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Introduction
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Challenge of high precision

LHC has now produced > 3 years of 13 TeV data, Lint > 150 fb−1

Excellent machine and detector performance in tough environment

• data taking efficiency ∼ 94%, at or above 90% used for physics

• average pile-up ∼ 38 in 2017 and 2018

Experimental precision reached

• SM benchmark processes (e.g., W , Z production) measured to 1% exp. precision
(important tests of and constraints on theory)

• jets also doing great: total experimental systematic uncertainty in the cross section
∼ 6%, at low rapidities (|y | < 2)

There is lots more data to come

• HL-LHC approved with integrated luminosity goal of 3000 fb−1

• So far, only a fraction of foreseen data registered and analyzed

Must take up the challenge of high precision also on the theory side
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QCD at colliders

To fully exploit the physics potential of colliders requires precision, QCD must be
understood/modeled as best as feasible

a

b

jet

dσ =
∑
a,b

∫
dxa

∫
dxb fa(xa, µ

2
F ) fb(xb, µ

2
F )︸ ︷︷ ︸

non-pert. PDFs

× dσ̂ab(xa, xb,Q
2, α

S
(µ2

R))︸ ︷︷ ︸
pert. partonic x-sec

+O ((Λ/Q)m)

• One particular aspect of precision: calculation of exact higher order corrections to
physical observables in perturbation theory
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Time for NNLO

Mass production of two-loop amplitudes is becoming a reality: need frameworks to
handle all of the other parts of the NNLO calculation too

• We must deal with double real and real-virtual kinematic singularities present at
intermediate stages of the calculation

• More and more approaches are maturing to form general prescriptions which can be
coded into general numerical tools

• Automated NNLO calculations are on the way

CoLoRFulNNLO is such a framework
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CoLoRFulNNLO
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The NNLO cross section

Aim: compute cross sections at NNLO with arbitrary acceptance cuts (J) in d = 4

σNNLO[J] =

∫
m+2

dσRR
m+2Jm+2 +

∫
m+1

dσRV
m+1Jm+1 +

∫
m
dσVV

m Jm

• Phase space integrals must be performed numerically

• All three terms are separately IR divergent in d = 4 dimensions

• Infrared singularities cancel between real and virtual quantum corrections at the
same order in perturbation theory, for sufficiently inclusive (i.e., IR safe) observables
(KLN theorem)

How to make this cancellation explicit, so that the various contributions can be
computed numerically?
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Sources of IR singularities

The NNLO correction to a generic m-jet observable is the sum of three terms

σNNLO =

∫
m+2

dσRR
m+2Jm+2 +

∫
m+1

dσRV
m+1Jm+1 +

∫
m
dσVV

m Jm

Double real

• Tree level squared MEs
with m + 2-parton kine-
matics

• MEs diverge as one or
two partons unresolved

• phase space integral di-
vergent (up to O(ε−4)

poles from PS integra-
tion in dim. reg.)

• no loops, so no explicit ε
poles in dim. reg.

Real-virtual

• One-loop squared MEs
with m + 1-parton kine-
matics

• MEs diverge as one par-
ton unresolved

• phase space integral di-
vergent (up to O(ε−2)

poles from PS integra-
tion in dim. reg.)

• one loop, explicit ε poles
up to O(ε−2) from loop
integration in dim. reg.

Double virtual

• Two-loop squared MEs
with m-parton kinemat-
ics

• jet function screens di-
vergences in MEs as par-
tons become unresolved

• phase space integral is fi-
nite

• two loops, explicit ε

poles up to O(ε−4)

from loop integration in
dim. reg.
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CoLoRFulNNLO

CoLoRFulNNLO is built around the idea that the solution should

• Give the exact perturbative result ⇒ subtraction
(no slicing parameter)

• Be well-defined ⇒ completely local counterterms with all spin and color correlations
(no integrals that are finite but undefined in d = 4)

• Lead to general and explicit expressions
(automation, we use color space notation)

It is also advantageous if in addition

• The cancellation of explicit ε-poles in virtual contributions is analytic
(“mathematical rigor”)

• The option exists to constrain the subtractions to near the singular regions (αmax)
(efficiency, important check)

• The construction is algorithmic
(valid at any order in perturbation theory, in principle)
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Structure

Use the same framework that was successful at NLO: local subtraction scheme

The NLO correction to some m-jet observable J

σNLO[J] =

∫
m+1

[
dσR

m+1Jm+1 − dσ
R,A1
m+1 Jm

]
d=4

+

∫
m

[
dσV

m +

∫
1
dσ

R,A1
m+1

]
d=4

Jm

The NNLO correction is the sum of three pieces

σNNLO[J] =

∫
m+2

dσRR
m+2Jm+2 +

∫
m+1

dσRV
m+1Jm+1 +

∫
m
dσVV

m Jm

The three contributions are separately IR divergent in d = 4

• RR: double and single unresolved real emission

• RV: single unresolved real emission ⊕ ε-poles from m + 1 parton one-loop

• VV: ε poles from m parton two-loop
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For the RR contribution subtractions are needed to regularize single and double
unresolved emission

σNNLO
m+2 =

∫
m+2

{
dσRR

m+2Jm+2 − dσ
RR,A2
m+2 Jm −

[
dσ

RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}
d=4

• A1 and A2 have overlapping singularities ⇒ A12 is needed to avoid double
subtraction

The RV contribution only involves single unresolved emission

σNNLO
m+1 =

∫
m+1

{[
dσRV

m+1 +

∫
1
dσ

RR,A1
m+2

]
Jm+1 −

[
dσ

RV,A1
m+1 +

( ∫
1 dσ

RR,A1
m+2

)
A1
]
Jm
}
d=4

• Notice the integrated A1 from RR is still singular ⇒ subtraction is needed (last term)

The m-parton contribution contains the double virtual and integrated subtractions

