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Size scaling of failure strength with fat-tailed disorder in a fiber bundle model
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We investigate the size scaling of the macroscopic fracture strength of heterogeneous materials when
microscopic disorder is controlled by fat-tailed distributions. We consider a fiber bundle model where the strength
of single fibers is described by a power law distribution over a finite range. Tuning the amount of disorder by
varying the power law exponent and the upper cutoff of fibers’ strength, in the limit of equal load sharing an
astonishing size effect is revealed: For small system sizes the bundle strength increases with the number of fibers,
and the usual decreasing size effect of heterogeneous materials is restored only beyond a characteristic size. We
show analytically that the extreme order statistics of fibers’ strength is responsible for this peculiar behavior.
Analyzing the results of computer simulations we deduce a scaling form which describes the dependence of the
macroscopic strength of fiber bundles on the parameters of microscopic disorder over the entire range of system
sizes.
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I. INTRODUCTION

The disorder of materials plays a crucial role in their fracture
processes under mechanical loading. Strength fluctuations of
local material elements can lead to crack nucleation at low
loads reducing the failure strength compared to homogeneous
materials [1–3]. Additionally, disorder gives rise to sample-to-
sample fluctuations of fracture strength with an average value
which depends on the system size [3]. This so-called size effect
of the fracture strength of materials has great importance for
applications: on the one hand it has to be taken into account
in engineering design of large-scale construction, and on the
other hand, it controls how results of laboratory measurements
can be scaled up to real constructions and to the scale of
geological phenomena [1–4].

The statistics of fracture strength and the associated size
effect are usually described by extreme value theory [5],
which relates the macroscopic strength of materials to the
statistics of weakest microscopic regions [3,6,7]. Weibull gave
the first quantitative explanation of the statistical size effect
formulating the weakest link idea, namely, the volume element
of the weakest flaw drives the failure of the entire system, and
he determined the probability distribution of failure strength
of macroscopic samples. In order to investigate how the
enhanced stress around cracks and the interaction between
cracks affect the strength, stochastic lattice models of materials
have been widely used [2,3,8–11]. In these models disorder is
represented either by random dilution of regular lattices or
by the random strength of cohesive elements. Such model
calculations confirmed that extreme value statistics describes
the distribution of macroscopic strength; however, the general
validity of the Weibull distribution has been questioned,
although it is widely used in engineering design [12].

To study the size scaling of fracture strength the fiber
bundle model (FBM) also provides an adequate framework
[13–18]. In FBMs the sample is discretized in terms of parallel
fibers where controlling the mechanical response, strength, and
interaction of fibers various types of mechanical responses
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can be represented. Additionally, FBMs are simple enough
to obtain analytic solutions for the most important quantities
of interest. For the redistribution of load after fiber breaking
two limiting cases are very useful to study: the equal (ELS)
and local (LLS) load sharing: under ELS the excess load after
failure events is equally shared by all the intact fibers, and
hence, the stress field remains homogeneous over the entire
loading process. For LLS the load dropped by the broken
fiber is equally shared by the intact elements of its local
neighborhood, resulting in a high stress concentration along
broken clusters of fibers.

For ELS, analytic calculations have revealed [15,19,20] that
in the limit of large bundle size N the average values 〈σc〉 and
〈εc〉 of the fracture stress σc and strain εc converge to finite
values according to a power law functional form:

〈σc〉(N ) = σc(∞) + AN−α, (1)

〈εc〉(N ) = εc(∞) + BN−α. (2)

Here σc(∞) and εc(∞) denote the asymptotic bundle strength.
The scaling exponent α has the value α = 2/3, which proved
to be universal for a broad class of disorder distributions, while
the multiplication factors A and B depend on the specific type
of disorder [15,19,20].

