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Scaling laws of failure dynamics 
on complex networks
Gergő Pál 1, Zsuzsa Danku 1, Attia Batool 1, Viktória Kádár 1, Naoki Yoshioka 2, Nobuyasu Ito 2, 
Géza Ódor 3 & Ferenc Kun 1,4*

The topology of the network of load transmitting connections plays an essential role in the cascading 
failure dynamics of complex systems driven by the redistribution of load after local breakdown 
events. In particular, as the network structure is gradually tuned from regular to completely random 
a transition occurs from the localized to mean field behavior of failure spreading. Based on finite 
size scaling in the fiber bundle model of failure phenomena, here we demonstrate that outside 
the localized regime, the load bearing capacity and damage tolerance on the macro-scale, and the 
statistics of clusters of failed nodes on the micro-scale obey scaling laws with exponents which depend 
on the topology of the load transmission network and on the degree of disorder of the strength of 
nodes. Most notably, we show that the spatial structure of damage governs the emergence of the 
localized to mean field transition: as the network gets gradually randomized failed clusters formed on 
locally regular patches merge through long range links generating a percolation like transition which 
reduces the load concentration on the network. The results may help to design network structures 
with an improved robustness against cascading failure.

Cascading dynamics where the local activity of an element triggers a sequence of activated events is a generic 
feature of a large variety of complex systems. Examples can be mentioned from the activity patterns of neural 
networks1–3 to the intermittent spreading of information or diseases in social communities4–6. Failure cascades 
form a distinct class of cascading activities because as a cascade propagates, elements of the system become 
irreversibly inactive without any ability to support load again. The gradual reduction of the load bearing capacity 
together with the constraint of load conservation can easily give rise to large scale breakdown events spanning a 
macroscopic fraction of the system. Cascading failure phenomena frequently occur in our technological environ-
ment such as the cascading blackouts of high voltage power grids7, the breakdown of communication and urban 
traffic networks4–6,8,9or the fracture of heterogeneous materials10–13 often inducing huge economical costs7,14–16.

Cascading failures are driven by the redistribution of load following local breakdown events, which increases 
the load and in turn gives rise to a sequence of secondary failures in the vicinity of failed elements. It is a question 
of high theoretical and practical importance how the interplay of the structure of the underlying network of load 
transmitting connections and of the stochastic strength of the elements of the system affects the emergence of 
failure cascades and the overall robustness of the system against cascading breakdown. The fiber bundle model 
(FBM) as a generic model of cascading failure phenomena has proven indispensable to obtain a deeper insight 
into the dynamical and statistical aspects of failure spreading17–19. Originally introduced to study the fracture 
and breakdown of heterogeneous materials, an FBM consists of a bundle of fibers arranged on a regular lattice. 
Under a gradually increasing external load, fibers fail and transfer their load to their immediate neighbors along 
the edges of the lattice. Recently, it has been demonstrated in FBMs that gradually randomizing an initially 
regular network of load transmitting connections, a transition occurs from the localized universality class of 
failure phenomena, where catastrophic collapse abruptly occurs after a small amount of damage, to the mean 
field universality class where global breakdown is preceded by a large number of cascades with a scale free 
statistics20,21. The disorder of the strength of the elements of the system turned to have a stabilizing effect on 
the network in the sense that reducing disorder makes the localized to mean field transition more abrupt20,21. 
In spite of the theoretical efforts, the size scaling of the ultimate strength and of the damage tolerance of the 
system, furthermore, the microscopic origin of the localized to mean field transition remained open problems 
of fundamental importance.
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Based on large scale computer simulations here we determine the scaling laws of failure phenomena of 
complex networks both on the micro- and macro-scales. We perform FBM simulations on load transmission 
networks generated by randomly rewiring an initially square lattice of fibers. Topological randomness is con-
trolled by varying the rewiring probability which tunes the network structure from regular to completely random 
at several system sizes. Finite size scaling analysis revealed that for network topologies outside the localized 
regime the overall load bearing capacity and damage tolerance of the system on the macro-scale, furthermore, 
the statistics and spatial structure of damage clusters on the micro-scale obey generic scaling laws with scaling 
exponents which depend on the topology of the underlying load transmitting network. Our calculations showed 
that the spatial structure of damage accumulating as cascades proceed governs the emergence of the localized to 
mean field transition. Most notably, we demonstrate that the transition occurs as a consequence of a structural 
transition of failed nodes similar to percolation: as the network of load transmitting connections is gradually 
randomized, clusters of failed nodes grown on locally regular patches merge into a dominating cluster through 
long range links, which in turn allows for a gradual reduction of load concentrations. The results can help to 
design network structures with an improved robustness against cascading failures.

