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Curvature flows, scaling laws 
and the geometry of attrition 
under impacts
Gergő Pál1,2, Gábor Domokos3,4 & Ferenc Kun1*

Impact induced attrition processes are, beyond being essential models of industrial ore processing, 
broadly regarded as the key to decipher the provenance of sedimentary particles. Here we establish 
the first link between microscopic, particle-based models and the mean field theory for these 
processes. Based on realistic computer simulations of particle-wall collision sequences we first identify 
the well-known damage and fragmentation energy phases, then we show that the former is split into 
the abrasion phase with infinite sample lifetime (analogous to Sternberg’s Law) at finite asymptotic 
mass and the cleavage phase with finite sample lifetime, decreasing as a power law of the impact 
velocity (analogous to Basquin’s Law). This splitting establishes the link between mean field models 
(curvature-driven partial differential equations) and particle-based models: only in the abrasion phase 
does shape evolution emerging in the latter reproduce with startling accuracy the spatio-temporal 
patterns (two geometric phases) predicted by the former.

Impact induced damage and fragmentation of solids is ubiquitous in nature and plays a crucial role in the evolu-
tion of our geological environment: repeated impacts shape particles (sand grains, pebbles, and volcanic rocks) 
in sediment transport1–9, affect the production of ash and pyroclast particles in volcanic eruptions10,11, and con-
tribute to the generation of atmospheric aerosols with consequences on air pollution and on the global climate12. 
In the Solar system, the size and shape of asteroids and of the particles of planetary rings observed today are the 
results of a long lasting collisional evolution13–17. On planet Mars traces of fluvial evolution of landforms such as 
pebbles have been discovered5,18 similar to river beds on Earth. Particle breakage is widely used by the industry 
in comminution processes of ores and minerals19–23, however, it can also be undesired in process and handling 
engineering due to the resulting degradation of product quality. In these natural processes and industrial applica-
tions particles collide both with each other and with hard walls presented by Earth surface (river beds, beaches, 
and rock walls) or by the components of the process equipment (conveyors, transportation tubes, and containers). 
A specific area where particle-wall collisions are of utmost importance is the damaging of aircrafts, especially 
jet engines by impacting hail particles which can cause power reduction and even flame-out of the engine24.

Over the past decades, detailed knowledge has been accumulated in geology1,2,18,25, physics26–33, and 
engineering19,23,34–36 on single impact breakage phenomena, however, a comprehensive understanding of low 
velocity impact sequences responsible for the gradual mass reduction and global rounding of solid particles is 
still lacking. In the physics literature, the existence of two distinct energy phases has been established; these are 
called the damage phase and the fragmentation phase. These two phases have not only been demonstrated for 
brittle materials30,32,34,37, and plastics spheres38, but also for liquid droplets39. Moreover, the same two energy 
phases have also been reported in the geophysics literature8 for the collisional attrition of sedimentary particles. 
In the latter context, global mechanical and geometric understanding of impact induced breakage would be 
essential to decipher the information hidden in the size and shape of grains and pebbles1–4,18. While research 
in geology and physics concentrated on single impact phenomena, mathematical research related to the proof 
of the Poincaré conjecture40–42 led to the study of a class of nonlinear geometric partial differential equations 
(PDEs) called curvature-driven flows which appear to be the adequate mean-field theory models for the global 
evolution of pebbles and other particles under a large number of low energy impacts43,44. One may target global 
shape evolution of particles either by extending the physics literature about single breakage to multiple breakage 
processes or by relying on mean field PDE models. Although the latter are invaluable tools to obtain qualitative 
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insight, nevertheless, their application has not yet been rigorously justified: until now there existed no theory 
linking microscopic and macroscopic approaches, in particular, there were no clear physical criteria established 
for the breakage process which would admit mean field PDEs as valid global approximations.

The latter, on the other hand, appear to be very useful as they make specific geometric predictions: global 
evolution starting from cuboid polyhedra, serving as averaged models of natural fragments25,45, occurs in two geo-
metric phases: in the first, local rounding phase vertices and edges become rounded but axis ratios hardly change 
while in the second, global rounding phase roundness remains almost constant while axis ratios increase9,46. 
These geometric phases have been identified both in laboratory experiments and in numerical simulations of the 
PDEs9,47 and this naturally led to the hypothesis that the geometric phases may also exist in a mechanical abrasion 
model. In stark contrast to geometric shape evolution of pebbles, no phases can be distinguished in the evolution 
of mass9 which appears to obey Sternberg’s empirical law of exponential decay, approaching zero at infinite time48.

Here we present a thorough theoretical study of the phase structure of impact induced attrition processes 
with the primary aim to establish a firm link between microscopic physical breakage models and mean field, 
macroscopic geometric PDE models. Based on realistic discrete element simulations of sequences of particle-
wall collisions, we show that, instead of regarding just two distinct energy phases, the damage phase and the 
fragmentation phase, one has to consider three distinct energy phases since, by regarding impact velocity as a 
control parameter, the damage phase may be clearly separated into two further energy phases:

•	 At sufficiently low velocities repeated impacts result in abrasion of the body and lead to a finite asymptotic 
residual mass; we call this the abrasion energy phase.