For LLS, numerical calculations showed that the macro-
scopic strength of bundles, where the strength distribution of
single fibers expands to zero, diminishes as the system size N

increases. The convergence to zero strength is logarithmically
slow with the functional form

〈σc〉(N ) ∼ 1/(ln N )β, (3)

where the exponent β was found to depend on the precise
range of load sharing [21–28]. For some modalities of stress
transfer an even slower asymptotic convergence 〈σc〉(N ) ∼
1/ ln(ln N ) to zero strength was found such as for hierarchical
load transfer [29]. The effect of the range of load sharing on
the fracture strength of fiber bundles has been studied for a
moderate amount of disorders where the strength of single
fibers is typically sampled from a uniform, exponential, or
Weibull distribution. However, the precise amount of disorder
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may have a strong effect on the size scaling of fracture strength,
which has not been explored.

In the present paper we investigate the effect of the amount
of microscale disorder on the size scaling of the macroscopic
strength of equal load-sharing fiber bundles focusing on the
limiting case of extremely high disorder. We consider a power
law distribution of fibers’ strength over a finite range where the
amount of disorder can be controlled by the exponent and by
the upper cutoff of the strength values. As the most remarkable
result, our study revealed that in a range of parameters the
bundle strength increases with the system size. The usual
decreasing behavior sets in only beyond a characteristic system
size which depends on the amount of disorder. We give a
quantitative explanation of these findings in terms of extreme
order theory. The results may have potential applications for
material design.

II. FIBER BUNDLE MODEL WITH
FAT-TAILED DISORDER

In our model we consider a bundle of N parallel fibers,
which are assumed to have a perfectly brittle behavior, i.e.,
they exhibit a linearly elastic response with a Young modulus
E up to breaking at a threshold load σth. The Young modulus
is assumed to be constant E = 1 such that the disorder
of the material is solely represented by the randomness of
the breaking threshold σth: to each fiber a threshold value
is assigned σ i

th, i = 1, . . . ,N sampled from the probability
density p(σth). The amount of disorder in the system can be
controlled by varying the range σ min

th � σth � σ max
th of strength

values and by the functional form of p(σth).
In order to explore the effect of extremely high disorder, we

consider a power law distribution of threshold values over a
finite range. The probability density function is written in the
form

p(σth) =

⎧⎪⎪⎨
⎪⎪⎩

0, σth < σ min
th ,

Aσ
−(1+μ)
th , σ min

th � σth � σ max
th ,

0, σ max
th < σth,

(4)

where the lower bound of thresholds σ min
th was fixed to σ min

th =
1. The amount of disorder is controlled by varying the exponent
μ of the power law and the upper bound σ max

th of the breaking
thresholds, while all other parameters are fixed. The value of
the exponent is varied over the interval 0 � μ � 1 because
in the limiting case of an infinite upper bound σ max

th → ∞ at
these μ values the disorder is so high that the thresholds do
not have a finite average. For finite values of σ max

th , of course,
the average 〈σth〉 is always finite; however, the specific values
of σ max

th and μ have a very strong effect on the behavior of the
system both on the macro- and microscales.

After normalizing the probability density p(σth) the cumu-
lative distribution function P (σth) can be cast into the form

P (σth) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 σth < σ min
th ,

σ
−μ

th − (
σ min

th

)−μ

(
σ max

th

)−μ − (
σ min

th

)−μ
, σ min

th � σth � σ max
th ,

1 σ max
th < σth.

(5)
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FIG. 1. (a) The macroscopic response σ (ε) of the system for the
same upper cutoff εmax = 50 varying the value of the exponent μ (μ
increases from top to bottom). (b) Constitutive curves for a fixed μ =
0.7 exponent varying the upper cutoff εmax with the multiplication
factor k (k increases from bottom to top). Approaching the phase
boundary in both cases the system becomes more and more brittle.
The curve on the top of (b) corresponds to the case εmax → ∞. The
dashed lines represent the full analytical curves of Eq. (6) while the
colored dots show the results of stress-controlled simulations.

