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We study the effect of disorder on crackling noise accompanying the fracture of hetero-
geneous materials. Two different types of system are considered: we analyze the three-point
bending of a bar shaped specimen where the boundary and loading conditions ensure that
crackling occurs during the propagation of a single crack; then we study a bundle of fibers
where noise emerges as a consequence of spatially uncorrelated stick-slip rearrangements.
We show that bursts characterizing the jerky propagation of a crack have a power law size
distribution with an exponent which does not depend on the amount of disorder. Our calcu-
lations revealed that varying the amount of disorder in a stick-slip system, a phase-transition
occurs: at high disorder stick-slip rearrangements occur in small bursts, while at low disorder
macroscopic avalanches snap the system. Our investigations demonstrate that the relevance
of disorder on crackling noise is strongly influenced by the presence or absence of stress
concentrations in the system.

§1. Introduction

The fracture of heterogeneous materials is a very important scientific problem
with a broad spectrum of technological applications. During the last two decades
experiments have revealed that the heterogeneous micro-structure of materials has a
strong effect on fracture processes which can only be understood in the framework of
statistical physics. Assuming a perfectly crystalline structure, the fracture strength
σc of materials can be estimated as the load needed to separate two crystal planes,
which implies that σc should fall in the order of magnitude of the Young modulus E
of the material σc ∼ E. However, measured strength values are typically 2–3 orders
of magnitude smaller than the Young modulus. The reason is that heterogeneous
materials contain defects, flaws, micro-cracks, which become unstable at loads much
below E and trigger catastrophic failure of the system.1)

Besides making materials weaker, disorder has also a very important positive
effect in the fracture process: growing micro-cracks can stop when reaching a mate-
rial region with a higher local strength. As a consequence, the macroscopic failure
of heterogeneous materials is preceded by a damage accumulation process in the
form of nucleation of new micro-cracks, furthermore, of the growth and arrest of
the existing ones. Nucleating and propagating cracks emit acoustic waves which
can be recorded by sensitive microphones as acoustic noise. Such crackling noise
measurements provide very useful information about the microscopic dynamics of
progressive damaging and it can also be exploited to forecast the imminent failure
event. Recently, the application of statistical physics to understand crackling noise
has provided a novel insight into fracture phenomena allowing also for new tech-
nological applications.1) On a more general basis, crackling noise can be defined
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as the jerky response of disordered systems to a slow external driving.2)–5) Exam-
ples of systems exhibiting crackling noise can be mentioned from the Barkhausen
noise in ferromagnets,2),5),6) through the plastic deformation of materials,7) to the
emergence of earthquake sequences.4),8) Beyond its practical relevance, it is a very
interesting problem to embed the crackling noise accompanying fracture into the
general framework of the statistical physics of complex systems exhibiting crackling
phenomena.

To capture the effect of disorder in materials breakdown, recently several stochas-
tic fracture models have been proposed such as the fiber bundle model (FBM)9)–12)

and lattice models of fuses or springs.1),13)–18) On the basis of these models, analytic
calculations and computer simulations revealed that the fracture of disordered mate-
rials shows interesting analogies with phase transitions and critical phenomena hav-
ing several universal features independent of specific material details.1),8),9),12),13)

As an alternative approach, discrete element modeling (DEM) is applied when a
realistic representation of the mechanics of materials is of high importance under
time dependent conditions. DEM is based on a physical discretization of a specimen
whose time evolution is followed by molecular dynamics simulations.15)–18)

In this paper we study the emergence of crackling noise in two different types of
systems: first we analyze the propagation of a single crack in a specimen subject to
three-point bending, then we study noise generated in a bundle of fibers which can
rearrange themselves with a stick-slip mechanism under an increasing load. The main
goal of our investigations is to reveal the effect of the amount of disorder on crackling
noise in the presence and absence of stress concentration. We show that under three-
point bending conditions the crack proceeds and opens in bursts which have a power
law size distribution. The bursts are correlated sequences of microscopic breakings
which result in jumps of the crack tip. Decreasing the amount of disorder the jumps
become longer, however, the exponent of the size distribution remains the same. On
the basis of discrete element simulations we propose a scaling form for the burst size
distribution of propagating cracks obtained at different amount of disorders.