σNNLO
m =

∫
m

{
dσVV

m +

∫
2

[
dσ

RR,A2
m+2 − dσ

RR,A12
m+2

]
+

∫
1

[
dσ

RV,A1
m+1 +

( ∫
1 dσ

RR,A1
m+2

)
A1
]}

d=4
Jm
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The non-trivial role of dσ
RR,A12
m+2

The sum of subtractions, symbolically (r , s can become unresolved)

dσ
RR,A2
m+2 + dσ

RR,A1
m+2 − dσ

RR,A12
m+2 =

∑
r,s

[Drs + (Dr +Ds)− (DŝDr +Dr̂Ds)]

The dual role of A12

• In the double unresolved limits (r , s unresolved), it cancels A1

dσRR
m+2 − dσ

RR,A2
m+2 = dσRR

m+2 −Drs = “finite”

dσ
RR,A1
m+2 − dσ

RR,A12
m+2 = (Dr +Ds)− (DŝDr +Dr̂Ds) = “finite”

• In the single unresolved limits (say, r unresolved), it cancels A2 and part of A1

dσRR
m+2 −

(
part of dσ

RR,A1
m+2

)
= dσRR

m+2 −Dr = “finite”

dσ
RR,A2
m+2 −

(
part of dσ

RR,A12
m+2

)
= Drs −DŝDr = “finite”(

part of dσ
RR,A1
m+2

)
−
(

part of dσ
RR,A12
m+2

)
= Ds −Dr̂Ds = “finite”
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Constructing approximate cross sections

Repeat what already worked at NLO!

1. Compute relevant IR factorization formulae for squared matrix elements

2. Use those to construct general, explicit, local subtractions

3. Integrate the subtractions once and for all, check cancellation of ε-poles

4. Apply to specific processs

14



Use known ingredients

Collinear and soft factorization of QCD matrix elements at NNLO known

• Tree level 3-parton splitting functions and double soft gg and qq̄ currents

Use known ingredients

Collinear and soft factorization of QCD matrix elements at NNLO known

! Tree level 3-parton splitting functions and double soft gg and qq̄ currents

(Campbell, Glover 1997; Catani, Grazzini 1998;
Del Duca, Frizzo, Maltoni 1999; Kosower 2002)

! One-loop 2-parton splitting functions and soft gluon current

(Bern, Dixon, Dunbar, Kosower 1994; Bern, Del Duca, Kilgore,
Schmidt 1998-9; Kosower, Uwer 1999; Catani, Grazzini 2000;

Kosower 2003)

Gábor Somogyi | CoLoRFulNNLO | page 10

[Campbell, Glover 1997; Catani, Grazzini 1998;
Del Duca, Frizzo, Maltoni 1999; Kosower 2002]
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Kosower 2003)

Gábor Somogyi | CoLoRFulNNLO | page 10

[Bern, Dixon, Dunbar, Kosower 1994; Bern, Del Duca, Kilgore, Schmidt
1998-9; Kosower, Uwer 1999; Catani, Grazzini 2000; Kosower 2003]

But note

• Unresolved regions in phase space overlap

• Quantities in factorization formulae (z, k⊥) are only well-defined in the strict limit
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Gábor Somogyi | CoLoRFulNNLO | page 10

[Bern, Dixon, Dunbar, Kosower 1994; Bern, Del Duca, Kilgore, Schmidt
1998-9; Kosower, Uwer 1999; Catani, Grazzini 2000; Kosower 2003]

But note

• Unresolved regions in phase space overlap

• Quantities in factorization formulae (z, k⊥) are only well-defined in the strict limit
15



Defining the subtraction terms – issues

1. Matching of limits to avoid multiple subtraction in overlapping singular regions of
phase space. General structure dictated by “sieve principle”. E.g., at NLO simply:
collinear limit + soft limit − collinear–soft limit.

A1 =
∑(

C + S −C ∩ S
)

At NNLO for double radiation we have

A2 =
∑[

C3 + C2;2 + CS + S − (C3 ∩CS + C3 ∩ S + C2;2 ∩CS

+ C2;2 ∩ S + CS ∩ S) + (C3 ∩CS ∩ S + C2;2 ∩CS ∩ S)
]

2. Extension of IR factorization formulae over full phase space: define momenta
entering factorized matrix elements and momentum fractions in splitting kernels.
Requires momentum mappings that respect factorization and delicate structure of
cancellations in all limits.

{p}m+1
r−→ {p̃}m : dφm+1({p}m+1;Q) = dφm({p̃}m;Q)[dp1,m]

{p}m+2
r,s−→ {p̃}m : dφm+2({p}m+2;Q) = dφm({p̃}m;Q)[dp2,m]

3. Integration of the counterterms over the phase space of unresolved emission. 16



Defining the subtraction terms – issues

Issues specific to NNLO

1. Matching: since limits do not commute in general, care must be taken to specify the
proper ordering.

2. Extension: the A1 counterterms for single unresolved real emission (unintegrated and
integrated) must have universal IR limits, so that A12 can be constructed in general.
This is (obviously) not guaranteed by QCD factorization.

3. Choosing the counterterms such that integration over the unresolved phase space
becomes more straightforward may conflict with the delicate internal cancellations
between subtractions. Integrating the counterterms is tedious.
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General features of CoLoRFulNNLO

CoLoRFulNNLO: Completely Local subtRactions for Fully differential NNLO

Subtractions built using universal IR limit formulae and exact PS factorization

• Altarelli-Parisi splitting functions, soft currents

• PS factorizations based on momentum mappings that can be generalized to any
number of unresolved partons

Completely local in color ⊗ spin space, fully differential in phase space

• No need to consider the color decomposition of real emission ME’s

• Azimuthal correlations correctly taken into account in gluon splitting

• Can check explicitly that the ratio of the sum of counterterms to the real emission
cross section tends to unity in any IR limit

Poles of integrated subtraction terms computed analytically

• Can check pole cancellation in (double) virtual contribution explicitly

Explicit formulae for processes with colorless initial state

• Automation is possible (MCCSM)
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Towards processes with hadronic initial states
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The NNLO cross section with hadronic initial states

Overall structure unchanged, but must include (known) mass factorization counterterms

σNNLO[J] =

∫
m+2

dσRR
m+2Jm+2 +

∫
m+1

dσRV
m+1Jm+1 +

∫
m
dσVV

m Jm

+

∫
m+1

dσC1
m+1Jm+1 +

∫
m
dσC2

m Jm

“No new conceptual issues, but lots of tedious details to work out.”