•	 Above a first critical velocity, complete destruction is achieved within a finite number of repetitions; we call 
this the cleavage energy phase.

The third, highest energy phase, occurring above a second critical velocity corresponds to instantaneous fragmen-
tation where cracks span the entire body and the sample rapidly falls apart into a large number of small pieces; 
we call this the fragmentation energy phase. The transitions between the abrasion, cleavage, and fragmentation 
phases occur at two well-defined critical velocities analogous to continuous phase transitions.

We establish the link between microscopic physical breakage models and mean-field PDEs in two steps. 
First, the splitting of the earlier identified damage phase into the abrasion and cleavage phases delineates the 
range of validity for the latter: the main feature of the now identified abrasion phase is that each impact removes 
only a small amount of relative mass. As PDE models are based on the limit where the removed relative mass 
in each collision approaches zero, our study shows that PDEs can be regarded as a mean field approximation of 
collision-induced attrition in the abrasion energy phase. Second, we identify one key feature of the PDE model 
in the microscopic simulation: we show that two geometric phases earlier identified in the context of the PDE 
model clearly emerge inside the abrasion phase in the microscopic breakage model.

Our finding is based on large scale computer simulations which revealed that the evolution of the mass and 
shape of the solid is governed by scaling laws in terms of the impact velocity. Most notably, in the abrasion phase 
the shape evolution of the sample is described by a universal scaling form with a power law dependence on the 
impact velocity predicting infinite sample lifetime at some finite, asymptotic mass, the latter being determined 
by the energy threshold for the creation of cracks. In the special limit when this threshold approaches zero, 
our findings reproduce Sternberg’s Law48, predicting exponential decay (and infinite lifetime) for sedimentary 
particles undergoing collisional abrasion in fluvial environments. In addition to verify Sternberg’s Law for mass 
evolution, in the energetic abrasion phase we also confirmed the existence of the two earlier observed geometric 
phases9,46, thus our simulations serve as the first direct mechanical confirmation of curvature-driven PDEs as 
models of impact-driven abrasion processes. In the cleavage phase we find that the sample lifetime decreases as 
a power law of the impact velocity analogous to the Basquin law49,50 of sub-critical fracture.

Results
Single impacts: transition from damage to fragmentation.  To understand the evolution of solid 
bodies under repeated collisions with a hard wall, first we focus on single impact events and quantify the result-
ing mass reduction. We performed numerical measurements by means of computer simulations of a realistic 
discrete element model (DEM) of body-wall collisions in three dimensions (3D)51–55 varying the impact veloc-
ity v0 in a broad range. To represent freshly fractured rocks with sharp corners and edges in the initial state of 
shape evolution, rectangular samples of mildly elongated cubic shape were created with the aspect ratio 1:1.2:1.4 
of their shortest c0 , intermediate b0 , and longest a0 sides. This choice is justified by our recent finding that the 
average shape of fragments is well approximated by a cube for a large diversity of fragmentation processes45. The 
solid was discretized as a random packing of spherical particles, connected by breakable cohesive contacts51–55. 
Parameters of the model were set in such a way that our DEM provides a consistent qualitative and in certain 
cases quantitative description of the mechanical and fracture properties of the broad class of heterogeneous 
brittle materials which are abundant in our geological environment30,56–59 (see Methods and the Supplementary 
Information for details of the model construction and parameter settings). Initially, the discretized sample was 
placed close to a planar wall with a random orientation chosen uniformly on the sphere and the impact was initi-
ated by assigning identical velocity v0 perpendicular to the wall to all particles of the solid . As the body moved, it 
got into contact with the wall and deformed which could result in cracking and fragment formation. The impact 
lasted until complete rebound was achieved where all particles separated from the wall. In the final state of the 
process, particles connected by the surviving cohesive elements were identified as fragments. A snapshot of the 
impact process is presented in Fig. 1.



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20661  | https://doi.org/10.1038/s41598-021-00030-1

www.nature.com/scientificreports/

Simulations revealed that for sufficiently low impact velocities v0 < va the sample solely underwent deforma-
tion around the impact site and rebounded elastically without suffering any damage. Cracks first occurred when 
v0 surpassed a threshold velocity va determined by the strength of the internal cohesive elements of the material. 
In this low velocity range, deformation and crack formation is restricted to the vicinity of the contact zone, while 
for high impact velocities cracks can span the entire sample giving rise to rapid breakup. To give a quantitative 
characterization of the final outcome and the degree of destruction caused by impacts, we determined the average 
masses M1st and M2nd of the largest and second largest fragments, respectively. After normalizing these values 
by the total mass M0 we plotted m1st = �M1st/M0� ,m2nd = �M2nd/M0� as function of the impact velocity v0 . 
It can be observed in Fig. 2 that at low impact velocities we have m2nd ≪ m1st , i.e. the second largest fragment 
is orders of magnitude smaller than the largest one, showing that only small pieces are removed from the body 
around the impact site. This is characteristic for the damage energy phase. Fragmentation is achieved when the 
second largest piece becomes comparable to the largest one, which first occurs at the maximum of m2nd defining 
the critical velocity vf  of fragmentation. Beyond the critical fragmentation velocity vf  both m1st and m2nd decrease 
monotonically. Figure 2 shows that, depending on the velocity, single impacts give rise either to damage or frag-
mentation of the sample with a sharp transition at the critical velocity vf  . The damage–fragmentation transition 