Varying the amount of disorder in a bundle of fibers with stick-slip dynamics we
show that the system undergoes a disorder driven phase transition: at high amount
of disorder only small avalanches of fiber slips appear, however, at low disorder
macroscopic avalanches snap the system. We demonstrate analytically that the size
distribution of slip avalanches exhibits a power law behavior in both phases, however,
with different values of the exponent. In the high disorder phase we determine the
scaling form of the burst size distribution and obtain the value of the cutoff exponent.
The analytical results are complemented by large scale Monte Carlo simulations of
FBMs. The main difference between the two systems considered is that under three-
point bending conditions bursts are generated by spatially correlated breakings while
in the stick-slip fiber bundle local slip events do not have any spatial correlations
(mean field type system). In the presence of spatial correlations the amount of
disorder just controls the typical scale of the characteristic quantities of bursting
events, while in the mean field system a phase transition is obtained.
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§2. Crack propagation in three-point bending

Three-point bending is a standard engineering test where a bar shaped specimen
is clamped at the two ends and a point load is applied in the middle perpendicular to
the longer axis of the bar. Under an increasing load the bar bends and finally breaks
due to a crack which appears in the middle along the load direction. This testing
method is mainly used in the engineering literature to characterize the quasi-static
fracture strength of structural materials such as concrete. On the other hand, three-
point bending experiments provide an excellent opportunity to study the propagation
of a single crack in a disordered environment which is a challenging problem for the
statistical physics of fracture. Recently, it was found experimentally that the crack-
ing of a bar under three point bending proceeds in bursts which are characterized
by power law distributions.19) In the experiments bars of ferromagnetic materials
such as steel were subject to three-point loading applied dynamically by the Charpy
impact machine. The impact machine is a pendulum whose arm is raised to an
initial height which then hits the specimen at the bottom of its swing. As the steel
bar breaks, magnetic noise is generated which is recorded in the form of an irregular
voltage time series composed of a large number of peaks. The experiments showed
that the amplitude, area and energy of peaks have power law distributions where the
values of the exponents are sensitive to the type of fracture, i.e. the noise spectra
of ductile materials are characterized by higher exponents than the brittle ones.19)

The boundary and loading conditions ensured in the experiments that the damage
localizes to a relatively thin layer of the specimen giving rise to a single growing
crack so that the crackling noise measured during the loading process characterizes
the crack propagation.19)

In order to obtain a deeper theoretical understanding of the experimental find-
ings we use a discrete element modeling technique and perform realistic computer
simulations of the loading process. In the following we briefly present the model con-
struction then we analyze the dynamics of crack propagation obtained by simulations
focusing on the noisy character of the process.

2.1. Discrete element model for heterogeneous materials

Recently, we have worked out a two-dimensional dynamical model of deformable,
breakable granular solids, which enables us to perform molecular dynamics simula-
tion of fracture and fragmentation of solids in various experimental situations.15)–18)

Our model is an extension of those models which are used to study the behavior of
granular materials applying randomly shaped convex polygons to describe grains.17)

The initial set of polygons is obtained by the Voronoi tessellation of a square from
which specimens of appropriate shapes can be cut out. The average polygon size
lp sets the characteristic length scale of the model system. The polygons are con-
sidered to be rigid bodies which can overlap when pressed against each other. We
introduce a repulsive force between the overlapping particles proportional to the
overlap area.15)–18) To capture the elastic behavior of solids we connect the un-
breakable, undeformable polygons (grains) by elastic beams. The beams have two
important roles in the model construction: they ensure cohesion and they are able
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Fig. 1. (left) Neighboring polygons of the initial Voronoi tessellation are connected by beams. This

way a triangular beam lattice is obtained. (right) Due to subsequent breaking of beams a crack

forms along the edge of polygons.

to break which is essential to model fracture processes. The beams can be elongated,
compressed, sheared and bent so that they exert forces and torques on the polygons
to which they are attached. Figure 1 presents an example of the polygon structure
and the beam lattice attached to the polygons.