Morally true 4

• IR factorization formulae known from crossing and/or direct computation

• Principles of matching, extension unchanged (only more terms to catalog)

But 8

• Need new mappings for initial-final collinear limits

• Naive crossing of momentum fractions z and transverse momenta k⊥ will not work
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Defining the subtraction terms for ISR

When defining the new subtraction terms for ISR, we must keep in mind

• In CoLoRFulNNLO, no sectoring functions are used so each subtraction term is
defined and subtracted over the whole phase space.

• Because of the delicate structure of cancellations between various subtraction terms
(recall non-trivial role of dσ

RR,A12
m+2 ), special care must be taken to define momentum

mappings and momentum fractions that respect the structure of these cancellations.

• E.g., 3-particle momentum fractions must tend to specific 2-particle momentum
fractions in appropriate limits.

• Naive crossing does not work for defining 3-particle momentum fractions for
initial-final-final collinear splitting.
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Defining the subtraction terms for ISR

Momentum fractions from crossing?

• Single collinear 4

zi,r =
pi · Q

(pi + pr ) · Q ⇒ xa,r =
1

zi,r

∣∣∣∣
pi→−pa

= 1− pr · Q
pa · Q

It is easy to see that xa ∈ [0, 1].

• Triple collinear 8

zi,rs =
pi · Q

(pi + pr + ps) · Q ⇒ xa,rs
?
=

1

zi,rs

∣∣∣∣
pi→−pa

= 1− pr · Q
pa · Q

− ps · Q
pa · Q

But we find that xa,rs /∈ [0, 1]! In fact, xa,rs can vanish at “ordinary” points inside the
double real phase space.

Momentum fractions for initial-final collinear splitting cannot be defined by naive crossing.

We have tentative definitions for momentum fractions and transverse momenta for all
single and double limits, the specific formulae are somewhat elaborate.
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Triple collinear subtraction terms for ISR

Consider the pa||pr ||ps limit: the factorization formula reads

Cars |M(0)
m+2({pi}, pr , ps ; pa + pb)|2 = (8παsµ

2ε)2 1

xa

1

s2
ars

P̂fafr fs ({sjk , xj , k⊥,j})⊗ |M(0)
m ({pi}; xapa + pb)|2

Define the subtraction term as

CIFFars (pr , ps , . . . ; pa + pb) ≡ (8παsµ
2ε)2 1

x̃a

1

s2
ars

P̂fafr fs ({sjk , x̃j , k̃⊥,j})⊗ |M(0)
m ({p̃i}; p̃a + p̃b)|2

Must specify explicilty

• the set momenta {p̃i} ≡ {p̃1, . . . , p̃m+2} entering the m-parton factorized ME

• the momentum fractions x̃j and transverse momenta k̃⊥,j (j = a, r , s)

23



Triple collinear IFF mapping

The mapping must implement momentum conservation and the mass-shell conditions

p̃µa = ξap
µ
a

p̃µb = pµb

p̃µi = Λ(K , K̃)µνp
ν
i

where Λ(K , K̃)µν is a proper Lorentz transformation which takes K̃µ into Kµ, where

Kµ = pµa + pµb − pµr − pµs and K̃µ = p̃µa + p̃µb

Requiring K2 = K̃2 fixes ξa (note pa, pb, pr and ps are assumed massless),

ξa =
(pa + pb − pr − ps)2

(pa + pb)2
= 1− pr · Q

pa · Q
− ps · Q

pa · Q
+

2pr · ps
Q2

,

with Q = pa + pb
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Triple collinear IFF momentum fractions

We want to define x̃a , x̃r , x̃s such that

• x̃a , x̃r , x̃s ∈ [0, 1] over the full phase space

• x̃a + x̃r + x̃s = 1, i.e., they sum to one

• have the correct behavior in the single unresolved limits (e.g., Car , Crs , etc.) to
match iterated single unresolved subtractions (recall role of A12)

One option:

x̃a = ξa = 1− yrQ − ysQ+yrs , x̃r = yrQ−yrs
yar

ya(rs)

, x̃s = ysQ−yrs
yas

ya(rs)

notice terms not predicted by crossing

Transverse momenta:

k̃⊥,a = −k̃⊥,r − k̃⊥,s , k̃⊥,r = pr,⊥ , k̃⊥,s = ps,⊥

also not given by crossing

25



Triple collinear IFF momentum fractions

We want to define x̃a , x̃r , x̃s such that

• x̃a , x̃r , x̃s ∈ [0, 1] over the full phase space

• x̃a + x̃r + x̃s = 1, i.e., they sum to one

• have the correct behavior in the single unresolved limits (e.g., Car , Crs , etc.) to
match iterated single unresolved subtractions (recall role of A12)

One option:

x̃a = ξa = 1− yrQ − ysQ+yrs , x̃r = yrQ−yrs
yar

ya(rs)

, x̃s = ysQ−yrs
yas

ya(rs)

notice terms not predicted by crossing

Transverse momenta:

k̃⊥,a = −k̃⊥,r − k̃⊥,s , k̃⊥,r = pr,⊥ , k̃⊥,s = ps,⊥

also not given by crossing
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Triple collinear IFF momentum fractions

We want to define x̃a , x̃r , x̃s such that

• x̃a , x̃r , x̃s ∈ [0, 1] over the full phase space

• x̃a + x̃r + x̃s = 1, i.e., they sum to one

• have the correct behavior in the single unresolved limits (e.g., Car , Crs , etc.) to
match iterated single unresolved subtractions (recall role of A12)

One option:

x̃a = ξa = 1− yrQ − ysQ+yrs , x̃r = yrQ−yrs
yar

ya(rs)

, x̃s = ysQ−yrs
yas

ya(rs)

notice terms not predicted by crossing

Transverse momenta:

k̃⊥,a = −k̃⊥,r − k̃⊥,s , k̃⊥,r = pr,⊥ , k̃⊥,s = ps,⊥

also not given by crossing
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Does it work?