The macroscopic response of the bundle is characterized by
the constitutive equation σ (ε). Assuming equal load sharing,
σ (ε) can be cast in the general form σ (ε) = Eε[1 − P (Eε)],
where the term 1 − P (Eε) provides the fraction of intact fibers
at strain ε, which all keep the same load Eε [15,17,18].
Substituting the cumulative distribution function P (x) from
Eq. (5) we arrive at

σ (ε) =

⎧⎪⎪⎨
⎪⎪⎩

ε, 0 � ε � εmin,

ε
(
ε−μ − ε

−μ
max

)
ε

−μ
min − ε

−μ
max

, εmin � ε � εmax,

0, εmax < ε,

(6)

where for clarity the notation εmin = σ min
th /E, εmax = σ max

th /E

was introduced with E = 1. The macroscopic constitutive
response of the system is illustrated in Fig. 1. Up to the lower
bound εmin a perfectly linearly elastic response is obtained
since no breaking can occur. When the fibers start to break
above εmin, the constitutive curve σ (ε) becomes nonlinear, and
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FIG. 2. Phase diagram of the system. The phase boundary
separating the brittle and quasibrittle macroscopic response is given
by Eq. (9). Note that for μ � 1 the bundle is always in the brittle
phase.

beyond the maximum it decreases to zero as all fibers break
gradually.

The fracture strength of the bundle is defined by the value
σc of the maximum of the constitutive curve and by its position
εc, called critical stress and strain, respectively. Under stress-
controlled loading exceeding the value of σc , the bundle rapidly
undergoes global failure so that the entire σ (ε) curve can be
realized only under strain-controlled loading. Of course, the
critical strain depends on the degree of disorder characterized
by μ and εmax,

εc = εmax(1 − μ)1/μ, (7)

while the critical stress σc depends on the lower cutoff εmin as
well:

σc = μ(1 − μ)1/μ−1ε
1−μ
max

ε
−μ
min − ε

−μ
max

. (8)

It is a very interesting feature of the system that if the
threshold distribution is too narrow, the first fiber breaking
already can trigger a catastrophic avalanche of fiber breaking,
giving rise to global failure. This occurs when the position of
the maximum of the constitutive curve εc coincides with the
lower bound εmin. Keeping εmin fixed, a threshold value εmax

c

of the upper bound εmax can be derived as

εc
max = εmin

(1 − μ)1/μ
. (9)

It follows that those bundles where εmax < εc
max holds behave

in a completely brittle way, i.e., macroscopic failure occurs
right after the linear regime of σ (ε) at the instant of the first
fiber breaking. However, in the parameter regime εmax > εc

max
a quasibrittle response is obtained where macroscopic failure
is preceded by breaking avalanches.

It can be observed that as the exponent μ approaches 1 from
below, the value of εc

max diverges so that the regime μ � 1 is
always brittle. The phase diagram of the system is illustrated
in Fig. 2.

In the following we analyze how the amount of disorder
affects the macroscopic strength of finite bundles in the

quasibrittle phase. For clarity, in these calculations the upper
cutoff εmax will be expressed in terms of εc

max as εmax = kεc
max,

where the multiplication factor k can take any value in the
range k � 1.

III. FRACTURE STRENGTH OF FINITE BUNDLES

The fracture strength characterized by the critical strain εc

and stress σc have been obtained analytically in Eqs. (7) and
(8) as function of the parameters of the model μ,εmin, and
εmax. These analytical calculations assume an infinite system
size so that εc and σc are the N → ∞ asymptotic strength of
the bundle. In order to reveal how the finite size of the bundle
N affects the average value of the critical strain 〈εc〉 and stress
〈σc〉 we performed computer simulations varying the number
of fibers N over six orders of magnitude. Stress-controlled
loading of the bundles was performed until the catastrophic
avalanche gave rise to global failure. The critical values εc and
σc were determined as the strain and stress of the last stable
configuration of the system (see also Fig. 1).

It can be seen in Fig. 3(a) that for low values of the upper
cutoff εmax of the strength of single fibers the average bundle
strength 〈εc〉 monotonically decreases with increasing system
size as is expected. However, above a certain value of εmax

the macroscopic strength has an astonishing unceasing regime
for small system sizes so that the usual decreasing behavior
of strength is restored only above a characteristic system size
Nc. The horizontal lines in the figure show that in the limit
of large N the average strength 〈εc〉 converges to the analytic
asymptotic value of Eq. (7). Note that the characteristic system
size Nc, which separates the increasing and decreasing regimes
of macroscopic strength, is an increasing function of εmax. The
same qualitative behavior is observed for the critical stress
〈σc〉 in the inset of Fig. 4, which clearly demonstrates that the
fracture strength of the fiber bundle increases for small system
sizes when the amount of disorder is sufficiently high. The
position of the maximum of 〈σc〉 coincides with that of 〈εc〉.