Results
Fiber bundle model of cascading failure dynamics on complex networks
Our study is based on the fiber bundle model where the load transmitting connections of fibers are represented 
by a complex network with tunable structural properties. The FBM is one of the most important modelling 
approaches to the cascading failure dynamics, which was originally developed to study the gradual fracturing of 
heterogeneous materials. However, due to the generality of its cascading mechanism, FBMs have gained applica-
tions in diverse fields including the modelling of cascading blackouts of power grids22–24, or the breakdown of 
urban traffic networks25–27, and flow channels26.

The main advantage of the model is that it allows for a straightforward representation of the fluctuating local 
strength and of the interaction of the constituents of the system. In the model construction we consider a bundle 
of N parallel fibers which are assigned initially to the nodes of a square lattice of side length L so that N = L2 
holds. Fibers (nodes) are connected by the edges of the lattice to their four nearest neighbors with periodic 
boundary conditions, hence, initially the degree k of all nodes is k = 4 . As to the next, each of the 2N initially 
existing connections is rewired according to the Watts-Strogatz (WS) algorithm28: with probability p each link is 
removed and then re-established between two randomly selected nodes with the constraint that neither multiple 
links nor loops are allowed in the system. This rewiring process introduces long range randomized connections, 
and hence, broadens the degree distribution ρ(k) of the network. Consequently, the topology of the emerging 
network gradually changes from regular to completely random as the rewiring probability p is varied from p = 0 
to p = 1 . Figure 1 illustrates the model construction along with the evolution of the distribution ρ(k) of node 
degree k as the rewiring probability p is increased.

Under a slowly increasing external load σ0 the nodes fail when the local load on them σi exceeds their load 
bearing capacity σ i

th ( i = 1, . . . ,N ). The strength of fibers σth is a random variable which is sampled from a prob-
ability distribution p(σth) . To generate the random failure thresholds we use the Weibull distribution, which 
allows us to control the amount of strength disorder of nodes by tuning a single parameter m, i.e. the Weibull 
exponent (for details see Methods). After a node fails, its load is equally redistributed through the network of 
load transmitting connections to its nearest neighbors which remained intact during the failure process. As a 
consequence of this localized load sharing (LLS) the load of neighboring nodes may exceed their local strength 
resulting in secondary failure which in turn is followed again by load redistribution. Through such sequences of 
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Figure 1.   Illustration of the model construction. (left) A small lattice of size L = 17 is rewired at p = 0.1 . The 
nodes of the network are represented by spheres colored according to their degree k. To make the structure of 
the network transparent the size of the spheres is proportional to the node degree k and the rewired links run 
outside the plane of the original lattice. (right) The degree distribution ρ(k) of rewired lattices of size L = 1000 at 
different rewiring probabilities p. At p = 0.0 the distribution ρ(k) has a single point at k = 4.
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failure and load redistribution steps, a single failing node may trigger an entire cascade of failure events which 
either stops after a finite number of steps or destroys the entire system. Of course, the statistical and dynamical 
features of the failure process depend on both the way of load sharing and the amount of disorder in the strength 
of nodes. Besides localized load sharing through direct links, the opposite limit of equal load sharing (ELS) has 
also practical importance. Under ELS conditions all intact nodes of the system receive the same load increment 
irrespective of their distance from the failed one. Since no load fluctuations can arise, ELS realizes the mean field 
limit of FBMs, where the failure process is controlled by the quenched strength disorder of nodes (see Methods 
for the details of the mean field solution of the model).

To reveal scaling laws governing cascading failure phenomena on complex networks, we performed computer 
simulations varying the size of the system L in a broad range 100 ≤ L ≤ 2000 at several rewiring probabilities 
p considering two different values m = 1 and m = 3 of the Weibull exponent. For more details of the model 
construction see Methods. In the simulations the external load σ0 was slowly increased to initiate the failure of a 
single node then the emerging avalanche was generated, while keeping the external load fixed. The process was 
followed until a catastrophic avalanche destroyed the remaining intact nodes defining the critical load σc , i.e. 
the ultimate strength of the system.

Load bearing capacity and damage tolerance
The disorder of the strength of the microscopic elements of a system plays a crucial role in failure processes. It 
has been demonstrated for fracture phenomena that local strength fluctuations can lead to early failure nuclea-
tion already at low loads reducing the global strength σc compared to homogeneous systems29–31. Additionally, 
disorder gives rise to sample-to-sample fluctuations of strength σc with an average value which decreases with 
the system size31. This so-called statistical size effect of the ultimate strength has a great importance for applica-
tions: on the one hand it has to be taken into account in engineering design of large scale structures, and on the 
other hand, it controls how results of laboratory measurements or computer simulations can be scaled up to 
real constructions29–32.

