} > 1) \) stable states exist
\[
\sigma_{\text{tot}} \propto b_c(s)^2 \sim \left(\frac{\tilde{s} - 1}{\tilde{m}} \right)^2 \log^2 s
\]

If \(\tilde{s} < 1 \), \(\sigma_{\text{tot}} \to 0; \) if \(\tilde{s} = 1 \), \(\sigma_{\text{tot}} \to \text{const.} \)
\(\tilde{C}_M \) enters the expression for \(\sigma_{\text{tot}} \):

\[
\sigma_{\text{tot}} = 2 \text{Re} \int d^2 \vec{b}_\perp A(s, \vec{b}_\perp) = -4\pi \text{Re} \int_0^\infty d b b \langle\langle \tilde{C}_M(\chi; b; \nu_1, \nu_2) \rangle\rangle
\]

What is the characteristic \(b_c \)?

\[
b_c(s) = \max_\alpha R^{[\alpha]}_{\text{eff}}(s) = \max_a R^{(a)}_{\text{eff}}(s) = \left[\max_a \frac{s^{(a)} - 1}{m^{(a)}} \right] \chi = \frac{\tilde{s} - 1}{\tilde{m}} \chi
\]

If higher-spin (\(s^{(a)} > 1 \)) stable states exist

\[
\sigma_{\text{tot}} \propto b_c(s)^2 \sim \left(\frac{\tilde{s} - 1}{\tilde{m}} \right)^2 \log^2 s
\]

If \(\tilde{s} < 1 \), \(\sigma_{\text{tot}} \to 0 \); if \(\tilde{s} = 1 \), \(\sigma_{\text{tot}} \to \text{const} \).
Scaling Variable

Can we get something more? Change variables to

\[z = \frac{1}{\sqrt{\chi}} e^{\chi(\tilde{s} - 1)} e^{-\tilde{m}b} \]

\[\frac{dz}{z} = -\tilde{m}db \]

and take \(\chi \to \infty \) with \(z \) fixed

\[w_a(\chi, z) = \exp \left\{ m^{(a)} \chi \left[\frac{s^{(a)} - 1}{m^{(a)}} - \frac{\tilde{s} - 1}{\tilde{m}} \right] \right\} \]

\[\sqrt{2\pi} \frac{m^{(a)}}{\tilde{m}} \chi^{-\frac{m^{(a)}}{\tilde{m}}} \log \frac{e^{\chi(\tilde{s} - 1)}}{\sqrt{\chi z}} \]

\[\rightarrow \begin{cases} 0 & (m^{(a)}, s^{(a)}) \neq (\tilde{m}, \tilde{s}) \\ \frac{z}{\sqrt{2\pi[\tilde{s} - 1]}} & (m^{(a)}, s^{(a)}) = (\tilde{m}, \tilde{s}) \end{cases} \]

Only states containing particle/antiparticle \((\tilde{m}, \tilde{s}) \) survive
Large-χ, b behaviour encoded in

\[\lim_{\chi, b \to \infty} \tilde{C}_M(\chi; b; \nu_1, \nu_2) \bigg|_{z \text{ fixed}} = g(z; \nu_1, \nu_2) - 1 \]

\(\langle \tilde{C}_M \rangle \) bounded (unitarity) for all physical processes \(\to \) expect \(\tilde{C}_M \) bounded

\(\to |g(z; \nu_1, \nu_2)| \leq 1 \) bounded \(\forall z, \nu_1, \nu_2 \)

\[\sigma_{tot} \approx \frac{4\pi}{\bar{m}^2} \text{Re} \langle J \rangle \quad J = \int_0^{e^{-\eta}} \frac{dz}{z} \log \frac{e^{-\eta}}{z} [1 - g(z; \nu_1, \nu_2)] \]

\[\eta = \chi(\tilde{s} - 1) - \frac{1}{2} \log \chi \sim (\tilde{s} - 1) \log s \]

Look for \(O(\eta^2) \) terms in \(J \)

\[J = \frac{1}{2} \eta^2 [1 - g_\infty(\nu_1, \nu_2)] + O(\eta) \]
Universal “Froissart-like” Total Cross Section

\[\sigma_{\text{tot}} \sim \left. \frac{2\pi(\tilde{s} - 1)^2}{\tilde{m}^2} \right|_{s \to \infty} \left[1 - \text{Re} \langle \langle g_{\infty}(\nu_1, \nu_2) \rangle \rangle \right] \eta^2 + \mathcal{O}(\eta) \]

Bound on \(\sigma_{\text{tot}} \)

\[\sigma_{\text{tot}} \leq \left. \frac{4\pi(\tilde{s} - 1)^2}{\tilde{m}^2} \log^2 \frac{s}{m^2} \right|_{s \to \infty} \]