In the simulations a bar shaped specimen is considered with an aspect ratio 1:5
corresponding to the experimental standards. In order to make a realistic repre-
sentation of three-point loading, the three loading plates are realized by additional
polygonal elements, i.e. squares in Fig. 2 with side length S = 5lp much smaller
than the longer side L = 1000lp of the bar S � L. These loading plates interact
with the particles of the bar via the overlap force, however, no beams are coupled
to them. Strain controlled loading of the bar is implemented in such a way that the
two loading plates at the bottom are fixed while the third one on the top is moved
vertically downward in Fig. 2 with a constant speed v0. The moving plate overlaps
the boundary polygons on the top of the bar which results in an increasing loading
force. The stiffness of the plates is set high enough to keep the overlap below 20%
of the average polygon area. Simulations were carried out varying the value of v0
in a range, which allows for an efficient damping of the elastic waves and ensures
a reasonable CPU time for the computations. The main advantage of three-point
bending tests is that the highly stressed zone where the crack appears falls in the
middle of the bar which helps to make efficient monitoring of the fracture process.
In order to simplify the numerical measurements on crack propagation, we introduce
a “weak” line in the middle of the bar in such a way that solely those beams are
allowed to break which connect the two sides of the line.

2.2. Disordered beam breaking

The beams, modeling cohesive forces between grains, can be broken according
to a physical breaking rule, which takes into account the stretching and bending of
the connections

(
ε

εth

)2

+
max(|Θ1|, |Θ2|)

Θth
≥ 1. (2.1)
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Fig. 2. (Color online) Three-point bending of a bar composed of polygonal particles. The particles

are coupled by elastic beams which are colored according to the longitudinal deformation (yellow:

nearly unstressed beams; red and black: elongated beams; blue and green: compressed beams).

Beams are allowed to break solely along the center line of the bar. We are investigating the jerky

propagation of the crack along the weak line. A relatively small sample is presented to have a

clear view on the details of the model construction. The two loading plates at the bottom are

fixed while the third one on the top moves downward.

Here ε denotes the longitudinal deformation of a beam, while Θ1 and Θ2 are bending
angles at the two beam ends. The breaking rule Eq. (2.1) contains two parameters
εth, Θth controlling the relative importance of the stretching and bending breaking
modes, respectively. The energy stored in a beam just before breaking is released
in the breakage giving rise to energy dissipation. At the broken beams along the
surface of the polygons cracks are generated inside the solid and as a result of the
successive beam breaking the solid falls apart (see Fig. 1). The time evolution of
the polygonal solid is obtained by solving the equations of motion of the individual
polygons. At each iteration step we evaluate the breaking criterion Eq. (2.1) and
remove those beams which fulfill the condition. The simulation is continued until the
entire system relaxes, i.e. there is no breaking of the beams during some hundreds
of consecutive time steps. (For more details of the model construction see Refs.
16)–18).)

The breaking parameters εth and Θth of beams are stochastic variables in the
model, i.e. they are sampled from probability density functions p(εth) and p(Θth).
The Weibull distribution provides a comprehensive description of the stochastic frac-
ture strength of materials, hence, for both threshold values the Weibull form is pre-
scribed

pλ,m(x) =
m

λ

(x
λ

)m−1
e−(x/λ)m

, (2.2)

where x denotes the two breaking thresholds εth, Θth. The Weibull distribution has
two parameters: λ sets the characteristic scale of threshold values while the expo-
nent m determines the scatter of the variable. Increasing the value of the exponent
m the width of the Weibull distribution Eq. (2.2) decreases and converges to the
delta function in the limit m → ∞. Computer simulations were carried out using
fixed values of the scale parameters λε = 0.04 and λΘ = 0.09 varying the Weibull
exponents in the range 1 ≤ m ≤ 15 for both threshold distributions.
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Fig. 3. Time series of bursts in a single fracture simulation. The bursts are correlated breaking

sequences of beams which then result in sudden jumps of the crack tip. N denotes the total

number of beams along the weak interface where the crack propagates. For all the simulations

its value was set to N = 200. At the beginning of the loading process, for a considerable

time no breaking occurs, most of the breaking events appear at larger deflections close to final

breakdown. Hence, we magnify the final section of the bending process. t0 and tend denote the

time of the first and the last beam breaking, respectively.

2.3. Crackling noise during crack propagation

A snapshot of the computer simulation of a three-point bending test is pre-
sented in Fig. 2. The color code shows that the bottom of the specimen is highly
elongated that’s why the crack starts here. In the vicinity of the crack tip the beams
are strongly elongated indicating a high stress concentration ahead the crack which
provides the driving force for crack propagation. At the top of the bar the color
code indicates that compressive stresses arise. Since under compression beams do
not break, the compressive zone has a stabilization effect in the sense that it ensures
a gradual advancement of the crack tip.