To understand how the size scaling of the failure strength is affected by the network structure of load transmit-
ting connections, we evaluated the size dependence of the average global strength 

〈

σc(N , p)
〉

 at several rewiring 
probabilities p. For ELS, analytic calculations18,33,34 have revealed that the average failure strength 〈σc〉 decreases 
with the number of fibers N and in the limit of large bundle sizes N it converges to a finite value according to a 
power law

where σc(∞) denotes the asymptotic bundle strength. The scaling exponent α has the value αELS = 2/3 which 
proved to be universal for a broad class of disorder distributions, while the multiplication factor A and the 
asymptotic strength σc(∞) depend on the specific type of disorder18. For the opposite limit of localized load 
sharing LLS, numerical calculations showed that due to the load concentration around failed regions the system 
becomes more vulnerable, hence, the macroscopic strength of bundles diminishes as the system size N increases. 
The convergence to zero strength is logarithmically slow with the functional form

where the exponent µ was found to depend on the precise range of load sharing35–42. Figure 2 presents the aver-
age bundle strength 

〈

σc(N , p)
〉

 of our system as a function of 1/ lnN for several rewiring probabilities p at the 
Weibull exponent m = 1 . It is important to note that for sufficiently low p values the curves tend towards 0 for 
large N as expected for the LLS phase of failure phenomena.

However, around p ≈ 0.02 the curvature of the curves changes, indicating the emergence of a finite asymptotic 
strength σc(∞, p) > 0 characteristic for ELS systems. To determine the value of σc(∞, p) for different network 

(1)�σc(N)� =σc(∞)+ AN−α ,

(2)�σc� (N) ∼ 1/(lnN)µ,
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Figure 2.   The average value of the macroscopic strength 
〈

σc(N , p)
〉

 of finite size bundles as a function of 
1/ ln(N) in the range of the system size 104 ≤ N ≤ 4× 106 for several values of the rewiring probability p. 
The regimes of p with zero and finite asymptotic strength are highlighted by different background colors. The 
Weibull exponent m of the threshold distribution is fixed to m = 1 . The value of p increases from bottom to top.
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topologies, in Fig. 3a we replotted the 
〈

σc(N , p)
〉

 curves in the parameter range p ≥ 0.02 by subtracting a proper 
asymptotic value σc(∞, p) in such a way that σc(∞, p) was tuned until the best straight line was achieved on 
a double logarithmic plot. The excellent quality of the power laws in Fig. 3a confirms the existence of a finite 
asymptotic strength and the validity of the scaling form Eq. (1) of ELS, even in the range of rather low values of 
the rewiring probability. Figure 3b demonstrates that both the asymptotic strength σc(∞, p) and the size scaling 
exponent α(p) depend on the network structure increasing towards their corresponding mean field values σ ELS

c  
and αELS with increasing rewiring probability p. In the localized phase the asymptotic strength is set to be zero in 
the figure, while no exponents were assigned to this parameter regime18,33,34. Note that in the limit of completely 
random networks p → 1 , both the exponent α(p = 1) and the asymptotic strength σc(∞, p = 1) remain below 
their corresponding mean field values αELS and σ ELS

c  (see Methods for the critical load σ ELS
c  of ELS FBMs). The 

reason is that during the rewiring process the average number of interacting partners of nodes remains constant 
at a relatively low value �k� = 4 , so that localized load sharing may induce load concentrations even on a random 
network which can result in global failure at lower loads compared to the mean field limit.

Another important measure of the overall robustness of the system is the amount of damage d the network 
can tolerate before a catastrophic cascade destroys the entire system. The degree of damage accumulated during 
the failure process can be quantified by the fraction of failed nodes d = Nb/N , where Nb denotes the number of 
failed nodes among the initially existing N intact ones. The overall damage tolerance of the system is character-
ized by the critical damage dc reached up to the last stable configuration before catastrophic failure occurs. Our 
numerical analysis revealed that the average critical damage 

〈

dc(N , p)
〉

 exhibits the same qualitative evolution 
with the rewiring probability p, and obeys the same scaling law when the size of the system is varied as the 
ultimate strength 

〈

σc(N , p)
〉

 : at low rewiring probabilities p � 0.02 when the structure of the network is close to 
regular, the critical damage tends to zero in the limit of large system sizes. This behavior implies that the failure 
of the weakest node may trigger the immediate catastrophic collapse of the system, as it is expected for the LLS 
phase of failure phenomena. However, at sufficiently high p values p > 0.02 a finite asymptotic damage is obtained 
according to the functional form similar to Eq. (1)

Here dc(∞, p) is the critical damage of the infinite system at the rewiring probability p, and β denotes the scaling 
exponent. It can be observed in Fig. 3b that the value of β increases with the rewiring probability p practically 
coinciding with the exponent α of the ultimate strength. The mean field value of the size scaling exponent of 
critical damage βELS is not known analytically, hence, we determined it by the numerical analysis of direct ELS 
simulations as βELS = 0.66± 0.02 . Based on the numerical results we conjecture that the size scaling of the 
ultimate strength and of the critical damage is governed by the same exponent α(p) = β(p) at all rewiring prob-
abilities outside the localized phase of the failure process. The asymptotic damage dc(∞, p) increases with the 
rewiring probability p towards its mean field value dELSc  , which can be determined analytically (see Methods). 
Computer simulations revealed that the threshold value of p where the LLS to ELS transition sets on, furthermore, 
the asymptotic load bearing capacity σc(∞, p) and damage tolerance dc(∞, p) depend on the disorder distribution 
p(σth) of nodes’ strength, however, the finite size scaling exponents α(p) and β(p) always cover the same range 
up to their universal mean field values.

