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Abstract. We present an experimental and theoretical study of the fatigue
failure of heterogeneous materials under cyclic compression considering asphalt
as a specific example. Varying the load amplitude, experiments reveal a finite
fatigue limit below which the specimen does not break, while approaching the
tensile strength of the material a rapid failure occurs. In the intermediate load
range, the lifetime decreases with the load as a power law. We introduce two novel
theoretical approaches, namely, a fibre bundle model and a fuse model, and show
that both capture the major microscopic mechanisms of the fatigue failure of
heterogeneous materials, providing an excellent agreement with the experimental
findings.
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1. Introduction

The fracture of disordered media represents an important applied problem, with intriguing
theoretical aspects. Statistical models have been successfully applied in the past to analyse
fracture under quasistatic conditions, but the effect of cyclic loading is less explored [1].
Laboratory experiments reveal that fatigue failure under repeated loading is due to a
combination of several mechanisms, among which damage growth, relaxation due to
viscoelasticity, and healing of microcracks play an essential role [2]–[4]. Theoretical
approaches have serious difficulties in capturing all of these mechanisms [2]–[5] and fatigue
life prediction is still very much an empirical science. Understanding this problem has
crucial implications even for everyday applications. For example, fatigue failure occurring
in roads due to repeated traffic loading causes the main problem, limiting the lifetime of
asphalt pavements.

In this paper we present a detailed experimental and theoretical study of the fatigue
failure of heterogeneous materials considering the fatigue performance of hot mix asphalt
(HMA) as a specific example. We carried out fatigue life tests on asphalt specimens
measuring the accumulation of deformation with the number of loading cycles and the
lifetime of specimens varying the load amplitude. Experiments revealed a monotonic
increase of the deformation of the specimen with the number of loading cycles which
accelerates when approaching macroscopic failure. The lifetime (the number of cycles
to failure) of the specimen strongly depends on the external load, i.e. when the load
approaches the tensile strength of the specimen rapid failure occurs, while at the other
extreme there exists a threshold load below which the specimen suffers only partial
failure and has an infinite lifetime. For intermediate loads the lifetime exhibits a power
law decrease (Basquin law). To obtain a theoretical understanding of the experimental
findings, we worked out two novel modelling approaches for fatigue failure, namely, a fibre
bundle model [6]–[9] and a fuse model [10]. We show that both descriptions capture the
stochastic nature of the fracture process, the immediate breaking of material elements
and the cumulative effect of the loading history. Two physical mechanisms are considered
which limit the accumulation of damage: a finite activation threshold of crack nucleation
below which the local load does not contribute to the ageing of the material and healing
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Figure 1. Set-up of the experiments. (a) A cylindrical asphalt sample is subjected
to diametrical compression applied periodically. FBM discretizes the region where
tensile stress emerges (white rectangle) in terms of fibres. (b) At complete failure
a crack spans the cylinder along the load direction.

of microcracks under compression, which leads to damage recovery. The analytical and
numerical results of the model calculations provide a good quantitative agreement with
the experimental findings.

2. Experiments

In order to obtain a quantitative characterization of the process of fatigue failure, we
carried out fatigue life tests of asphalt under cyclic diametric compression of cylindrical
specimens at a constant external load σ0 (see figures 1(a), (b)). HMA is the primary
material used to construct and maintain pavements and roadways due to its good
mechanical performance and high durability. From the structural point of view asphalt
is a combination of aggregates (usually crushed stone and sand), filler (cement, hydrated
lime or stone dust) and a bituminous binder. Cylindrical samples of HMA were produced
using the Marshall method and then loaded using a hydraulic device.