Check that the ratio of the double real emission matrix element to the the sum of all
subtractions tends to one for all IR limits. E.g., u(p1) + d̄(p2)→W−(p3) + g(p4) + g(p5)
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nu = 0, no = 0

C14 limit
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Does it work?

Check that the ratio of the double real emission matrix element to the the sum of all
subtractions tends to one for all IR limits. E.g., u(p1) + d̄(p2)→W−(p3) + g(p4) + g(p5)
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Does it work?

Check that the ratio of the double real emission matrix element to the the sum of all
subtractions tends to one for all IR limits. E.g., u(p1) + d̄(p2)→W−(p3) + g(p4) + g(p5)
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Does it work?

Check that the ratio of the double real emission matrix element to the the sum of all
subtractions tends to one for all IR limits. E.g., u(p1) + d̄(p2)→W−(p3) + g(p4) + g(p5)
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Does it work?

Check that the ratio of the double real emission matrix element to the the sum of all
subtractions tends to one for all IR limits. E.g., u(p1) + d̄(p2)→W−(p3) + g(p4) + g(p5)
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Does it work?

Check that the ratio of the double real emission matrix element to the the sum of all
subtractions tends to one for all IR limits. E.g., u(p1) + d̄(p2)→W−(p3) + g(p4) + g(p5)
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Does it work?

Check that the ratio of the double real emission matrix element to the the sum of all
subtractions tends to one for all IR limits. E.g., u(p1) + d̄(p2)→W−(p3) + g(p4) + g(p5)
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Does it work?

Subtractions work as designed in all limits, so try to integrate

• Every partonic MC calculation has a cutoff parameter: e.g., minimal two-particle
invariants allowed

yij =
(pi + pj )

2

ŝ
> ymin , ∀ i , j

• This is not a slicing parameter, but a technical cutoff parameter.

• It is necessitated by floating point arithmetics.

• The minimal possible choice of ymin depends on the floating point number
representation used.

• The dependence of physical quantities on ymin should cancel as ymin → 0 if the
subtraction terms are correct.
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Does it work?

Subtractions work as designed in all limits, so try to integrate

• Cutoff dependence of subtracted RR contribution to total cross section for pp →W−

(using double precision)
σ
(R

R
)

W
[p
b
]

ymin

W−
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Does it work?

Subtractions work as designed in all limits, so try to integrate

• Subtracted RR contribution to rapidity distribution of the W in pp →W±

(nonphysical, does not include RV and VV)
d
σ
/d
y W

[p
b
]

yW

W−

W−
W+

W+

27



Does it work?

Subtractions work as designed in all limits, so try to integrate

• Cutoff dependence of subtracted RR contribution to total cross section for gg → H

(using double precision)
σ
(R

R
)

H
[p
b
]

ymin

H
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Does it work?

Subtractions work as designed in all limits, so try to integrate

• Subtracted RR contribution to rapidity distribution of the H in gg → H (nonphysical,
does not include RV and VV)

d
σ
/d
y H

[p
b
]

yH

H
H

27



Integrating the triple collinear subtraction

Momentum mapping used to define CIFFars leads to phase space convolution of the form

dφm+2({pi}, pr , pr ; pa + pb) =

∫ ξmax

ξmin

dξ dφm({p̃i}; ξpa + pb)
Q2

2π
dφ3(pr , ps ,P;Q)

• momentum P is massive with P2 = ξQ2

The subtraction term is a product (in spin space) of

• the factorized matrix element depending on {p̃i}
• a singular factor

1

x̃a

1

s2
ars

P̂fafr fs , to be integrated over dφ3(pr , ps ,P;Q)

Can compute once and for all the integral over unresolved partons

∫
2
CIFFars = (8παsµ

2ε)2
∫ ξmax

ξmin

dξ

[∫
dφ3(pr , ps ,P;Q)

1

x̃a

1

s2
ars

P̂fafr fs

]
⊗ |M(0)

m ({p̃i}; ξpa + pb)|2
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Basic integrals

We must evaluate

∫ ξmax

ξmin

dξ

[∫
dφ3(pr , ps ,P;Q)

1

x̃a

1

s2
ars

P̂fafr fs

]

• Use x̃a = ξ, integrate over the three-parton phase space first

• x̃a dependence of P̂fafr fs is simple: all terms contain just a power of x̃a and/or (1− x̃a)

• First step: compute (with x̃a fixed)

∫
dφ3(pr , ps ,P;Q)

1

s2
ars

P̂fafr fs

After decomposing and using r ↔ s symmetry, we find∫
dφ3(pr , ps ,P;Q)

1

s2
ars

P̂fafr fs =
∑

j,k,l,p,q

c
(j,k,l,p,q)
ars

∫
dφ3(pr , ps ,P;Q)

1

s2
ars

1

s jar skass
l
rs x̃

p
r x̃

q
s

with {j , k, l , p, q} =
{
{1, 1,−2, 1, 0}︸ ︷︷ ︸

1

, . . . , {−2, 0, 2,−2, 0}︸ ︷︷ ︸
55

}
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Basic integrals

We must evaluate
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∑
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Solving the integrals by direct integration