(3)
〈

dc(N , p)
〉

= dc(∞, p)+ BN−β .

10
-4

10
-3

10
-2

<
c(
N
,p
)>
-

c(
,p
)

10
4

10
5

10
6

N

0.2

0.4

0.6

0.8

1.0

1.2

/
E
L
S ,

/
E
L
S

0.0

0.2

0.4

0.6

0.8

1.0

c(
)/

cE
L
S ,
d c
(

)/
d c
E
L
S

10
-2

10
-1

1
p

/
ELS

c( ,p)/ c
ELS

/
ELS

dc( ,p)/dc
ELSa)

b)

Figure 3.   (a) Difference of the average strength of finite bundles 
〈

σc(N , p)
〉

 and their corresponding asymptotic 
strength σc(∞, p) for rewiring probabilities in the range p ≥ 0.02 . The dashed straight lines represent power 
laws of exponent α . The legend is the same as in Fig. 2a. (b) The value of the exponent α and the asymptotic 
strength σc(∞, p) obtained in (a) as function of the rewiring probability p. The scaling exponent β of the critical 
damage and the asymptotic damage dc(∞, p) are also presented. Note that the parameter values α , β , σc(∞, p) , 
and dc(∞, p) are rescaled with their mean field counterparts αELS , βELS , σ ELS

c  , and dELSc  , respectively. Error bars 
are provided for the values of the exponents.
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Spatial evolution of damage
Nearest neighbor load sharing has the consequence that failed nodes form connected clusters on the network 
which have a high load concentration on the intact nodes along their perimeter. Hence, to understand the 
microscopic origin of the localized to mean field transition and the emergence of scaling laws Eqs. (1, 3), we 
analyzed how the spatial structure of damage evolves as the underlying network topology is tuned from regular 
to completely random. Since highly loaded nodes are more prone to failure, with increasing external load it gets 
more and more probable that avalanches are initiated from perimeter nodes giving rise to the growth of already 
existing clusters instead of nucleating new ones. Hence, clusters are composed of either single cascades (new 
nucleations) or of several cascades, which are growth steps of clusters. On a regular lattice ( p = 0 ) the stress 
concentration is so high at cluster perimeters that the system tolerates only a small amount of damage dc ≪ 1 
forming small clusters randomly dispersed over the network. Introducing long range randomized connections 
reduces the stress concentration and at the same time it allows small broken clusters, formed on locally regular 
regions of the network, get connected into larger ones. As a consequence, increasing the rewiring probability p 
at a fixed system size L the critical damage 〈dc〉 increases accompanied by a structural change of failed clusters. 
This trend of 〈dc〉 with increasing structural randomness is demonstrated in Fig. 4a for two values of the Weibull 
exponent m = 1 and m = 3 : for low rewiring probabilities 〈dc〉 remains nearly constant close to the value obtained 
on regular lattices p = 0 . At each system size L there exists a characteristic rewiring probability p ≈ 0.02− 0.03 
( m = 1 ) and p ≈ 0.15− 0.2 ( m = 3 ), where 〈dc〉 starts to increase indicating the onset of the transition from the 
LLS to ELS regime, where the system can tolerate a higher amount of damage. Note that in the LLS regime the 
curves are rapidly shifting downward with increasing L, in agreement with the size scaling result of 

〈

dc(N , p)
〉

 
presented in the previous section. However, in the ELS regime the damage curves 

〈

dc(N , p)
〉

 converge towards 
the same mean field limit dELSc  at all system sizes L as expected. Note that reducing the strength disorder of nodes 
by increasing the Weibull exponent m in the figure, the damage curves have the same evolution with increas-
ing structural disorder p, however, failure occurs at a significantly lower amount of damage and the LLS to ELS 
transition sets on at a higher rewiring probability p. The results are in a good agreement with recent findings on 
the effect of disorder on the localized to mean field transition on complex networks20,21.