Figure 3(b) and Fig. 4 demonstrate that rescaling the two
axis of Fig. 3(a) and of the inset of Fig. 4 the curves of different
cutoff values can be collapsed on a master curve. On the
horizontal axis the number of fibers is rescaled with ε

μ
max,

while along the vertical axis the rescaling is performed with
the corresponding asymptotic strength εc(∞) and σc(∞) in
the two figures. The good quality collapse implies the scaling
structures

〈εc〉(N,εmax) = εc(∞)�
(
N/εμ

max

)
, (10)

〈σc〉(N,εmax) = σc(∞)�
(
N/εμ

max

)
, (11)

where �(x) and �(x) denote the scaling functions. The
structure of the scaling functions �(x) and �(x) has the
consequence that the characteristic system size Nc depends
on the parameters as

Nc ∼ εμ
max. (12)

In Figure 3(b) unity is subtracted from the scaling function
�(x), which results in an asymptotic power law decrease. This
behavior implies the validity of the functional form

�(x) ≈ 1 + Cx−α (13)
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FIG. 3. (a) The average value of the critical strain 〈εc〉 as a
function of the bundle size N for several values of the upper cutoff
εmax of the strength of single fibers. The horizontal lines represent
the corresponding asymptotic strength obtained from Eq. (7). The
value of the exponent μ is fixed to μ = 0.8. The upper cutoff εmax is
parametrized by k such that the legend is the same as in panel (b).
The red bold line gives the analytic curve of Eq. (15). (b) Scaling plot
of the data presented in panel (a). After rescaling with the asymptotic
strength εc(∞) we subtracted 1 from the result in order to demonstrate
the asymptotic power law behavior. The straight line represents a
power law of exponent −2/3.

for x > 1. The value of the exponent was found to be α = 2/3,
which is consistent with the generic behavior Eq. (1) of the
strength of ELS bundles. Note that the scaling function �(x)
of 〈σc〉 has the same features in Fig. 4 as �(x) so that �(x)
can also be described by Eq. (13).

IV. EXTREME ORDER STATISTICS

The peculiar size scaling of macroscopic strength obtained
in our simulations is the direct consequence of the fat-tailed
strength distribution of single fibers. The main effect of the fat
tail is that even for a small system size N the probability to
have strong fibers in the bundle can be relatively high. Under
equal load-sharing conditions all fibers keep the same load
so that fibers break in the increasing order of their breaking
thresholds. Our assumption is that for those system sizes N
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FIG. 4. Inset: The average fracture stress 〈σc〉(N ) as a function of

the number of fibers N for the same values of the upper cutoff as in
Fig. 3 using also the same legend. The bold line represents the curve
of Eq. (17). Main panel: Rescaling the two axis of the inset the curves
obtained at different cutoff values can be collapsed on a master curve.

which are along the increasing regime of 〈εc〉(N ) and 〈σc〉(N )
the strongest fibers are so strong that a few of them or even a
single one is able to keep the entire load that has been put on
the bundle. It follows that the average macroscopic strength
〈εc〉(N ) should be determined by the average strength of the
strongest fiber 〈εmax

th 〉
N

. The average of the largest value of a
set of N random numbers sampled from the same probability
distribution can be obtained analytically as

〈εc〉(N ) = 〈
εmax
th

〉
N

= P −1

(
1 − 1

N + 1

)
, (14)

where P denotes the cumulative distribution of failure thresh-
olds. Substituting P from Eq. (5), the above expression yields
for the macroscopic strength

〈
εmax
th

〉
N

=
{[(

εmax
th

)−μ − (
εmin
th

)−μ
](

1 − 1

N + 1

)