Under repeated loading at a constant amplitude σ0, the deformation ε was monitored
as a function of the number of cycles Ncycle. Furthermore, the total number of cycles to
complete failure Nf was measured varying σ0. Figure 2(a) presents representative examples
of ε(Ncycle) recorded at loads 30% and 40% of the tensile strength σc of the specimen. It
can be observed that due to the gradual accumulation of damage, the deformation ε
caused by the same load σ0 monotonically increases until catastrophic failure occurs after
a finite number of cycles Nf . The derivative of deformation also increases which indicates
the acceleration of the accumulation process when approaching the point of macroscopic
failure. Increasing the external load the functional form of ε(Ncycle) remains the same;
however, the lifetime of the specimen Nf gets shorter. The fatigue lifetime Nf measured
at different fractions of the tensile strength σc (figure 3(a)) reveals the existence of three
distinct regimes. First, approaching the tensile strength of the material σ0/σc → 1 the
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Figure 2. (a) Deformation as a function of the number of loading cycles. The
continuous lines were obtained by fitting the experimental results with our theory.
The vertical dashed line indicates the occurrence of macroscopic failure. (b) Load
on the fibres in FBM as function of time at different values of σ0/σc for uniformly
distributed threshold values setting τ = ∞ in equation (5).

experiments
FBM

(a) (b)

Basquin regime

Figure 3. (a) Nf as a function of load σ0/σc for FBM varying the value of τ . FBM
provides an excellent fit of the experimental results with γ = 2.0, τ = 15000, and
a = 0.01 using Weibull distributed failure thresholds. (b) Lifetime tf of FBM
as function of σ0/σc obtained numerically for different values of γ and τ . The
vertical dashed line indicates an example of the fatigue limit.

lifetime Nf rapidly decreases, indicating an immediate failure of the specimen. At the
other extreme, a lower threshold value of the external load σl can be identified below
which the specimen suffers only partial damage giving rise to an infinite lifetime (fatigue
limit). In the intermediate regime the experimental results follow a power law known as
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the Basquin law [2]–[4]

Nf ∼
(

σ0

σc

)−α

, (1)

where α = 2.2 ± 0.1 was obtained by fitting, as shown in figure 3(a).

3. Fibre bundle model with damage accumulation and healing

The experiments show that the fatigue crack growth is localized to a narrow region between
the loading plates (see figure 1(b)) where locally a tensile stress emerges perpendicular to
the external load. To give a theoretical description of the failure process, we focus on this
region and discretize it by a fibre bundle model (FBM) as illustrated in figure 1(a) [6].
We consider a bundle of parallel linear elastic fibres with the same Young modulus
E. Under diametrical compression of the disc-shaped specimen, the fibres experience
a tensile loading and gradually fail due to immediate breaking or to the ageing of material
elements [2]. More precisely, the following two mechanisms are considered:

(I) Fibre i (i = 1, . . . , N) breaks instantaneously at time t when its local load pi(t)
exceeds the tensile strength pi

th of the fibre.

(II) All intact fibres undergo a damage accumulation process due to the load they have
experienced.

The amount of damage Δci that occurred under the load pi(t) in a time interval Δt is
assumed to have the form Δci = api(t)

γΔt; hence, the total accumulated damage ci(t) up
to time t can be obtained by integrating over the entire loading history of fibres:

ci(t) = a

∫ t

0

pγ
i (t

′) dt′. (2)

The exponent γ > 0 controls the damage accumulation rate and a > 0 is a scale parameter.
The fibres can only tolerate a finite amount of damage and break when ci(t) exceeds a
threshold value ci

th. Each fibre is characterized by two breaking thresholds pi
th and ci

th

which are random variables with a joint probability density function h(pth, cth). Assuming
independence of the two breaking modes, the joint density function h can be factorized
into a product

h(pth, cth) = f(cth)g(pth), (3)

where f(cth) and g(pth) are the probability densities and F (cth) and G(pth) the cumulative
distributions of the breaking thresholds pth and cth, respectively. For simplicity, we assume
that after each breaking event the load of the broken fibre is equally redistributed over
the intact ones in the bundle irrespective of their distance from the failure point (global
load sharing) [6]–[9].

Under a constant tensile load σ0, the load on a single fibre p0 is initially determined
by the quasistatic constitutive equation of FBM [6]–[9]

σ0 = [1 − G(p0)] p0, (4)

which means that fibres with breaking thresholds pi
th < p0 immediately break. It follows

that the external load σ0 must fall below the tensile strength of the bundle σ0 < σc;
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Figure 4. (a) Plane of breaking thresholds pth and cth using uniform distributions
between 0 and 1. Each point of the plane represents a single fibre with threshold
values (pi

th, c
i
th). Subjecting the specimen to a constant load, fibres with breaking

threshold pi
th < p0 break immediately (lightest grey region). Then the damage

accumulation c(Δt) = apγ
0Δt gives rise to additional breakings ci

th < c(Δt)
(second lightest grey region), which increase the load on the remaining intact
elements resulting again in immediate breakings. The greyscale indicates the
first six steps of the breaking sequence. (b) tf as a function of σ0/σc for uniform
and Weibull distributions (m = 2.0) varying the value of γ. The slope of the
straight lines is equal to the value of the corresponding exponent γ. For clarity,
τ → ∞ was set for the range of memory; hence, no fatigue limit emerges.