Our calculations revealed that behind this smooth monotonous increase of the accumulated damage 〈dc〉 with 
the rewiring probability p, a complex evolution of the spatial structure of failed clusters occurs. To characterize 
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Figure 4.   (a) The average critical damage 〈dc〉 (a) and the average size of clusters of failed nodes 〈S〉 (b) as 
function of the rewiring probability p for several system sizes L. The results are presented for two values of 
the Weibull exponent m = 1 (open symbols) and m = 3 (filled symbols). For m = 3 only three system sizes 
L = 100, 500, 1000 are shown. In (a) the critical value of the occupation probability φc of site percolation on the 
network is also presented as a function of p.
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this evolution, in the last stable configuration of the network we identified all clusters of failed nodes and deter-
mined their average size 〈S〉 defined as the average of the ratio of the second M2 and first M1 moments of cluster 
sizes Si

The qth moments Mq with q = 1, 2 of the size of failed clusters were calculated in single samples as Mq =
∑′ S

q
i  , 

where the ′ indicates that the largest cluster of size Smax is always skipped in the summation43.
Figure 4b demonstrates that the average cluster size 

〈

S(L, p)
〉

 exhibits a non-monotonous behavior, i.e. for each 
system size L the 

〈

S(L, p)
〉

 curves have a relatively sharp peak which gets narrower and slightly higher approach-
ing a limit curve as the system size L increases. As clusters grow to larger sizes with increasing p they have an 
increasing chance to merge through random long range contacts without destabilizing the system. Since the 
largest cluster was omitted in the calculations, the position of the peak of 

〈

S(L, p)
〉

 marks that network structure, 
where a dominating cluster of failed nodes, significantly larger than the other ones, first emerges in the last stable 
configuration of the network before the catastrophic avalanche43. It is important to emphasize that the position 
of the maximum practically coincides with the rewiring probability p, where the LLS to ELS transition sets on 
as the network gets gradually randomized in agreement with Refs.20,21. This is highlighted in Fig. 4 by the two 
dashed vertical lines for both Weibull exponents m.

Of course, the changing spatial structure of clusters affects also the statistics of their size S. Figure 5 illustrates 
for the Weibull exponent m = 1 how the cluster size distribution p(S) evolves as the rewiring probability is gradu-
ally increased at a fixed system size L = 2000 , where the largest cluster of size Smax was always omitted. Until p 
is sufficiently small, i.e. in the LLS phase,a rapidly decreasing functional form is obtained with a relatively low 
cutoff value. At higher rewiring probabilities p the network tolerates larger clusters indicated by the increasing 
cutoff and the slower decrease of the distributions p(S). It is interesting to note that at the rewiring probability 
p ≈ 0.02− 0.03 , where the LLS to ELS transition is expected, for the strength disorder m = 1 , the distribution 
becomes a power law

spanning three orders of magnitude in S with a relatively high exponent τ = 3.1± 0.15 . Further increasing the 
rewiring probability the behavior of the distributions becomes similar to the low p case, i.e. p(S) is again steeply 
decreasing limited by a low cutoff. In agreement with the behavior of the average cluster size 〈S〉 , the overall 
evolution of the size distribution of failed clusters indicates that at sufficiently high rewiring probabilities, i.e. 
outside the LLS phase, the largest cluster which was omitted in the statistics comprises a dominating fraction of 
failed nodes so that even the second largest cluster is significantly smaller than the largest one. The dominating 
cluster appears at a well defined critical value of the rewiring probability, where the distribution p(S) becomes 
a power law and the average cluster size 〈S〉 has its maximum accompanied by the onset of the faster increase of 
the critical damage 〈dc〉 (see Figs. 4, 5). Due to the relatively low value of p, locally the structure of the network is 
still close to regular, however, the long range random connections already allow for the merging of small clusters 
into a dominating one in the last stable configuration of the network. Note that for those rewiring probabilities 
which fall beyond the maximum of the average cluster size 〈S〉 , the dominating cluster occurs earlier and earlier 
with increasing p before catastrophic failure so that it has a stronger and stronger effect on the failure process 
as the external load increases.

The qualitative behavior of the average cluster size 〈S〉 and of the cluster size distribution p(S) implies that the 
evolution of the spatial structure of accumulating damage with the changing network topology shows interest-
ing resemblance to percolation phenomena. To obtain a deeper understanding of the analogy of the LLS to ELS 
transition of failure phenomena to the percolation transition, we analyzed the behavior of the largest cluster 

(4)�S� = �M2/M1� .
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of damage. For this purpose, we determined the average value of the strength of the largest cluster 〈Smax/Nb〉 , 
defined as the fraction of failed nodes comprised by the largest cluster at the critical point of global failure, as 
a function of the rewiring probability p at different system sizes L. The inset of Fig. 6 demonstrates that at each 
system size L the 〈Smax/Nb〉 curves monotonically increase, however, they become steeper and approach a limit 
curve with growing L. The main panel of the figure demonstrates that rescaling the two axis using the finite size 
scaling relation of the infinite cluster of percolation phenomena43

the curves of different system sizes L can be collapsed on the top of each other. Here �(x) denotes the scaling 
function obtained by the data collapse analysis in Fig. 6. Best collapse is achieved with the scaling exponents 
κ = 0.32 and γ = 0.35 using the parameter value pc = 0.037 . The validity of the scaling ansatz Eq. (6) and the 
high quality of the data collapse in Fig. 6 suggest that the structural transition observed in the accumulated 
damage, as the network topology changes, shows analogy to a site percolation process on the load transmission 
network.