The constant speed of the loading plate implies a strain controlled loading of the
specimen at a fixed strain rate. This way of loading has the consequence that in each
iteration step of the molecular dynamics simulation either no beam breaking occurs
or only a single beam breaks. After a local breaking event the stress gets redistributed
increasing the stress concentration on the intact elements ahead the crack. The
load redistribution may give rise to additional breakings resulting in a correlated
trail of breaking events. In order to identify bursts of local breakings we introduce
a correlation time tcorr: if the time difference of two consecutive beam breakings
occurring at times ti and ti+1 is smaller than the correlation time ti+1 − ti < tcorr

the two breakings are considered to belong to the same burst. The value of the
correlation time was chosen in such a way that it is larger than the time step Δt
used in the integration of the equation of motion but it is much smaller than the
total duration T of crack propagation, i.e. we set tcorr = 10Δt for which 105tcorr < T
holds. The size of bursts Δ is defined as the number of beams breaking during the
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Fig. 4. (a) Burst size distributions obtained at different values of the Weibull exponent m. Increas-

ing m, i.e. decreasing the amount of disorder in the model, burst sizes Δ span a broader interval.

For small bursts a power law functional form is obtained while for large bursts the distribution

decays rapidly. (b) Scaling plot of the burst size distributions. Rescaling along both axis with

an appropriate power of the average burst size Δ a nice data collapse is obtained.

correlated sequence.
Figure 3 presents the size of bursts in a single fracture simulation at the time

of their appearance. Since these breaking events are spatially correlated the bursts
can be considered as sudden jumps of the crack tip. It can be seen in the figure that
the bursts are separated by silent periods with variable length. These waiting times
between bursts characterize the duration of states where the crack tip is pinned due
to the presence of some strong beams. At the beginning of the loading process the
bursts are small compared to the cross section of the specimen (maximum crack
length), however, with increasing deflection of the bar the burst size Δ increases and
reaches a maximum somewhat before the last breaking. After the maximum the
burst size decreases showing that as the crack approaches the top of the bar it slows
down due to the compressive zone.

We determined numerically the size distribution of bursts P (Δ) varying the
amount of disorder in the failure thresholds. The size distribution obtained at differ-
ent values of the Weibull exponent is presented in Fig. 4(a). It is interesting to note
that increasing the Weibull exponent m, i.e. decreasing the amount of disorder, the
bursts get larger but the functional form does not change. For small bursts a power
law behavior is obtained followed by a rapidly decreasing cutoff regime. Figure 4(b)
demonstrates that using the average burst size Δ as a scaling variable, the burst size
distributions obtained at different m values can be collapsed on a master curve. The
data collapse implies the scaling structure

P (Δ) = Δ
β
g(Δ/Δα), (2.3)

where the values of the exponents were determined numerically α = 1.6 ± 0.05 and
β = 2.1 ± 0.07 which provide the best quality collapse. The exponent of the power
law regime of the distribution P (Δ) ∼ Δ−τ was obtained as τ = 1.31 ± 0.04.

The results demonstrate that the growth of crack is not a smooth process, the
slow driving results in a jerky crack propagation which is composed of a large number
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of discrete steps. The growth steps are sudden outbreaks with a variable length. The
correlation of consecutive local breakings leads to a power law functional form. The
most interesting outcome of the calculations is that the amount of disorder only
affects the characteristic scale of bursts but the functional form and the value of
the exponent remain the same. Comparing the value of the exponent τ to recent
experimental results on three-point bending fracture of ferromagnetic materials19) a
reasonable agreement is obtained.

§3. Stick-slip avalanches in a fiber bundle model

Another limiting case of fracture phenomena where crackling noise arises is the
spatially uncorrelated cracking of an extended system. In order to compare the
effect of disorder on the crackling noise for spatially correlated and uncorrelated
breaking events, now we consider a mean field model of fracture, i.e. a fiber bundle
model (FBM) where fibers can undergo subsequent rearrangements with stick-slip
mechanism before they break. In our model over-stressed fibers do not break, instead
they increase their relaxed length in a slip event until they can sustain the load. The
system is driven by small load increments giving rise to the slip of a single fiber which
may then trigger an entire avalanche of slip events due to load redistribution in the
bundle. Assuming an infinite range of interaction, we analyze the size distribution
of slip avalanches varying the amount of threshold disorder in the system.