otherwise the entire bundle will fail immediately. As time elapses, the fibres accumulate
damage c(Δt) = apγ

0Δt and break due to their finite damage tolerance ci
th < c(Δt). These

breakings, however, increase the load on the remaining intact fibres which in turn induce
again immediate breakings. This way, in spite of the independence of the threshold values
pth and cth, the two breaking modes are dynamically coupled, gradually driving the system
to macroscopic failure in a finite time tf at any load values σ0. This sequence of immediate
breaking and failure due to ageing is illustrated in figure 4(a). Experiments have shown
that healing of microcracks plays an important role in the time evolution of the system
especially at low load levels σ0 � σc. Healing of microcracks can be captured in the
model by introducing a finite range τ for the memory, over which the loading history
contributes to the accumulated damage [3, 11]. In polymeric materials like the asphalt
binder the rebinding of polymer molecules typically leads to an exponential form of the
memory term. Finally, the evolution equation of the system can be cast in the form

σ0 =

[
1 − F

(
a

∫ t

0

e−(t−t′)/τp(t′)γ dt′
)]

[1 − G(p(t))] p(t), (5)

where the integral in the argument of F provides the accumulated damage at time t
taking into account the finite range of memory by the exponential term [11]. In principle,
the range of memory τ can take any positive value τ > 0 such that during the time
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evolution of the bundle the damage accumulated during the time interval t′ < t− τ heals.
Equation (5) is an integral equation which has to be solved for the load p(t) on the intact
fibres at a given external load σ0 with the initial condition p(t = 0) = p0 obtained from
equation (4). The product in equation (5) arises due to the independence of the two
breaking thresholds. We note that equation (5) recovers the usual constitutive behaviour
of FBM [6] when damage accumulation is suppressed either by increasing the exponent γ
or decreasing the range of memory τ → 0.

Figure 2(b) presents examples of the solution p(t) of equation (5) obtained for breaking
thresholds uniformly distributed in the interval [0, 1] at different ratios σ0/σc setting
τ → ∞ (no healing is considered). Since p(t) is simply related to the macroscopic
deformation ε of the bundle p(t) = Eε(t), these results can directly be compared to the
experimental findings. In can be seen that the results are in nice qualitative agreement
with the experimental findings, i.e. the deformation is a monotonically increasing function
of time with an increasing derivative when the point of macroscopic failure is approached.
Lowering the external load σ0 the lifetime tf of the bundle increases. For the quantitative
comparison we considered a Weibull distribution for the breaking thresholds

P (x) = 1 − exp [− (x/λb)
m
b ], (6)

where the index b denotes p and c for immediate breaking and damage, respectively. The
excellent quantitative agreement of the experimental and theoretical results presented in
figure 2(a) was obtained by varying solely three parameters a, γ, and τ .

One of the most important outcomes of our work is that the Basquin law equation (1)
can be deduced from equation (5), i.e. it can be shown analytically that for σ0/σc � 1
and τ → ∞ the lifetime of the system has a power law dependence on the external load:

tf ∼
(

σ0

σc

)−γ

, (7)

where γ is the damage accumulation exponent, independent on the type of disorder.
Figure 4(b) shows that the numerical results are in excellent agreement with the above
analytic prediction. Calculations were carried out for uniform and Weibull distributions
setting τ → ∞ for the range of memory. It can be seen in the figure that the Basquin
exponent is solely determined by the exponent γ of the damage accumulation rate.