Percolation has been widely studied on complex networks in the context of the robustness of the system 
against random attacks where nodes of the network are randomly removed (an active node is randomly replaced 
by a failed one)4,44–46. Increasing the fraction φ of removed nodes, at a certain value the active part of the system 
falls apart into a large number of small clusters and the system looses its functionality. Failed nodes also form 
clusters on the network such that at the critical point φc a giant cluster of failed elements emerges. To understand 
the analogies to site percolation we numerically measured the critical fraction φc of randomly removed, i.e. failed 
nodes where a giant failed cluster emerges on the load transmitting network obtained by rewiring the square 
lattice at different values of the rewiring probability p. It can be observed in Fig. 4a that φc is a monotonically 
decreasing function of p starting from the well known critical point φc ≈ 0.5923 of site percolation on a square 
lattice p = 043, and converging to the critical occupation probability of random graphs φc ≈ 1/ �k� = 1/4 in the 
limit p → 114. In our FBM on complex networks the fraction of failed nodes d plays the role of the occupation 
probability φ of the percolation problem. It is important to note that at the onset of the LLS to ELS transition 
p ≈ 0.02− 0.03 at the Weibull exponent m = 1 in Fig. 4a the value of the critical damage does not reach the 
corresponding critical occupation probability φc(p) of site percolation. The reason is that in our system the load 
bearing capacity of the bundle is only lost when a catastrophic cascade destroys all the remaining intact fibers so 
that global failure can also be initiated in the absence of a giant failed cluster as it has been presented in Fig. 4b. 
Comparing φc(p) to the 

〈

dc(p)
〉

 curves obtained at different Weibull exponents, it is clear that the difference of 
the two quantities is even higher at lower amount of strength disorder of nodes (at higher m). At the higher 
Weibull exponent m = 3 already a relatively small amount of damage �d� ≈ 0.07 can trigger ultimate failure of 
the system on a regular lattice p ≈ 0 (see Fig. 4a). The system is so sensitive to load concentrations around failed 
clusters on the network that even in the limit p → 1 the value of critical damage 〈dc〉 remains below the corre-
sponding critical point of site percolation φc . The results indicate that in spite of the relatively small damage 〈dc〉 
compared to the corresponding value of φc , the evolution of the failed cluster, which dominates damage growth, 
with the rewiring probability is similar to the behavior of the infinite cluster of percolation phenomena. After 
this dominating cluster has formed it has a substantial effect on the further damage accumulation reducing the 
load concentration which in turn makes the failure process similar to the ELS limit. It can be observed in Fig. 4b 
that at lower disorder the height of the peak of 〈S〉 gets lower which indicates that the largest cluster comprises a 
less significant fraction of damage, and hence, has a diminishing effect on the failure process. The result implies 
that the localized to mean field transition is limited to high disorder in agreement with Refs.20,21.

(6)�Smax/Nb� (L, p) = L−γ �((p− pc)L
κ ),
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Figure 6.   Inset: The average strength of the largest cluster 〈Smax/Nb〉 as a function of the rewiring probability p 
for several system sizes at the Weibull exponent m = 1 . Main panel: rescaling the curves of different system sizes 
of the inset according to the finite size scaling relation Eq. (6) of the infinite cluster of percolation a good quality 
data collapse is achieved.
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Discussion
Cascading failure driven by the redistribution of load over the elements of a complex system is strongly affected 
by the topology of the underlying network of load transmitting connections which shows up both on the macro- 
and micro-scale characteristics of the system. It has been shown that gradually randomizing an initially regu-
lar lattice of connections a transition occurs from the localized to the mean field universality class of failure 
phenomena, characterized by the abrupt failure of the system preceded by a small amount of precursors, and 
by a large amount of precursory failure cascades with a scale free statistics, respectively. Here we performed a 
computational study to understand how the size scaling of failure characteristics are affected by the network 
structure, which has a high relevance for applications. In particular, we investigated how the macroscopic load 
bearing capacity and overall damage tolerance of the system scales with the size of the network as the degree of 
structural randomness of load transmitting connections is varied from completely regular to completely random, 
at different amounts of the strength disorder of nodes.