+ (
εmin
th

)−μ

}−1/μ

. (15)

It can be observed in Fig. 3 that Eq. (15) provides a high-quality
description of the increasing macroscopic fracture strength
with the system size. Deviations occur only around the
characteristic system size Nc where the curve of 〈εmax

th 〉
N

saturates since the average of the largest cannot exceed the
value of the upper cutoff of fibers’ strength εmax. Note that for
large upper cutoffs εmax → ∞ Eq. (15) predicts a power law
increase of the fracture strain with the system size [30]:

〈εc〉(N ) ∼ N1/μ. (16)

For the fracture stress 〈σc〉(N ) it follows from the above
arguments that along the increasing branch in Fig. 4 the relation
holds:

〈σc〉(N ) = E〈εc〉(N )

N
. (17)
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This explains the orders of magnitude difference of 〈εc〉(N )
and 〈σc〉(N ) in Figs. 3 and 4 and the slower increase of the
fracture stress:

〈σc〉(N ) ∼ N1/μ−1. (18)

This relation provides a very good description of the data
in the inset of Fig. 4. Beyond the characteristic system size
Nc both quantities 〈εc〉(N ) and 〈σc〉(N ) are described by the
same size scaling exponent α = 2/3. The result shows that
for small system sizes the macroscopic strength of the bundle
is determined by the extreme order statistics of the strength
of single fibers, while above a characteristic system size this
behavior breaks down and the average collective behavior of
fibers of the bundle dominates [15].

V. DISCUSSION

We investigated the effect of fat-tailed microscopic disorder
on the macroscopic fracture strength of heterogeneous mate-
rials in the framework of a fiber bundle model with equal load
sharing. The amount of disorder was controlled by varying the
upper cutoff of fibers’ strength and the power law exponent of
the strength distribution. Analyzing the constitutive response
of the system, we determined its phase diagram on the plane
of control parameters: for low values of the upper cutoff
the bundle behaves in a completely brittle way where the
breaking of the weakest fiber triggers the sudden collapse of the
bundle. For sufficiently high disorder a quasibrittle response
is obtained where macroscopic failure is approached through
stable cracking.

We focused on the size scaling of macroscopic strength
of the bundle in the quasibrittle phase. Computer simulations
revealed an astonishing size effect: for small system sizes the
bundle strength increases with the number of fibers such that
the usual decreasing behavior sets on only above a charac-
teristic system size. Fat-tailed disorder has the consequence
that at small system sizes strong fibers already are included
in the bundle with a high probability. It implies that even a
single fiber may be able to keep the total load put on the

system so that for small system sizes the macroscopic bundle
strength is determined by the extreme order statistics of the
strength of single fibers. Since the fiber strength is bounded
from above, for large enough system sizes the strongest fiber
cannot compete with the load kept by the weaker fibers so
that the regular decreasing size scaling gets restored. Based
on this argument we could give an analytic description of the
size scaling of bundles strength in the presence of fat-tailed
disorder and determined the crossover system size, as well.

A similar strengthening behavior for small system sizes
has been observed in time-dependent fiber bundles under
localized load-sharing conditions [31,32]. It was found that for
sufficiently small power law exponents of the life consumption
function of fibers, a few long-lived fibers dominate, giving rise
to an increased lifetime of the entire bundle. Consequently, the
bundle lifetime is described by an extreme value distribution
[31,32].

Our study is focused on the ELS limit of FBMs where
all fibers keep the same load. In fibrous materials stress
fluctuations naturally arise due to the localized load sharing
after fiber failures. In the strengthening regime, where extreme
order statistics dominates the size scaling, no difference of
ELS and LLS systems is expected. However, the crossover
system size Nc can depend on the precise form of the load
redistribution scheme. Simulation studies in this direction are
in progress.

Recently, it has been shown that by controlling the mi-
crostructure [33] or the microscale disorder [34] of materials,
novel types of materials can be tailored with desired properties
for specialized applications. The scaling regime where the
macroscopic strength increases with the system size may have
potential for material design in future applications.
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