Figure 1.   A snapshot of the time evolution of the first impact of a sample with a hard wall. The initially angular 
body hits the wall close to one of its corners. Most of the fragments are single particles flying at a high speed. 
Colors are randomly assigned to the fragments. The intact cohesive contacts are represented by lines connecting 
the spherical particles.
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Figure 2.   The three energy phases. Mass of the largest m1st and second largest m2nd fragments obtained after 
a single impact as function of the impact velocity v0 . In the regime v0 < va of low velocities no cracking occurs 
and the impactor elastically rebounds from the wall. In the abrasion phase va < v0 < vc small fragments are 
removed from the body by chipping. To achieve complete breakup in a single impact, v0 has to exceed the 
critical fragmentation velocity vf  . In the intermediate velocity range vc < v0 < vf  of cleavage, cracks penetrate 
deeper inside splitting larger pieces from the body. The critical velocity vc of cleavage is the threshold velocity 
above which the asymptotic remaining mass tends to zero in repeated collisions. Horizontal axis shows on 
logarithmic scale the impact velocity v0 normalized by critical fragmentation velocity vf  . For the model solid we 
found the (non-dimensional) ratio of threshold velocities to be va/vf = 0.124 . and vc/vf = 0.224.
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has already been studied in experiments and computer simulations of impacting spherical samples against a hard 
wall, using heterogeneous brittle materials30,32,34,37, plastics spheres38, and liquid droplets39. In these studies, the 
same qualitative behavior was obtained for the largest fragment masses m1st , m2nd as in Fig. 2, which implies 
that the overall outcome of the process in the high velocity range is entirely controlled by the impact velocity 
and its critical value vf  , whereas neither the sample’s shape nor materials’ features have any relevant effect. The 
detailed analysis of the mass distribution of fragments revealed that the observed universality is caused by the 
underlying continuous phase transition from damage to fragmentation as the impact velocity is varied26,39,60. 
The identification of the known damage and fragmentation phases also serves as a verification of our model.

Repeated impacts and the two sub‑phases of damage: abrasion and cleavage.  In the previ-
ous subsection, confirming earlier results, we established for single impact phenomena the existence of the two 
main energy phases. Now we will show that, if we consider not just a single impact but impact sequences, the 
damage phase can be subdivided into two narrower energy phases: abrasion and cleavage. The damage phase, 
characterized by v0 ≪ vf  is often observed in natural and industrial processes at lower energy levels. Under such 
conditions, the large residue of the sample typically undergoes repeated collisions which give rise to a complex 
evolution of its size and shape. In the following we extend the global phase diagram of Fig. 2 refining the struc-
ture of the damage phase by characterizing qualitatively different evolution histories of residues under repeated 
sub-critical impacts.

To simulate sequences of particle-wall collisions, in the final state of an impact event we identified the largest 
fragment as the residue of the body, which was further processed to obtain a completely relaxed object for the 
initial state of the next impact (see “Methods” for the details of the preparation of the residue). The residue was 
subsequently randomly rotated in three dimensions and was impacted against the wall with the same impact 
velocity v0 < vf  as before. The above procedure was repeated up to Nmax = 400 times, or until complete destruc-
tion of the body, at ≈ 60 different impact velocities, respectively. As an example, Fig. 3 illustrates the 8th impact 
of a residue. For each sequence, 120 different initial samples were used, while in subsequent impacts the residues 
were randomly rotated by uniformly choosing a direction on the sphere. These calculations revealed an astonish-
ingly rich phase structure of the sub-critical v0 < vf  regime.

To quantify the gradual mass reduction during the collision sequence, Fig.  4a presents the average 
mr = �Mr/M0� of the residual mass Mr normalized by the initial mass of the sample M0 , as a function of the 
impact number N for several values of v0 . We remark that for a single impact event we have mr ≡ m1st . At very 
low velocities v0 ≪ vf  , a single impact always gives rise only to a few fragments which are typically single spheres, 
i.e. powder in the model. As a consequence, in Fig. 4a the residual mass mr gradually decreases with increasing 
impact number N, however, mass reduction gets limited for high N values and a finite asymptotic residual mass 
emerges mr → ma

r  as N → ∞ . The reason is that due to the decreasing mass Mr , the kinetic energy E0 = 1
2Mrv

2
0 , 

imparted to the sample decreases, since the impact velocity v0 is fixed. Consequently, beyond a certain impact 
number, i.e. below a certain value of Mr , the emerging deformation is not sufficient to induce further cracking.