Based on computer simulations we obtained two distinct scaling regimes of macroscopic quantities, i.e. at 
low rewiring probabilities both the ultimate strength and the critical damage were found to tend towards zero 
in the limit of large system sizes, consistent with the localized universality class of failure phenomena. Simula-
tions revealed that as the transition to the mean field class sets on with increasing structural randomness, a finite 
asymptotic strength emerges which gradually grows towards the corresponding mean field value. Based on the 
numerical results, we conjectured that the convergence of the ultimate strength and damage tolerance of the 
system towards their finite asymptotic values is described by the same power law functional form controlled by 
the same value of the scaling exponent at any network topology.

The localized redistribution of load through the links of the load transmitting network has the consequence 
that failed nodes form connected clusters. Computer simulations revealed that increasing the rewiring prob-
ability at a fixed system size the network can tolerate a larger amount of damage accompanied by a change of 
the spatial structure of failed clusters. Inside the localized phase of the system failed clusters remain small even 
in the last stable configuration just before the catastrophic avalanche is initiated. Randomization of the network 
structure introduces long range links which make possible the merging of clusters, hence, reducing the load 
concentration along their perimeter. Consequently, at higher structural randomness networks can tolerate a 
higher amount of damage before catastrophic failure occurs. Most notably, we demonstrated that the localized 
to mean field transition of the failure dynamics on the micro-level is accompanied by a structural transition of 
damage on the network, which shows analogies to percolation43 up to some extent. Our analysis suggests that pc 
obtained from the data collapse analysis Eq. (6) of the strength of the largest failed cluster can be identified with 
the critical rewiring probability of the LLS to ELS transition of the fiber bundle model in the limit of large system 
sizes. The transition sets on at the rewiring probability pc , where a damage cluster emerges which is significantly 
larger than the other ones. The value of pc obtained from the evolution of the damage structure is consistent with 
the boundary of the different scaling regimes of the ultimate strength and total damage within the precision of 
the calculations. The finite size critical point pc(N) where the localized to mean field transition sets on can be 
identified with the rewiring probability p of the position of the maximum of 〈S〉.

The structural transition of damage is illustrated in Fig. 7 for a small system of size L = 100 with the Weibull 
exponent m = 3 of strength disorder, where the dominating damage cluster first occurs in Fig. 7b. Note in the 
spatial structure of damage that small clusters of failed fibers are typically formed on locally regular regions of the 
network so that the dominating cluster occurs by joining such small sized clusters through long range links. On 
a regular lattice clusters cannot grow to large sizes since the load accumulating along their perimeter destabilizes 
them so that the catastrophic avalanche typically starts from a perimeter node. Long range random connections 
have the important effect that they substantially increase the cluster perimeter reducing the load concentration 
in the cluster neighborhood. Increasing the rewiring probability p beyond pc the dominating cluster occurs 
earlier and earlier before the last stable configuration so that in the parameter regime p > pc the growth of the 
largest cluster will dominate the further damage growth till the last stable configuration is reached making the 
failure process similar to its mean field limit. The LLS to ELS transition is driven by the changing network topol-
ogy where the rewiring probability plays the role of the control parameter of the transition. The analysis of the 
damage structure revealed that the LLS-ELS transition is limited to high strength disorder of nodes because at 
low disorder the largest damage cluster cannot comprise a significant fraction of the total damage, and hence, 
cannot dominate the furter growth of damage.

The occurrence of the transition characterized by the 〈S〉 peak and the power law P(S) tail at finite p can be 
understood if we consider that in the 2D LLS phase the cluster size distributions fall rapidly, possibly with an 
exponential tail. Thus, there is a 1st order like damage transition or perhaps a mixed-order one, where other 
quantities can exhibit power-law behaviors47). Analytically known that in the mean-field limit this kind of hybrid 
phase transition happens, e.g. power law behavior of damage is obtained when approaching the critical load of 
global failure dc − d ∝ (σc − σ)1/2 (see47,48). This permits to have non-diverging cluster sizes at the LLS to ELS 
transition point, smaller than the typical distance of WS: ξ = 1/(2p)1/2 (see44). Thus for WS, for p > pc ξ < ξc , 
the correlation length is limited, unlike in other long range interaction extensions of the FBM, where power-law 
distance decaying links are added49–52. In the latter cases the interaction length can be arbitrarily long, if the 
decay of the power-law is sufficiently slow.

Recently, it has been demonstrated that LLS to ELS transition of FBMs can also be obtained on regular lat-
tices varying the range of interaction, i.e. the range of load sharing among fibers37,51. To control the load sharing 
range two modelling approaches have been considered on a square lattice: the excess load dropped by the broken 
fiber was either homogeneously distributed over the intact fibers in square shaped plaquettes of the lattice51, or 
all the intact fibers of the system received an amount of load decaying according to a power law of the distance 
measured from the broken one37,51. Varying also the amount of disorder of the strength of fibers, a phase diagram 
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of FBMs was constructed with a well-defined phase boundary between the nucleation dominated (LLS type) and 
diffusive (ELS type) fracture mechanisms51. LLS to ELS transition has also been observed by keeping the range 
of interaction fixed to nearest neighbors on a square lattice but increasing the dimensionality of the system53,54.