A possible strategy: direct integration

1. choose explicit phase space parametrization of phase space

2. write the parametric integral representation in chosen variables

3. resolve ε poles by sector decomposition

4. pole coefficients are finite multidimensional parametric integrals

5. evaluate the parametric integrals numerically or analytically if feasible

Status:

• derived two separate explicit parametrizations of phase space based on different
variables (useful check)

• in one, we can “solve” angular integrals in terms of hypergeometric (2F1, Appell F1)
functions (reduce dimensionality of integral)

• accurate numerical integration is feasible

• analytic integration of at least some poles is feasible
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Direct integration: an example

Consider the integral (of mass dimension zero)

I (ξ, ε) =
Q2

V3

∫
dφ3(pr , ps ,P;Q)

1

s2
ars

sas

srs x̃r

It is easy to show that the integral can only depend on ξ and we obtain e.g.,

I (ξ = 0.2, ε) =−
0.833333

ε3
+

3.67679

ε2
−

10.4127

ε
− 2.10664 + 8.35941ε + O(ε2)

I (ξ = 0.5, ε) =−
1.33333

ε3
+

2.76531

ε2
−

0.375613

ε
− 5.68314 + 21.2348ε + O(ε2)

I (ξ = 0.8, ε) =−
3.33333

ε3
−

6.08727

ε2
+

4.93674

ε
+ 27.9761 + 102.051ε + O(ε2)

• relative accuracy is 10−6 on O(ε) part and 10−7 or better on rest

• timing per point ≤ 15s on a single core (only 3d numerical integral)

Can also compute first two poles analytically from sector decomposition representation

I (ξ, ε) = − 2

3(1− ξ)ε3
+

9 + 8 ln(1− ξ)− ln ξ

3(1− ξ)ε2
+ O(ε−1)

31



Solving the integrals by reverse unitarity: preveiw

∫
dφ3(pr , ps ,P;Q)

1

s2
ars

1

s jar skass
l
rs x̃

p
r x̃

q
s

A possible strategy: reverse unitarity

1. rewrite δ-functions in the phase space measure as (differences of) propagators, i.e.,
phase space integrals ⇒ loop integrals

2. perform IBP reduction to identify a set of master integrals

3. evaluate the master integrals e.g., by the method of differential equations

Status:

• when no x̃r or x̃s is involved (i.e., p = q = 0) we find only two MIs which can be
evaluated in terms of 2F1 functions 4

• the appearance of x̃r or x̃s in the numerator (i.e., p < 0 or q < 0) causes no issues:
all denominators are still of the standard 1/(p2 ±m2) or 1/(p · q ±m2) type 4

• when we have 1/x̃r or 1/x̃s , denominators quadratic in scalar products involving loop
momenta appear, e.g., 1/[(pr · Q)(pa · pr + pa · ps)− (pr · ps)(pa · pr )] 8
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From basic integrals to integrated counterterms

Recall that we must finally evaluate (note ξmin =
(∑

i mi

)2
/Q2 and ξmax = 1)

∫ ξmax

ξmin

dξ

[∫
dφ3(pr , ps ,P;Q)

1

x̃a

1

s2
ars

P̂fafr fs

]

So far, discussed only computing

I (ξ, ε) =

∫
dφ3(pr , ps ,P;Q)

1

x̃a

1

s2
ars

P̂fafr fs

The ξ dependence of I (ξ, ε) must be interpreted with care: the ε→ 0 limit must be taken
uniformly in ξ. Hence, I (ξ, ε) must be interpreted as a ξ-distribution whose coefficients
contain poles in ε.

I (ξ, ε) = [I (ξ, ε)]+ + δ(1− ξ)

∫ ξmax

ξmin

dξ′I (ξ′, ε)

• need to know the all-order (in ε) behavior of I (ξ, ε) around ξ = 1

• in particular the fixed-order ε-expansion of I (ξ, ε) is not quite enough

33



Status

Extension to hadronic initial states on the way

• Subtraction terms for double real radiation defined for generic processes

• Tested convergence of regularized double real part in simplest processes

• Subtraction terms for real-virtual radiation tentatively defined for generic processes

TODO:

• More testing of double real and real-virtual subtractions

• Subtraction terms for mass factorization counterterms (NLO complexity)

• Some integrals done, but many more to do

• Can we use reverse unitarity with non-standard propagators? Note similarity to the
analytic computation of energy-energy correlation at NLO by Dixon et al.

[Dixon, Luo, Shtabovenko, Yang, Zhu 2018]
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Conclusions
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Conclusions

Amazing progress in fixed order calculations in the past decade

• Automation of NLO

• Mass production of two-loop amplitudes is becoming a reality

• Approaches to NNLO are maturing into general frameworks

CoLoRFulNNLO method: Completely Local subtRactions for Fully differential NNLO

• Construction of subtraction terms based on IR limit formulae

• Analytic integration of subtraction terms feasible with modern techniques

• Good numerical convergence and stability for e+e− → hadrons

Extension to hadronic initial states on the way

• Defined subtraction terms for regularizing infrared singularities in double real
radiation for generic processes

• Cancellation of kinematic singularities and stability in double real radiation
demonstrated for W and Higgs production

• Main remaining challenge: integration of subtraction terms
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Thank you for your attention!
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Extra material

38



Non-commuting IR limits

The symbolic operators Cir and Sr denote taking the single collinear and single soft limits

• Collinear: pi ||pr (pi → zipir + k⊥ +O(k2
⊥), pr → zrpir − k⊥ +O(k2

⊥))

Cir |M(0)
m+2(pi , pr , . . .)|2 = 8παsµ

2ε 1

sir
P̂fi fr (zi , zr , k⊥; ε)⊗ |M(0)

m+1(pir , . . .)|2

• Soft: pr → 0

Sr |M(0)
m+2(pr , . . .)|2 = −8παsµ

2ε
∑
j,k

sjk

sjr skr
|M(0)

m+1,(i,k)
(�Zpr , . . .)|2

In order to avoid double subtraction when pr is both soft and collinear to another
momentum pi , we need to remove the “collinear-soft” contribution.