Since only small pieces are removed in single impacts, we term this velocity regime as the abrasion phase of 
the system characterized by the existence of a finite asymptotic residual mass ma

r > 0 . It can be observed in Fig. 4a 
that the value of ma

r  decreases with increasing impact velocity v0 . The value of ma
r  depends also on the energy 

threshold for the creation of cracks, i.e. on the strength of cohesive contacts. In the limit when this threshold 
approaches zero, our findings reproduce Sternberg’s Law48, predicting exponential decay to zero mass and infinite 
lifetime for sedimentary particles undergoing collisional abrasion in fluvial environments.

When v0 gets sufficiently high, the functional form of mr(N) qualitatively changes: the mass of the residue 
sets to a rapid decrease with N, and repeated impacts give rise to a complete destruction of the sample within a 
finite number of repetitions. This behavior is characterized by impact velocities in the range vc < v0 < vf  and 
we call this interval the cleavage phase of the impact sequence. The critical velocity vc of cleavage is defined as 

Figure 3.   A snapshot of the 8th impact of a residue at the velocity v0/vf ≈ 0.4 using the same representation of 
fragments and cohesive contacts as in Fig. 1. The original edges have been already rounded due to mass removal.
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the threshold velocity above which the asymptotic residual mass is zero even at finite energy threshold for the 
creation of cracks. In our discrete element model, a complete destruction of the sample is reached when the 
largest fragment comprises solely a single particle of the discretization. For real materials this state is realized 
when the residual size approaches a characteristic length scale of the meso-structure, e.g. grain size of materials.

The transition from abrasion to cleavage at the critical velocity vc is driven by the changing mechanism of 
cracking. In the abrasion phase the dominating mechanism of mass removal is chipping, i.e. crack formation 
parallel to the contact surface with the wall, which leads to the formation of tiny fragments61,62. However, in the 
case of cleavage, cracks penetrate the solid to significantly deeper regions so that a combination of contact dam-
age and fracture occurs, giving rise to coarser products as well. Additionally, the elastic waves generated by the 
collision give rise to the gradual accumulation of damage inside the residue which, in turn, can result in fatigue 
crack growth as the impact sequence proceeds63.

Our results demonstrate that above the threshold velocity of micro-cracking va , impact attrition phenomena 
have additionally two well-defined critical impact velocities vc and vf  , which separate the three phases of abra-
sion, cleavage, and fragmentation with distinct qualitative behaviors. The phase diagram of Fig. 2 provides an 
overview of the distinct qualitative behaviours of impacting solids. For our model solid, the threshold velocities 
of abrasion and cleavage are va/vf = 0.124± 0.004 and vc/vf = 0.224± 0.005 , with respect to the fragmenta-
tion critical velocity vf .

Sternberg’s law and Basquin’s law.  Figure 4b demonstrates that rescaling the impact number N with a proper 
power α of v0 , curves belonging to different impact velocities v0 can be collapsed on the top of each other, yield-
ing the scaling form

where the scaling function m̃r(x) can be approximated by an exponential m̃r(x) ∼ exp (−x) (see Fig. 4b), repro-
ducing the time evolution predicted by Sternberg’s law48. Best collapse is achieved in Fig. 4b with the exponent 
α = 2.1± 0.15.

It follows from the scaling analysis that increasing the impact velocity v0 the characteristic impact number 
Nc of the time evolution decreases as a power law

The scaling law Eq. (2) holds in both the abrasion and cleavage phases va < v0 < vf  of impact attrition. For cleav-
age, the characteristic impact number Nc can be interpreted as the lifetime of the sample. Since the peak stress, 
emerging at the contact zone during impact, increases as a power of the impact velocity v064, it follows that the 
expression (2) of residual lifetime is analogous to the Basquin law of sub-critical fracture phenomena49,50,65–67. 
The Basquin law of fatigue life is a fundamental law of sub-critical fracture. It expresses that under a constant 
or varying sub-critical load, where the stress amplitude falls below the fracture strength of materials, failure 
occurs in a finite time which decreases as a power law of the externally applied stress amplitude49. Our results 
demonstrate that the Basquin law holds also for sub-critical impact phenomena.

In the abrasion phase Nc characterizes the rate of convergence to the asymptotic residual mass ma
r  . Addition-

ally, the impact velocity also determines the value of ma
r  , which tends to zero when approaching the critical point 

(1)mr(N , v0) = m̃r(Nv
α
0 ),

(2)Nc ∼ v−α
0 .
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Figure 4.   (a) Average mass of the residue mr as a function of the impact number N for several impact velocities 
v0 below the fragmentation critical point vf  . Panel (b) shows that by rescaling the horizontal axis, curves of 
different v0 values can be collapsed onto one single master curve. Note that data of the lowest impact velocities 
(highest remaining mass) are in the upper left corner at the start of the master curve. Straight line represents the 
exponential form of the scaling function m̃r(x) of Eq. (1). The legend for (a) and (b) is given in (b).
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vc from below, see Fig. 5 which also shows (inset) that the convergence to zero is well described by a power law 
as a function of the distance from the critical point

For the exponent we obtained β = 4.2± 0.2 by fitting of data. Since in the the cleavage phase we have ma
r = 0 , 

whereas in the abrasion phase we have ma
r > 0 , ma

r  can be considered as the order parameter of the abrasion-
cleavage phase transition, and β is the order parameter exponent of the transition.