Methods
Disordered strength of nodes
 Based on the concept of the fiber bundle model (FBM)17,18,55–58 we construct a complex network of nodes with 
disordered load bearing capacities. Under a slowly increasing external load σ0 the nodes fail when the local load 
on them exceeds their local strength σth , which is a random variable sampled from a probability distribution 
p(σth) . To be able to control the amount of disorder of nodes’ strength, we use the Weibull distribution

which is defined over the range 0 ≤ σth < +∞ . The distribution has two parameters � and m, where � sets the 
scale of strength values, while the exponent m controls the variance in such a way that the distribution Eq. (7) 
gets narrower with increasing m. The Weibull distribution is widely used to capture the stochastic failure char-
acteristics of components in modeling fracture phenomena from the nanometer scale to the scale of earthquakes 
varying the value of the Weibull exponent m in the range m ≥ 117,58,58.

Localized load sharing on a complex network of load transmitting connections
 When a node fails its load has to be overtaken by the remaining intact nodes through the underlying network 
of load transmitting connections. To generate the network of connections between nodes we start from a regular 
square lattice of side length L and use the Watts-Strogatz algorithm to randomize the connections28,59. Assuming 
periodic boundary condition in both directions, each link of the square lattice gets rewired with probability p: 
for both ends of a rewired link new nodes are randomly selected with the constraints that neither multiple links 
nor loops are allowed to occur in the network. Varying the rewiring probability p from 0 to 1 the topology of 
the load transmission network changes from regular to completely random. The degree k of a node is defined 
as the number of its direct neighbors along the links of the network. Initially, each node has the same degree 
k = 4 , due to rewiring the degree distribution ρ(k) broadens while keeping the average node degree fixed �k� = 4.

Cascading failure triggered by external load increments
 To ensure quasi-static loading, the external load is incremented in small steps on the system to provoke the 
failure of a single node, which is then followed by the redistribution of load. During the failure process we apply 
localized load sharing (LLS), i.e. when a node fails its load is equally redistributed over its intact nearest neighbors 
through the links of the load transmission network. As a consequence of load redistribution some neighboring 

(7)p(σth) = m
σm−1
th

�m
exp

[

−

(σth

�

)m]

,

Figure 7.   Spatial structure of damage on rewired square lattices of size L = 100 for the Weibull exponent 
m = 3 . Clusters of failed nodes are presented in the last stable configuration of the system before final 
catastrophic collapse at four different rewiring probabilities p: (a) 0.05, (b) 0.175, (c) 0.225, and (d) 0.4. Colors 
are randomly assigned to clusters of failed nodes, while the intact nodes are white. The largest cluster is 
highlighted in red. For clarity, in (a) the largest cluster is encircled.
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nodes may fail followed again by load sharing. Hence, through the consecutive failure-load redistribution steps 
the failure of a single node may induce an entire cascade of local failure events on the network. The external load 
σ0 was increased until a catastrophic avalanche was triggered destroying the entire system at the critical load σc . 
In the present study simulations were performed at several values of the rewiring probability p between 0 and 1 
varying the system size L in the range 100 ≤ L ≤ 2000 . The scale parameter of the Weibull distribution was fixed 
to � = 1 , while for the exponent m two different values m = 1 and m = 3 were considered. The number of nodes 
N = L2 = 104 − 4 · 106 proved to be sufficient to deduce the size dependence of key quantities of the system. 
At each parameter set K = 1000 samples were simulated for averaging.

Mean field limit of the model
 Another limiting case of load redistribution is the so-called equal load sharing (ELS), where after failure events 
each intact node of the system receives the same load increment irrespective of its distance from the failed one. 
Since no load fluctuations can arise, ELS realizes the mean field limit of FBMs. Under ELS conditions important 
characteristic quantities of the system can be cast into analytical forms. The total load σ0 on the system can be 
expressed as a function of the load σ of single nodes as

where P(x) denotes the cumulative distribution of failure thresholds. The term [1− P(σ )] provides the fraction 
of intact nodes of the network when they all keep the same load σ during the loading process. For disorder 
distributions P(x) relevant for practical purposes, the curve of σ0(σ ) has a maximum whose value provides the 
critical load bearing capacity σc of the network, where the catastrophic cascade occurs. Substituting the Weibull 
distribution Eq. (7), the critical load σ ELS

c  of the ELS network follows as18

while the critical damage dELSc  , i.e. the fraction of failed nodes at the instant of global failure, takes the form18

We use the ELS values of the ultimate strength σ ELS
c  and damage tolerance dELSc  for comparison to quantify how 

close the behavior of the network is to the mean field limit.

Data availibility
Numerical results of computer simulations are available from the corresponding author upon reasonable request.
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