If \(\text{Re} \, g_{\infty}(\nu_1, \nu_2) = 0 \) (“black disk assumption”), \(\sigma_{\text{tot}} \) is universal and the leading \(\mathcal{O}(\eta^2) \) term is entirely determined by the spectrum

\[\sigma_{\text{tot}} \sim \left. \frac{2\pi(\tilde{s} - 1)^2}{\tilde{m}^2} \log^2 \frac{s}{m^2} \right|_{s \to \infty} \]

True also if \(g \) oscillates at infinity, unaffected by small-\(b \) behaviour.
Universal “Froissart-like” Total Cross Section

\[\sigma_{\text{tot}} \underset{s \to \infty}{\sim} \frac{2\pi(\tilde{s} - 1)^2}{\tilde{m}^2} [1 - \text{Re} \langle \langle g_\infty(\nu_1, \nu_2) \rangle \rangle] \eta^2 + O(\eta) \]

Bound on \(\sigma_{\text{tot}} \)

\[\sigma_{\text{tot}} \underset{s \to \infty}{\ll} \frac{4\pi(\tilde{s} - 1)^2}{\tilde{m}^2} \log^2 \frac{s}{m^2} \]

If \(\text{Re} \ g_\infty(\nu_1, \nu_2) = 0 \) (“black disk assumption”), \(\sigma_{\text{tot}} \) is universal and the leading \(O(\eta^2) \) term is entirely determined by the spectrum

\[\sigma_{\text{tot}} \underset{s \to \infty}{\sim} \frac{2\pi(\tilde{s} - 1)^2}{\tilde{m}^2} \log^2 \frac{s}{m^2} \]

True also if \(g \) oscillates at infinity, unaffected by small-\(b \) behaviour
Universal “Froissart-like” Total Cross Section

\[\sigma_{\text{tot}} \sim \frac{2\pi (\tilde{s} - 1)^2}{\tilde{m}^2} [1 - \text{Re} \langle \langle g_\infty (\nu_1, \nu_2) \rangle \rangle] \eta^2 + O(\eta) \]

Bound on \(\sigma_{\text{tot}} \)

\[\sigma_{\text{tot}} \lesssim \frac{4\pi (\tilde{s} - 1)^2}{\tilde{m}^2} \log^2 \frac{s}{m^2} \]

If \(\text{Re} g_\infty (\nu_1, \nu_2) = 0 \) (“black disk assumption”), \(\sigma_{\text{tot}} \) is universal and the leading \(O(\eta^2) \) term is entirely determined by the spectrum

\[\sigma_{\text{tot}} \sim \frac{2\pi (\tilde{s} - 1)^2}{\tilde{m}^2} \log^2 \frac{s}{m^2} \]

True also if \(g \) oscillates at infinity, unaffected by small-\(b \) behaviour
Maximise $\frac{s^{(a)} - 1}{m^{(a)}}$ over asymptotic stable states of QCD in isolation

Data from [Nubase (2003), Gregory at al. (2012)]

Ω^\pm baryon, $m_{\Omega^\pm} \simeq 1.67$ GeV, $J^P = \frac{3}{2}^+$, $|Q| = 1$, $|S| = 3$

$B_{\text{exp}} \simeq 0.69 \div 0.73$ GeV$^{-2}$ vs. $B_{\text{th}} \simeq 0.56$ GeV$^{-2}$

Glueball spectrum: $B_Q \gtrsim 1.6B_{\text{exp}}$, large unquenching effects?
“Froissart-like” Bound

Froissart-Łukaszuk-Martin bound

\[
\lim_{s \to \infty} \frac{\sigma_{\text{tot}}}{\log^2 \frac{s}{m^2}} \leq \frac{\pi}{m^2_{\pi}} \simeq 59 \text{ mb}
\]

Our “Froissart-like” bound is much more restrictive

\[
\lim_{s \to \infty} \frac{\sigma_{\text{tot}}}{\log^2 \frac{s}{m^2}} \leq 2B_{\text{th}} = \frac{\pi}{m^2_{\Omega}} \simeq 0.44 \text{ mb}
\]

In the \(N_f = 2\) chiral limit our “Froissart-like” bound is stable

- masses of nuclei, baryons, and non-Goldstone mesons are expected to change only by a few MeV
- the presence of massless pions can at most make some particle unstable, not the other way around
- \(\Omega\) expected to remain stable and with approximately the same mass, so it is expected to still be the dominant particle

[MG and E. Meggiolaro, in preparation]
Conclusions and Outlook

Main results:

- $\sigma_{\text{tot}} \sim B \log^2 s$, if higher-spin stable states exist
- “Froissart-like” bound $B \leq \frac{4\pi}{\mu^2}$, $\frac{1}{\mu} = \max s^{(a)} \frac{1}{m^{(a)}}$ determined by the spectrum with $\mu = 2m_\Omega$
 - more restrictive and stable in the chiral limit
- Under the “black disk assumption”, σ_{tot} is universal and entirely determined from the spectrum, $B_{\text{th}} = \frac{2\pi}{\mu^2} \sim B_{\text{exp}}$ within $20 \div 25$
 - first subleading term in σ_{tot} is $\propto \log s \cdot \log \log s$ and universal
 - universal black-disk amplitude for elastic scattering

Open issues:

- Why large unquenching effects?
- What relation with Regge theory?
References

- H. Verlinde and E. Verlinde, hep-th/9302104
- M. Giordano and R. Peschanski, JHEP 05 (2010) 037
- M. Giordano, E. Meggiolaro and N. Moretti, JHEP 09 (2012) 031
- E. Gregory at al., JHEP 10 (2012) 170
Subleading Terms

\[\sigma_{\text{tot}} \sim 2\pi(\tilde{s} - 1)^2 \frac{1}{\tilde{m}^2} [1 - \text{Re} \langle \langle g_\infty(\nu_1, \nu_2) \rangle \rangle] \eta^2 + O(\eta) \]

\[\eta = \chi(\tilde{s} - 1) - \frac{1}{2} \log \chi \]

If extra inverse powers \((bm)^{-\frac{\lambda}{2}}\) are present in \(W_\alpha, \overline{W}_\alpha\)

\[\eta = \chi(\tilde{s} - 1) - \frac{1 + \lambda}{2} \log \chi \]

First subleading term in \(\sigma_{\text{tot}}\) is \(\propto \chi \log \chi \sim \log s \cdot \log \log s\)
If \(g_\infty (\nu_1, \nu_2) = 0 \)

\[
\mathcal{M}(s, t) \underset{s \to \infty}{\sim} 4\pi i s \frac{\eta}{q \tilde{m}} J_1 \left(\frac{q \eta}{\tilde{m}} \right) = i s \sigma_{\text{tot}} \frac{2J_1(\varrho)}{\varrho}
\]

\(\varrho = \frac{\sqrt{-t \eta}}{\tilde{m}} \approx \frac{\sqrt{-t \log \frac{s}{m_1 m_2}}}{\tilde{m}} \)

- Black disk amplitude (purely imaginary):
 - total elastic cross section \(\frac{\sigma_{\text{el}}}{\sigma_{\text{tot}}} = \frac{1}{2} \)
 - \(B \)-slope \(B \equiv \frac{d}{dt} \log \frac{d\sigma_{\text{el}}}{dt} \bigg|_{t=0} \) satisfies \(\frac{8\pi B}{\sigma_{\text{tot}}} = 1 \)
 - zero at \(t_0 \), \(\frac{|t_0|\sigma_{\text{tot}}}{2\pi x_0^2} = 1 \), \(x_0 \approx 3.8 \approx \) dip in \(\frac{d\sigma_{\text{el}}}{dt} \bigg|_{t_{\text{dip}}} \) \[\frac{|t_{\text{dip}}|\sigma_{\text{tot}}}{2\pi x_0^2} \bigg|_{\exp} \) well above 1

\[\left[\frac{\sigma_{\text{el}}}{\sigma_{\text{tot}}} \right]_{\exp, \sqrt{s}=7 \text{ TeV}} \approx 0.26 \]
\[\left[\frac{8\pi B}{\sigma_{\text{tot}}} \right]_{\exp, \sqrt{s}=7 \text{ TeV}} \approx 1.97 \]

\[\text{[Csörgő, Nemes (2014)]} \]

\(\mathcal{M}(s, t)/\mathcal{M}(s, 0) = 2J_1(\varrho)/\varrho \) depends on \(t \) only through \(\varrho \)
- universal function of \(\varrho \)
- entire of order 1 in \(\varrho \)

\[\text{[Auberson, Kinoshita, Martin (1971)]} \]
Main assumption: possibility to interchange the order of \sum_α and $\theta \to -i\chi$

Partially justified by the short-range (a) nature of strong interactions

LSZ framework: $W_\alpha, \overline{W}_\alpha \leftrightarrow \int [d^4x e^{ip\cdot x}]^n \langle 0| T\{\hat{\mathcal{W}} \Phi_1(x_1) \ldots \Phi_n(x_n)\}|0\rangle$