However, the soft and collinear limits do not commute at the level of factorization
formulae.
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Non-commuting IR limits

Consider the soft limit of the collinear formula: SrCir

• Momentum fractions:
Sr zi → 1, Sr zr → 0

• Altarelli-Parisi splitting kernels: e.g., for q → qg splitting (zi + zr = 1)

Pqg (zi , zr ; ε) = CF

[
1 + z2

i

1− zi
− ε(1− zi )

]
⇒ SrPqg (zi , zr ; ε)→ 2

zr
CF

and in general

SrPfi fr (zi , zr , k⊥; ε)→ 2

zr
T 2
ir

• Soft-collinear limit

SrCir |M(0)
m+2(pi , pr , . . .)|2 = 8παsµ

2ε 1

sir

2

zr
T 2

ir |M
(0)
m+1(pi , . . .)|2
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Non-commuting IR limits

Consider the collinear limit of the soft formula: CirSr

• Two-particle invariants

Cir sil → zi s(ir)l , Cir slr → zr s(ir)l , l = j , k

• Eikonal factor

Cir

∑
j,k

sjk

sjr skr
T jT k = Cir

∑
k

2sik

sir skr
T iT k →

∑
k

2

sir

zi

zr
T iT k = − 2

sir

zi

zr
T 2

i

• Collinear-soft limit

CirSr |M(0)
m+2(pi , pr , . . .)|2 = 8παsµ

2ε 1

sir

2zi

zr
T 2

i |M
(0)
m+1(pi , . . .)|2
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Non-commuting IR limits

Hence limits do not commute: SrCir 6= CirSr

SrCir |M(0)
m+2|2 ∝

1

sir

2

zr
T 2

ir |M
(0)
m+1|2 but CirSr |M(0)

m+2|2 ∝
1

sir

2zi

zr
T 2

i |M
(0)
m+1|2

• Reason: soft operators send some momentum fractions to one: Sr zi → 1

• Note: no explicit phasespace parametrization, so no specific parameter controls the
approach to limits

Which ordering to use?

• SrCir will not work in the collinear limit

Sr (Cir − SrCir ) |M(0)
m+2|2 = 0 but Cir (Sr − SrCir ) |M(0)

m+2|2 6= 0

• CirSr will work in both limits

Sr (Cir −CirSr ) |M(0)
m+2|2 = 0 but Cir (Sr −CirSr ) |M(0)

m+2|2 = 0

This phenomenon arises also in double unresolved limits. In general, limits must be
ordered form “more soft” to “less soft”.

39



Universal limits for subtraction terms

The existence of universal IR limits of approximate cross sections is (clearly) not
guaranteed by QCD factorizataion.

• We do not specify which momenta can become unresolved, hence the single
unresolved subtraction terms must themselves have universal IR limits

• In the real-virtual contribution, these terms appear in integrated form, and these
forms again must have universal IR limits

• These are non-trivial constraints, since the (unintegrated and integrated) single soft
factorization formula involves color-correlated matrix elements

S(0,0)
r ∝

∑
i,k

sik

sir skr
〈M(0)

m+1|T iT k |M(0)
m+1〉

• In, say, the pj ||ps limit only the sum

〈M(0)
m+1|T jT k |M(0)

m+1〉+ 〈M(0)
m+1|T sT k |M(0)

m+1〉
factorizes, due to soft gluon coherence, but not the two pieces separately
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Universal limits for subtraction terms

In, say, the pj ||ps limit only the sum

〈M(0)
m+1|T jT k |M(0)

m+1〉+ 〈M(0)
m+1|T sT k |M(0)

m+1〉

factorizes, due to soft gluon coherence, but not the two pieces separately

k

j

s

+

k

j

s

−→

k

js

⊗
j

s
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Universal limits for subtraction terms

Then we must make sure that in any collinear limit (for any i and r), the two appropriate
terms from the soft formula actually go to the same limit

• The eikonal factors are homogeneous in pj and ps , so they go to the same limit
(note no partial fraction decomposition)

Cjs
sjk

sjr skr
=

zj s(js)k

zj s(js)r skr
=

s(js)k

s(js)r skr
and Cjs

ssk

srsskr
=

zss(js)k

zss(js)r skr
=

s(js)k

s(js)r skr

• But we must also have that the mapped momenta that appear in the factorized
matrix elements in

〈M(0)
m+1|T jT k |M(0)

m+1〉 and 〈M(0)
m+1|T sT k |M(0)

m+1〉
also go to the same limit.

• Constrains the soft momentum mapping. A trivial way of satisfying this constraint is
to use the same mapped momenta in all terms in the soft formula ⇔ dipole picture.
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Energy-energy correlation

Energy weighted distribution of angles χ between particles

1

σtot

dΣ(χ)

d cosχ
≡ 1

σtot

∫ ∑
i,j

EiEj

Q2
dσ

e+e−→ ij+X
δ(cosχ− cos θij )

Was measured extensively at LEP and predecessors

Accurate theory predictions available

• NNLO fixed order from CoLoRFulNNLO

• NNLL resummation in back-to-back region [de Florian, Grazzini 2005]

Potential for yapa (yet another precision αs(MZ ))
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EEC data

• EEC one of the oldest
event shapes
[Basham, Brown, Ellis, Love

1978]

• However, no
measurements after
LEP1. . .