Shape evolution: geometric phases inside the abrasion energy phase.  Mean field models.  In 
case of polyhedral initial samples, in the abrasion phase we expect that at the beginning of the impact sequence 
sharp corners and edges are gradually removed, giving rise to an evolution towards an asymptotic rounded 
shape. In the cleavage phase, due to the breaking of coarser pieces this evolution is more erratic and eventu-
ally results in an ultimate destruction. Due to the small size of fragments, we expect that geometric aspects 
of the abrasion phase may be well reflected in the solutions of averaged, mean field geometric PDE models of 
attrition43,44. The simplest, two-dimensional version of these PDE models may be written as

where V denotes the speed by which a surface points moves inward along the surface normal, κ is the scalar 
curvature and Eq. (4) is often referred to40,41 as the curve shortening flow, or as a geometric heat equation, refer-
ring to a class of geometrically defined, parabolic partial differential equations which have been, ever since 
the groundbreaking work of Mullins68,69, broadly used in surface evolution models43,70. The constant c can be 
regarded as scaling of time and plays no role if evolution is plotted as a function of the normalized residual mass 
mr . From the mathematical perspective, if we restrict ourselves to classical solutions of Eq. (4) then, instead 
of considering polyhedra as initial data, we rather consider smooth approximating sequences from which we 
can pick initial conditions arbitrarily close to a polyhedron. In the approximating sequence all first and second 
derivatives are continuous.

We remark that Eq. (4) is written in a compact, invariant notation, details about this and other notations are 
given in Section 1 of the Supplementary Information. The 3D version of this impact-induced attrition model, 
called the Gauss curvature flow was first introduced by Firey43 and its convergence to the sphere was ultimately 
proven by Andrews71. One advantage of the compact notation of Eq. (4) is that the 3D version can be described 
by an analogous formula, for details see Supplementary Information. Next we will show that these expectations 
are well founded and PDE models serve indeed as good approximations of impact-induced attrition processes, 
however, only in the abrasion phase.

Shape descriptors.  To give a quantitative characterization of the rounding process, we picked three dimension-
less descriptors of the overall shape of the residue which not only provide efficient monitoring of the geometric 
evolution but also admit meaningful comparison with earlier results: axis ratios, circularity (isoperimetric ratio) 
and intact surface ratio. 

(3)ma
r ∼ (vc − v0)

β , for v0 ≤ vc .

(4)V = cκ ,
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Figure 5.   Asymptotic mass ma
r  of the residue as a function of the impact velocity in the abrasion phase v0 < vc . 

Inset: the mass values of the main panel are re-plotted as a function of the relative distance from the critical 
point vc . The straight line represents a power law of exponent β = 4.2.
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1.	 Axis ratios c/a and b/a are traditional geological descriptors9 characterizing the shape of the residue25,72 where 
a > b > c refer to the axes of the bounding box of the residue, aligned with the edges of the initial (cuboid) 
sample.

2.	 Isoperimetric ratio or circularity of a planar object is given as R = 4πA/P2 , where A, P refer to area and 
perimeter, respectively. It has been observed8 that circularity of the largest projection of sedimentary par-
ticles shows universal features in fluvial abrasion and its evolution is entirely determined by the mass loss 
during impact induced attrition processes. In our DEM, A and P of the residue were obtained as the area 
and perimeter of the convex hull of the point cloud of the largest projection of the spherical particles of the 
relaxed body. For more details on shape descriptors see Subsection 1.3 of the Supplementary Information.

3.	 Intact surface ratio S/S0 , expressing the intact fraction of the initial surface, was selected following an idea 
of Richard Hamilton46 who, in one of the papers dedicated to the study of curvature-driven flows (leading 
ultimately towards to his seminal contribution to the proof of the Poincaré - conjecture) describes a curious 
nonlinear phenomenon about intact surface ratio in the Gauss curvature flow which is the 3D version of (4): 
he predicted that S/S0 will drop to zero after a finite time, marking the end of the first geometric phase for 
cuboids.Hamilton’s result inspired further, detailed research on other curvature-driven PDEs73 which found 
that whether or not flat sides are preserved depends on delicate features of these models. (For more details 
see Subsection 1.4 of the Supplementary Information.) In the initial state of DEM samples S0 is determined 
as the number of particles covering the external body surface, then the surviving intact surface S is obtained 
by tracing the particles removed from the initial surface S0 in subsequent impacts.