For most of the configurations $|x_i - x_j|/a \gg 1$, mutual interactions negligible, interaction with Wilson loop only local

$$W_\alpha(\{\vec{p}\}, \{s_3\}; \nu_1) \simeq \prod_{a,i} \frac{\langle 0|\hat{\mathcal{W}}_0(\nu_1)|\vec{p}^{(a)}_i, s_3^{(a)}_i\rangle}{\langle 0|\hat{\mathcal{W}}_0(\nu_1)|0\rangle} = \prod_{a,i} W_a(\vec{p}^{(a)}_i, s_3^{(a)}_i; \nu_1)$$

$$\tilde{C}_E \simeq \exp \left\{ \sum_a \sum_{s_3} e^{i\theta s_3} \int d\Omega_a \ e^{-b\varepsilon^{(a)}} \ W_a(\vec{p}_{a \frac{\theta}{2}}, s_3; \nu_1) \overline{W}_a(\vec{p}_{a - \frac{\theta}{2}}, s_3; \nu_2) \right\} - 1$$

Resummation and analytic continuation commute
Lattice calculations give “true” prediction of QCD (within errors) ⇒ test analytic NP calculations

Numerical predictions and fits of model functions of SVM (top) and ILM (bottom) to lattice data

Lattice setup:

- Wilson action for $SU(3)$ gauge theory (*quenched* QCD)
- 16^4 hypercubic lattice, $a \simeq 0.1$ fm
- longest available loops ($L \simeq 8$)
- $\cot \theta = 0, \pm 1/2, \pm 1, \pm 2$
- $|\vec{r}_{1,2\perp}| = 1a, |\vec{d}_\perp| = 0, 1, 2a$
- “zzz”: $\vec{d}_\perp \parallel \vec{r}_{1\perp} \parallel \vec{r}_{2\perp}$
- “zyy”: $\vec{d}_\perp \perp \vec{r}_{1\perp} \parallel \vec{r}_{2\perp}$
- “ave”: average over orientations
Rising Cross Sections From the Lattice

Parameterisation: \(C_E = e^{K_E} - 1 \)
\[
K_E = \sum_i f_i(\theta) g_i(\vec{b}_\perp, \nu_1, \nu_2)
\]

Unitarity constraint: \(\text{Re } K_M \leq 0 \)
\[
[K_M(\chi) = K_E(\theta \rightarrow -i\chi)]
\]

At large \(b \), \(K_E, K_M \sim (\sum_j) e^{-\mu_j b} \)

If \(K_M \sim \chi^p e^{n\chi} e^{-\mu b} \sim (\log s)^p s^n e^{-\mu b} \)
\[
\sigma_{\text{tot}}^{(hh)} \sim B \log^2 s
\]

with \(B = \frac{2\pi n^2}{\mu^2} \) universal

Estimate of \(B \) fairly agrees with \(B_{\text{exp}} \)
(although quenched and with rather large errors)

Where does this come from?

\[
K_E = \frac{K_1}{\sin \theta} + K_2(\frac{\pi}{2} - \theta)^3 \cos \theta
\]
More on the Scaling Function

Two possible kinds of dominant particle

(1) Self-conjugate boson \((Q = B = S = \ldots = 0)\)

(2) Boson with nonzero charges, or fermion

\[
\tilde{C}_M \to g(z; \nu_1, \nu_2) - 1 = \left\{ \begin{array}{ll}
\sum_{n=1}^{\infty} \frac{1}{n!} C^0_n(\nu_1, \nu_2) z^n \\
\sum_{n=1}^{\infty} \frac{1}{(2n)!} C_n(\nu_1, \nu_2) z^{2n}
\end{array} \right. \quad (1)
\]
Universal “Froissart-like” Total Cross Section

\[\sigma_{\text{tot}} \simeq \frac{4\pi}{\tilde{m}^2} \text{Re} \langle J \rangle \]

\[J = \int_0^{e^\eta} \frac{dz}{z} \log \frac{e^\eta}{z} \left[1 - g(z; \nu_1, \nu_2) \right] \]

\[e^\eta = \frac{e^{\chi(\tilde{s} - 1)}}{\sqrt{\chi}} \]

\[\eta = \chi(\tilde{s} - 1) - \frac{1}{2} \log \chi \]

Look for \(\mathcal{O}(\eta^2) \) terms in \(J = J_1 - J_2 + J_3 \)

\[J_1 = \int_{1}^{e^\eta} \frac{dz}{z} \log \frac{e^\eta}{z} = \frac{1}{2} \eta^2 \]

\[J_2 = \int_{1}^{e^\eta} \frac{dz}{z} \log \frac{e^\eta}{z} g(z; \nu_1, \nu_2) = \frac{1}{2} \eta^2 g_\infty(\nu_1, \nu_2) + \mathcal{O}(\eta) \]

\[J_3 = \int_{0}^{1} \frac{dz}{z} \log \frac{e^\eta}{z} \left[1 - g(z; \nu_1, \nu_2) \right] = \mathcal{O}(\eta) \]