• Transverse EEC in
multijet events used
successfully at LHC
to determine αs at
NLO
[ATLAS coll., Eur. Phys. J. C77

(2017) 872, Phys. Lett. B750

(2015) 427-447]

Experiment
√
s, GeV, data

√
s, GeV, MC Events

SLD 91.2(91.2) 91.2 60000
OPAL 91.2(91.2) 91.2 336247
OPAL 91.2(91.2) 91.2 128032

L3 91.2(91.2) 91.2 169700
DELPHI 91.2(91.2) 91.2 120600
TOPAZ 59.0− 60.0(59.5) 59.5 540
TOPAZ 52.0− 55.0(53.3) 53.3 745
TASSO 38.4− 46.8(43.5) 43.5 6434
TASSO 32.0− 35.2(34.0) 34.0 52118
PLUTO 34.6(34.6) 34.0 6964
JADE 29.0− 36.0(34.0) 34.0 12719

CELLO 34.0(34.0) 34.0 2600
MARKII 29.0(29.0) 29.0 5024
MARKII 29.0(29.0) 29.0 13829

MAC 29.0(29.0) 29.0 65000
TASSO 21.0− 23.0(22.0) 22.0 1913
JADE 22.0(22.0) 22.0 1399

CELLO 22.0(22.0) 22.0 2000
TASSO 12.4− 14.4(14.0) 14.0 2704
JADE 14.0(14.0) 14.0 2112
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EEC predictions at NNLO

• NLO correction is large as judged
by scale variation ⇒ must go to
NNLO

• Higher order predictions improve
agreement with data

• Fixed order prediction diverges in
the forward and back-to-back
regions ⇒ resummation is required

• Sizeable deviations from data even
at NNLO ⇒ must take into
account hadronization corrections
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[Tulipánt, Kardos, GS,

Eur. Phys. J. C 77 (2017) no.11, 749]
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Resummation

Fixed order diverges in the back-to-back limit as ∼ αn
s ln2n−1 y where y = cos2(χ/2)

Resummation known up to NNLL accuracy (and N3LL is on the way using SCET)

[de Florian, Grazzini 2005; Moult, Zhu 2018][
1

σtot

dΣ(χ)

d cosχ

]
(res.)

=
Q2

8
H(αs)

∫ ∞
0

db J0(b Q
√
y)S(Q, b)

The log-enhanced terms are collected in the Sudakov form factor

S(Q, b) = exp

{
−
∫ Q2

b2
0/b

2

dq2

q2

[
A(αs(q2)) ln

Q2

q2
+ B(αs(q2))

]}

The A(αs), B(αs) and H(αs) functions can be computed pertrubatively

A(αs) =
∞∑
n=1

(αs

4π

)n
A(n) , B(αs) =

∞∑
n=1

(αs

4π

)n
B(n) , H(αs) = 1 +

∞∑
n=1

(αs

4π

)n
H(n)
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Hadronization corrections

Point-by-point multiplicative correction factors were derived using modern MC tools

• Sherpa2.2.4 for e+e− → 2, 3, 4, 5 jets, 2 jets at NLO using AMEGIC, COMIX and
GoSam, Lund (SL) or cluster (SC ) hadronization

• Herwig7.1.1 for e+e− → 2, 3, 4, 5 jets, 2 jets at NLO using MadGraph5 and GoSam,
cluster (HM) hadronization only

Hadronization corrections are ratios of hadron to parton level distributions in the MCs

Simulated samples were reweighted to data at hadron level on an event-by-event basis to
assure a better description of data (“poor man’s tuning”)

Simultaneously allows for the estimation of the missing statistical correlations of data
points

45



Hadronization corrections

MC predictions at parton and hadron level after reweighting
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[Kardos, Kluth, GS, Tulipánt, Verbytskyi

Eur. Phys. J. C 78 (2018) no.6, 498]

• Hadronization corrections decrease as ∼ 1/Q, O(10)% at 91.2 GeV
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Hadronization corrections

Hadron/parton ratios after reweighting at hadron level
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[Kardos, Kluth, GS, Tulipánt, Verbytskyi

Eur. Phys. J. C 78 (2018) no.6, 498]

• Hadronization corrections are parametrized using smooth functions to tame
statistical fluctuations (the parametrization is valid only in the fit range)
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Fits to data

Fits to data of NNLO+NNLL and NLO+NNLL predictions in the SL setup
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[Kardos, Kluth, GS, Tulipánt, Verbytskyi

Eur. Phys. J. C 78 (2018) no.6, 498]

• Fit range [60◦, 160◦], chosen to avoid regions where the theoretical prediction or
hadronization corrections become unreliable

• The result is insensitive to a ±5◦ change in fit range
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Fit uncertainties

Estimated the uncertainty by

• Varying the renormalization scale
xR = µR/Q ∈ [1/2, 2]: (ren.)

• Varying the resummation scale
xL ∈ [1/2, 2]: (res.)

• Varying the hadronization model
SL vs. SC : (hadr .)

• Considering the fit uncertainty
from the χ2 + 1 criterion as
implemented in MINUIT2: (exp.)

Notice reduced slope at NNLO+NNLL
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Result

Main result from global fit at NNLO+NNLL with SL setup

αs(MZ ) = 0.11750± 0.00018(exp.)± 0.00102(hadr .)± 0.00257(ren.)± 0.00078(res.)

αs(MZ ) = 0.11750± 0.00287(comb.)

Note using NLO+NNLL only (i.e., no NNLO), we find

αs(MZ ) = 0.12200± 0.00023(exp.)± 0.00113(hadr .)± 0.00433(ren.)± 0.00293(res.)

αs(MZ ) = 0.12200± 0.00535(comb.)

Inclusion of NNLO corrections crucial in reducing uncertainty: factor of 1/2!