The evolution of axis ratios c/a and b/a and the evolution of the isoperimetric ratio R has been computed in the 
PDE model9 for the very same cuboid initial conditions as in our DEM study. For the evolution of intact surface 
ratio S/S0 in the PDE model we have an analytical result46. We will now establish the link between PDE models 
and microscopic computations by comparing these evolutions. The most striking qualitative feature of the PDE 
model is the spontaneous emergence of two geometric phases and our computations reveal that these phases are 
perfectly captured in the microscopic DEM approach. To make the comparison between plots for shape descrip-
tors meaningful, next we seek the corresponding scaling laws.

Scaling laws.  Increasing v0 accelerates mass removal and thus shape evolution. Figure 6a, c demonstrates that 
both axis ratios 〈c/a〉 (N , v0) , 〈b/a〉 (N , v0) remain initially constant, display sudden growth between the charac-
teristic impact numbers Nr and Ns and subsequently saturate. Both the overall shape of these functions and their 
saturation values remain the same in the entire abrasion phase, however both Nr and Ns decrease with increasing 
v0 . We found that rescaling these curves with vγ0  , they collapse onto master curves (see Fig. 6b, d) implying the 
scaling structure

where �(x) and �(x) denote the scaling functions. This also implies that Nr and Ns both have the same power 
law dependence

where the exponent γ  was obtained numerically γ = 3.0± 0.07 . The saturation values �c/a� ≈ 0.865 and 
�b/a� ≈ 0.925 show that the asymptotic stable shape of the object is slightly anisotropic which may be a conse-
quence of the finite number of the non-breakable discrete elements in the simulation. Our simulations revealed 
that under the condition of isotropic impacts, the origin of the universal scaling forms is that the shape of the 
evolving object is controlled by the total relative mass µ(N) = 1−mr lost in N repeated collisions. Recently, 
it has been suggested8 that µ(N) is also controlling the evolution of the circularity R, so henceforth we use this 
representation for all shape descriptors.

Geometric phases.  The PDE model (4) predicts for the evolution of cuboid blocs with moderate initial axis 
ratios the emergence of two geometric phases: in phase 1 axis ratios c/a, b/a remain approximately constant 
while roundness increases steeply and saturates close to 1. In phase 2 the opposite happens: axis ratios increase 
steeply and saturate close to 1 while roundness remains constant. The conceptual plot of this evolution (as a 
function of the relative abraded mass µ = 1−mr ) is shown in Fig. 7b1, accompanied by conceptual contours of 
the specimen, projected along the shortest (c) axis (b2) and representative snapshots of DEM simulations (b3). 
Figure 7c1 shows the same plot for b/a and R, obtained from the numerical computation9 of the PDE (4). Fig-
ure 7(c2) presents the hand-drawn sketch of Hamilton46 of his analytical result on the same PDE: intact surface 
area S/S0 survives for a finite time and this marks geometric phase 1.

In Fig. 7a we compare the DEM computations to the aforementioned analytical predictions. In Fig. 7a1 we 
show evolutions of the average axis ratio 〈b/a〉 and roundness 〈R〉 in the abrasion energy phase va < v0 < vc . Note 
that curves of different impact velocities all fall on the top of each other in agreement with the scaling collapse 
predicted in the previous section. It is apparent that we have good qualitative agreement with Fig. 7c1: 〈b/a〉 
remains constant at the initial value �b/a� = 1.2/1.4 until µ∗ ≈ 0.34 while 〈R〉 increases sharply and the opposite 
can be observed for µ > 0.34 . Based on this observations we can clearly record the presence of the two geometric 
phases in the abrasion energy phase for the evolutions of the axis ratios and the roundness.

(5)�c/a� (N , v0) =�(Nv
γ
0 ),

(6)�b/a� (N , v0) =�(Nv
γ
0 ),

(7)Nr ≈ Av
−γ
0 , Ns ≈ Bv

−γ
0 ,
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In Fig. 7a2 we show the evolution of the intact surface ratio S/S0 , also in the abrasion energy phase 
va < v0 < vc . We can observe that this shape descriptor drops to zero at the same relative abraded mass value 
( µ∗ ≈ 0.34 ) which separates the two phases for the evolution of axis ratios and roundness. This is in agreement 
with the prediction of Hamilton46 who claimed that intact surface area will survive for a finite time. It is easy 
to see that as long as intact surface area exists, the corresponding axis ratio of the cuboid (computed from the 
bounding box) will remain constant so here again we see a perfect match between the DEM computations and 
the prediction based on the PDE. The transition point µ∗ between the two geometric phases in the microscopic 
DEM and macroscopic mean field PDE descriptions of shape evolution have a very good agreement.

This confirms our claim that in the abrasion energy phase va < v0 < vc the PDE model offers adequate 
description of the shape evolution. In sharp contrast, Fig. 7a3 illustrates the evolution of the axis ratio b/a and 
roundness R in the cleavage energy phase vc < v0 < vf  , both displaying a non-smooth behavior: here we do not 
expect any mean-field PDE model to provide an adequate description.