Due to equation (5), without healing (τ → ∞) the cumulative effect of the loading
history gives rise to a macroscopic failure of the system at any load. However, our
experiments revealed that damage recovery caused by healing of microcracks results in
a finite fatigue limit σl, below which the sample does not break. Since healing takes
place in the polymer binder, it can be controlled by changing the temperature [3]. In our
FBM the healing of microcracks is captured by the finite range of memory τ limiting the
time interval over which microcracks contribute to the total damage. Of course, healing
becomes dominating at a given load σ0 when the range of memory τ is comparable to the
lifetime tf of the sample measured without healing τ → ∞. Varying the external load σ0

at a fixed value of τ , the competition of the nucleation of new microcracks and healing
of the existing ones results in a finite fatigue limit (a threshold load) σl below which the
specimen suffers only partial failure and has an infinite lifetime tf → ∞. Figure 3(b)
shows that the value of σl is controlled by τ such that on increasing the range of memory
the fatigue limit gets smaller. It can be seen in figure 3(b) that when the external load
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(a) (b)

I

Figure 5. (a) Illustration of the fuse model. Initially, a tilted square lattice of
intact fuses is considered. Lattice bonds crossed by a bold line indicate failed
fuses. (b) Lifetime of the system as a function of the current I normalized by
the lattice size L for different values of the threshold current i0 and damage
accumulation exponent γ.

approaches the fatigue limit σl from above at a fixed value of τ , the lifetime tf of the sample
rapidly increases. It follows from the Basquin law equation (7) that the divergence has
the functional form tf ∼ (σ0 − σl)

−γ for σ0 → σ+
l . It is important to note that the value

of τ does not have any influence on the Basquin regime of tf(σ0); the Basquin exponent
is solely determined by the exponent of the rate of damage accumulation γ.

4. Fuse model with ageing fuses

Besides healing, another important mechanism which limits damage accumulation is a
finite activation threshold of microcrack nucleation. In order to study this effect we
consider the random fuse model (RFM) [10] of fracture and extend it by introducing a
history dependent ageing variable of fuses. We construct an L×L tilted square lattice of
initially fully intact bonds with identical conductance but random failure thresholds ic (see
figure 5(a)). The threshold values ic are uniformly distributed between a small current
value i0 and 1 (i0 � 1). For a given value of current I applied between two bus bars
of the lattice, the local current through each bond is determined by solving numerically
the Kirchhoff equations. Fuses burn out irreversibly when the current exceeds the local
failure thresholds. This process is then followed by the recalculation of the current values.
In order to capture fatigue cracking in the model, intact fuses are assumed to undergo an
ageing process, modelled by a variable

A(t) =
t∑

t′=1

a(i(t′) − i0)
γH(i(t′) − i0), (8)

where the Heaviside function H expresses that only currents above the threshold value
i > i0 contribute to the ageing variable. A fuse fails due to fatigue when A(t) > Amax,
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where Amax is a failure threshold uniformly distributed between 1 − b and 1 + b with
b = 0.1. Comparing the two modelling approaches, the ageing variable A(t) of RFM is
analogous to the accumulated damage c(t) of FBM; however, only current values above i0
contribute to A(t), which captures the finite activation threshold of microcrack nucleation.
We carried out computer simulations of the fatigue process varying the threshold current
i0 over a broad range and the value of the ageing exponent γ. Figure 5(b) demonstrates
that RFM for ageing fuses provides qualitatively the same behaviour as FBM, i.e. rapid
failure at high current values I, a Basquin regime equation (1) at intermediate currents
with an exponent equal to γ and a finite fatigue limit σl determined by the threshold
current i0.

5. Summary

We carried out an experimental and theoretical study of fatigue failure of asphalt occurring
under cyclic compression. Our experiments revealed three regimes of the failure process
depending on the load amplitude: instantaneous breaking, a Basquin regime of a power
law decrease of lifetime and the existence of a fatigue limit below which no failure
occurs. We introduced two novel modelling approaches, namely, a fibre bundle model
and a fuse model, which both capture the essential ingredients of the fatigue failure of
bituminous materials. The models proved to provide a comprehensive description of the
experimental findings. Computer simulations and analytic calculations showed that the
Basquin exponent coincides with the exponent of damage accumulation rate. We showed
that healing of microcracks controls the failure process at low load levels determining the
fatigue limit of the material below which the specimen suffers only a partial failure and
has an infinite lifetime. In the framework of the random fuse model we demonstrated that
a finite activation threshold of microcrack nucleation has a similar effect to healing on the
failure process.
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