The result is consistent with the world average (αs(MZ ) = 0.1175± 0.0029 vs.
0.1181± 0.0011) and competitive with other precision event shapes (1− T , C , etc.)
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VH production with H → bb̄ decay at the LHC

Motivations

• Associated VH production is most sensitive production mode to search for H → bb̄

– leptons, missing E
T

to trigger
– high p

T
V to suppress backgrounds

• Unique opportunity to study both the Higgs boson coupling to vector bosons and
down-type quarks

• H → bb̄ has the largest branching ratio (58%) for mH = 125 GeV

• Drives the uncertainty of the total Higgs boson width

Theory: narrow width approximation very accurate (ΓH � mH), so need fully differential
calculations for production and decay

• VH production with leptonic V decays known in NNLO QCD (using q
T

subtraction)

[Ferrera, Grazzini, Tramontano 2011]

• H → bb̄ known in NNLO QCD (using sector decomposition and CoLoRFulNNLO)

[Anastasiou, Herzog, Lazopoulos 2012;
Del Duca, Duhr, GS, Tramontano Z. Trócsányi 2015]
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VH(bb̄) in full NNLO QCD

Consider pp → VH + X → l1l2bb̄ + X in the narrow width approximation

dσpp→VH→Vbb̄ = dσpp→VH ×
dΓH→bb̄

ΓH
=

[ ∞∑
k=0

dσ
(k)
pp→VH

]
×

∑∞k=0 dΓ
(k)

H→bb̄∑∞
k=0 Γ

(k)

H→bb̄

× Br(H → bb̄)

For full NNLO, expand up to second order

dσNNLO
pp→VH→Vbb̄

=

dσ(0)
pp→VH ×

dΓ
(0)

H→bb̄
+ dΓ

(1)

H→bb̄
+ dΓ

(2)

H→bb̄

Γ
(0)

H→bb̄
+ Γ

(1)

H→bb̄
+ Γ

(2)

H→bb̄

+ dσ
(1)
pp→VH ×

dΓ
(0)

H→bb̄
+ dΓ

(1)

H→bb̄

Γ
(0)

H→bb̄
+ Γ

(1)

H→bb̄

+ dσ
(2)
pp→VH ×

dΓ
(0)

H→bb̄

Γ
(0)

H→bb̄

× Br(H → bb̄)
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VH(bb̄) in full NNLO QCD

Previous partial NNLO calculations did not consider NNLO corrections in decay

[Ferrera, Grazzini, Tramontano 2014-5
Campbell, Ellis, Williams 2016]

dσ
NNLO(prod)+NLO(dec)

pp→VH→Vbb̄
=

dσ(0)
pp→VH ×

dΓ
(0)

H→bb̄
+ dΓ

(1)

H→bb̄

Γ
(0)

H→bb̄
+ Γ

(1)

H→bb̄

+
(
dσ

(1)
pp→VH + dσ

(2)
pp→VH

)
×

dΓ
(0)

H→bb̄

Γ
(0)

H→bb̄

× Br(H → bb̄)

New: include NNLO contributions in decay and the combination of NLO contributions
for production and decay
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Results: cross sections

Kinematical selection cuts

pp →W+H + X → lνlbb̄ + X

• pl
T
> 15 GeV, |ηl | < 2.5

• Emiss
T

> 30 GeV

• pW
T
> 150 GeV

• at least two b-jets with pb
T
> 25 GeV

and |ηb| < 2.5

pp → ZH + X → ννbb̄ + X

• Emiss
T

> 150 GeV

• at least two b-jets with pb
T
> 25 GeV

and |ηb| < 2.5

Cross section predictions at the LHC with
√
s = 13 TeV

σ (fb) NNLO(prod)+NLO(dec) full NNLO

pp →W+H + X → lνlbb̄ + X 3.94+1%
−1.5%

3.70+1.5%
−1.5%

pp → ZH + X → ννbb̄ + X 8.65+4.5%
−3.5%

8.24+4.5%
−3.5%

• Cross sections reduced by ∼ 5–6% at full NNLO wrt. NNLO(prod)+NLO(dec)

• Uncertainties correspond to scale variation
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Results: cross sections

Kinematical selection cuts

pp →W+H + X → lνlbb̄ + X

• pl
T
> 15 GeV, |ηl | < 2.5

• Emiss
T

> 30 GeV

• pW
T
> 150 GeV

• at least two b-jets with pb
T
> 25 GeV

and |ηb| < 2.5

pp → ZH + X → ννbb̄ + X

• Emiss
T

> 150 GeV

• at least two b-jets with pb
T
> 25 GeV

and |ηb| < 2.5

Cross section predictions at the LHC with
√
s = 13 TeV

σ (fb) NNLO(prod)+NLO(dec) full NNLO

pp →W+H + X → lνlbb̄ + X 3.94+1%
−1.5%

3.70+1.5%
−1.5%

pp → ZH + X → ννbb̄ + X 8.65+4.5%
−3.5%

8.24+4.5%
−3.5%

• Cross sections reduced by ∼ 5–6% at full NNLO wrt. NNLO(prod)+NLO(dec)

• Uncertainties correspond to scale variation 51



Results: distributions

Transverse momentum and invariant mass of leading b-jet pair: W+H(bb̄)

�������������

�������

���������	�


�
���

���
����������
������

������
����������	


��		�����
����������������� �

�!

�!"!!�

�!"!


�!"!
�

�!"!�

�!"!��

�!"!�

�!"!��

�
�
��
�

��
��#���$

�!"%

�!"&

�


�
"


��! �
!! �
�! ��!! ���! ��!!

�������������

�������

���������	�


�
���

���
����������
������

��������������	


��		�����
����������������� �

�!"!


�!"


�


�
�
��
�

����#���$

�!"%

�!"&

�


�
"�

�
"'

�
"%

�
"&

�&! �
!! �
�! �
'! �
%! �
&!

[Ferrera, GS, Tramontano Phys. Lett. B 780 (2018) 346-351]

• Contributions included in full NNLO produce important effects on the shapes:
−8% – +5% corrections in pbb̄

T
, −30% – +60% corrections in Mbb̄!
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Results: distributions

Transverse momentum and invariant mass of leading b-jet pair: ZH(bb̄)
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[Ferrera, GS, Tramontano Phys. Lett. B 780 (2018) 346-351]

• Contributions included in full NNLO produce important effects on the shapes:
−10% – −5% corrections in pbb̄

T
, −30% – +70% corrections in Mbb̄!
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