Discussion
Impact induced attrition processes cover a broad variety of phenomena ranging from the gentle removal of fine 
powder from the surface of rock pieces by low velocity impacts to the immediate disruption of objects in energetic 
collisions. Understanding gradual mass removal due to a sequence of impact events is crucial in sedimentology 
since pebbles can be considered as witnesses of the geological conditions of their creation. Universal scaling 
laws of lifetime, size, and shape of evolving particles are indispensable to decode the information imprinted in 
pebbles1–4,18. In the initial state of this evolution process freshly fragmented rocks are generated25 by dynamic 
breakup of rock masses due to high velocity impacts. While the theory of single impact of solid particles with 
a hard wall is well understood at the level of particle-based models, impact sequences have been so far only 
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Figure 6.   Average side length ratios 〈c/a〉 (a) and 〈b/a〉 (c) of the bounding box of the residues as function of 
the impact number N for different impact velocities inside the abrasion energy phase v0 < vc . The horizontal 
dashed lines represent the initial values �c0/a0� = 1/1.4 and �b0/a0� = 1.2/1.4 . By rescaling the impact number 
N in (b) and (d) by an appropriate power γ of the impact velocity v0 , the curves of different v0 of (a) and (c) can 
be collapsed on master curves. Best collapse is achieved using the same exponent γ = 3 in (b) and (d).
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modeled by mean field theory which necessarily included gross simplifications of the breaking process. Here we 
offered the first link between particle-based models and mean field theory for collision sequences.

The main methodological novelty of our study is that we use the discrete element method to realistically 
simulate the entire physical process of all the individual impacts of long sequences without any additional 
assumption. Although at high computational costs (by simulating ≈ 5× 105 collisions with samples consisting 
of ≈ 12,000 discrete elements), this approach enabled us to unveil the rich phase structure of impact induced 
attrition processes. Based on experimental observations, a descriptive classification of single impact breakage 
has been proposed in19, where low, intermediate, and high velocity ranges were distinguished according to 
the amount and structure of the resulting damage of the body. Here we demonstrated that in multiple impact 
processes these regimes are separated by universal phase transitions. In addition to the already known damage 
and fragmentation phases (separated by the critical impact velocity vf  ) we identified the abrasion and cleavage 
phases inside the damage phase (separated by the critical velocity vc ). Abrasion results in finite asymptotic mass 
(analogous to Sternberg’s Law48) while cleavage results in a complete destruction after a finite number of impacts, 
with sample lifetime decreasing as a power law of the impact velocity (analogously to Basquin’s law).

By identifying the abrasion energy phase we were able to provide the link between microscopic, particle-
based models and mean-field curvature-driven equations. We showed that the latter can be regarded as adequate 
approximations of the former, however, only in the abrasion phase. Our simulations revealed an astonishing 
universality of the evolution of rounding of the residue. Both the axis ratios and the circularity of the largest 
projection proved to be entirely determined by the attrition mass: evolutions at different impact velocities v0 
can be collapsed onto a single curve by rescaling the number of impacts with a proper power α (also called the 
lifetime exponent) of v0 . This universality confirmed earlier conjectures and observations8,9 on the existence of 
two geometric phases and also helped to identify a scaling law of the dynamics: the characteristic event number 
of the onset of shrinking of initially angular objects proved to decrease as a power law of the impact velocity. 
We were also able to verify a curious effect of geometric nonlinearity, first predicted by Hamilton46: in case of 
polyhedral initial shapes, a finite amount of the initial surface area survived abrasion for a finite amount of time.

Our findings also fit into the broader picture of efforts to approximate PDE models by microscopic, particle-
based simulations. In the context of curvature-driven surface evolution, closest to our current topic, Monte-Carlo 

Figure 7.   Geometric shape evolution as a function of the relative abraded mass µ . (a) DEM simulations: (a1) 
Abrasion energy phase: evolution of the average circularity 〈R〉 and axis ratio 〈b/a〉 . Observe two geometric 
phases: phase 1 with approximately constant 〈b/a〉 followed by phase 2 with approximately constant 〈R〉 . 
Transition at µ∗ ≈ 0.34 . (a2) Abrasion energy phase: evolution of intact surface ratio S/S0 . Transition between 
phases at µ∗ ≈ 0.34 . (a3) Cleavage phase: evolution of the average circularity 〈R〉 (open symbols) and axis 
ratio 〈b/a〉 (filled symbols). Observe absence of smooth evolution. (b1) Schematic, bilinear approximation of 
two-phase geometric evolution of axis ratios and roundness. (b2) Schematic side view of abrading cuboids, 
projected along the shortest (c) axis. (b3) Snapshots of DEM simulations. (c) PDE model results: (c1) Evolution 
of circularity R and axis ratio b/a9. Observe two geometric phases: phase 1 with approximately constant b/a 
followed by phase 2 with approximately constant R. (c2) Hand-drawn sketch by R. Hamilton46 predicting phase 
1 characterized by nonzero intact surface ratio.
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simulations of the Kardar–Parisi–Zhang (KPZ) equation proved to be a powerful tool to understand the global 
dynamics74,75. However, in contrast to our approach, discrete KPZ models do not use a mechanics-based DEM 
Kernel and most often they are aimed at surface growth in an orthogonal [xyz] frame.

It is important to emphasize that the excellent qualitative and quantitative agreement (e.g. for the transition 
point between the two geometric phases) of the microscopic DEM and macroscopic PDE descriptions of shape 
evolution were obtained without any parameter tuning of DEM simulations. This confirms the high degree of 
robustness of the results for the broad class of heterogeneous brittle materials. For the initial state of shape evo-
lution we considered mildly anisotropic cuboids, since it has proven to be the generic average shape of freshly 
fractured rocks45. Cuboids with other axis ratios would only change the time scale of shape evolution and shift 
the transition point µ∗ between the geometric phases. Inside the energy phases of abrasion and cleavage, the 
temporal evolution of mass and shape is controlled by the impact velocity which we could cast into scaling 
laws. The value of the scaling exponent of lifetime (cleavage) α falls close to 2, while the exponent γ controlling 
the shape evolution (abrasion) has a higher value γ ≈ 3 . Based on fracture mechanics, approximate analytical 
expressions have been derived for the threshold velocities of the onset of abrasion va and fragmentation vf 62. 
These calculations showed that the critical velocities separating the energy phases of impact attrition phenomena 
depend on material properties as well as on the mass and linear extension of the sample62. Based on the analogy 
to continuous phase transitions and on the good quantitative agreement between the PDE and DEM approaches 
for the transition point µ∗ , we conjecture that the critical exponents α , β , and γ are universal, they depend neither 
on mechanical, nor on geometrical features of the system.

Methods
Discrete element model.  We performed computer simulations of the repeated sub-critical impact of solid 
bodies against a hard wall in the framework of a discrete element model of heterogeneous brittle materials which 
has been successfully applied before to investigate fracture and fragmentation under various types of loading 
conditions51–54. In the model the sample is represented as a random packing, consisting, on the average, of 12,000 
spherical particles with a uniformly distributed diameter d in a narrow interval �d around the average 〈d〉 with 
�d/ �d� = 0.0553. The initial packing is generated by sedimenting the randomly sized particles in a rectangular 
container which provides a high quality representation of the disordered isotropic micro-structure of rocks. 
Cohesive interaction is realized by beam elements which connect the particles along the edges of Delaunay tri-
angles constructed from the initial particle positions. In three dimensions (3D) the total deformation of a beam 
is calculated as the superposition of elongation, torsion, as well as, bending and shearing76. Cracks are formed 
when overstressed beams break according to a physical breaking rule. The breaking condition takes into account 
the stretching and shearing of particles contacts. The interaction of contacting particles which are not connected 
by beams is described by the Hertz contact law76. In the model the random packing of particles is the only source 
of disorder which determines the physical properties of beams such as length, cross section, elastic moduli, and 
moments, as well. At the broken beams along the surface of the spheres cracks are generated inside the solid 
and as a result of the successive beam breaking fragments are formed. The time evolution of the fragmenting 
solid is obtained by solving the equations of motion of the individual particles with proper initial and boundary 
conditions. The model has been validated by comparing (i) the stress field generated in body wall collisions to 
finite element calculations30,56, and (ii) the crack structure and fragment mass distributions to the experimental 
findings57–59. Further details of the model construction and of the parameter setting can be found in the Sup-
plementary Information and in53,55.

Simulations of body‑wall collisions.  We used the model to simulate the impact of a rectangular body 
with a hard wall. The initial state of the simulations was prepared by placing the cubic sample close to a hard wall 
with a random orientation assigning the same initial velocity to the particles pointing perpendicular to the wall. 
As the body moves, its particles overlap with the wall and experience an elastic restoring force according to the 
Hertz contact law64,76 giving rise to deformation and cracking of the body.

Preparation of the residue for repeated impacts.  In the final state of an impact process particles of 
the fragments are not completely relaxed in the sense that the fragments can be deformed and would gradu-
ally relax by dissipating energy due to the internal friction of the material captured as a viscous damping force 
between contacting particles. In order to reduce the computational time, we identify the particles of the residue 
inside the original sample and replace it by its relaxed counterpart. For each collision during the sequence, the 
residue is randomly rotated in the initial state to avoid any directional dependence. At each impact number, 
averages over 120 samples, i.e. over 120 impact directions, were performed, which ensured the high quality of the 
results even for small residual sizes where the surviving particle clusters have an irregular shape.

Figures 2, 4, 5 and 6 were generated using Graphics Layout Engine GLE 4.2.5 (http://​glx.​sourc​eforge.​net/), 
Figs. 1 and 3 were created with POV-Ray 3.7.0 (http://​www.​povray.​org/), and Fig. 7 was made using CorelDRAW 
Graphics Suit 2019 (https://​www.​corel​draw.​com/). All figures were made by the authors.

Data availability
Mass data and shape descriptors of residues obtained from DEM simulations and PDE computations are freely 
available in the OSF Data repository at https://​osf.​io/​g2ftd/.

Code availability
The numerical code used for data evaluation in this paper is available from the corresponding author upon 
reasonable request.

http://glx.sourceforge.net/
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