3.1. Fiber bundle with stick-slip dynamics

Our model consists of N fibers assembled in parallel. Under an increasing ex-
ternal load σ the fibers exhibit a linearly elastic behavior characterized by the same
Young modulus E. In the model when the deformation ε of a fiber reaches a thresh-
old value εth the fiber does not break, instead, its relaxed length increases until the
load reduces to zero on the fiber. The mechanism of relaxation is the slip of the fiber
end, or it can also be interpreted as the unfolding of subunits of fibers which provide
some stored length.20) The slip thresholds εi

th, i = 1, . . . , N are random variables
with a probability density p(εth) and distribution function P (εth).

After the slip event the fiber gets sticked again so that it can support load

Fig. 5. Constitutive behavior of single fibers for quenched (a) and annealed slip thresholds (b).

The young modulus E remains the same during the sequence of stick-slip events.
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and can suffer further slips. The load kept by fiber i at a deformation ε after
slipping reads as σi = E(ε − εi

th) so that no hardening or softening is assumed
in the system. When a fiber slips again either the same slip threshold is retained
(quenched disorder) or new threshold values can be drawn from the same probability
distribution p(εth) (annealed disorder). The total number of slip events kmax a fiber
can suffer is a very important parameter of the model which can vary in the range
1 ≤ kmax < +∞. For the load redistribution following slip events we assume an
infinite range of interaction, i.e. equal load sharing, which is ensured by the condition
that the strain ε is the same for all fibers. The present analysis is restricted to the
case of quenched disorder so that the load of fiber i in the bundle after ki ≤ kmax

slips takes the form σi = E(ε − kiε
i
th). The constitutive behavior of single fibers is

presented in Fig. 5. Further details of the model construction can be found in Ref.
20). We note that our model can also be conceived as the fiber bundle analogue of
the Burridge-Knopoff model of earthquakes.21)

On the basis of the assumption of equal load sharing the constitutive equation
σ(ε) of the parallel bundle can be obtained analytically by integrating the load kept
by subsets of fibers with slip index 0 ≤ k ≤ kmax, where k = 0 means intact fibers20)

σ(ε) = Eε [1 − P (Eε)] +
kmax−1∑

k=1

∫ ε/k

ε/(k+1)
p(Eε1)E (ε− kε1) dε1

+
∫ ε/kmax

0
p(Eε1)E (ε− kmaxε1) dε1. (3.1)

The above integrals have to be performed over the entire loading history of the
bundle. For very large deformations ε→ ∞, practically all fibers have suffered kmax

slips so that Eq. (3.1) can be rewritten as σ(ε) ∼ Eε − kmaxE
∫ ε/kmax

0 p(ε1)ε1dε1
where the integral provides the average value of the slip thresholds 〈εth〉. This
shows that the bundle has an asymptotic linear behavior with the initial value of
the Young modulus, however, when unloading the system σ → 0 an irreversible
permanent deformation remains with a maximum εmax

r proportional to the average
slip length 〈εth〉 and to the number of slip events kmax allowed εmax

r = kmax 〈εth〉.
In the model calculations Weibull distribution of the form of Eq. (2.2) was ap-

plied for the failure thresholds to be able to easily control the amount of disorder
similarly to the case of three-point bending. In all the calculations of the stick-slip
FBM the scale parameter of threshold values was fixed λ = 1, while the Weibull
exponent was varied in the range 1 ≤ m < 50. The constitutive curve of the model
is presented in Fig. 6(a) for several values of the maximum allowed slips kmax setting
the Weibull exponent to m = 1. It can be seen that as kmax increases the asymptotic
linear regime is preceded by a longer and longer plateau which indicates an apparent
plastic response.

3.2. Slip avalanches

We investigate the response of the stick-slip bundle to a slowly increasing exter-
nal load. Quasi-static stress controlled loading of the fiber bundle can be performed
by incrementing the external load with a small amount δσ just to provoke the slip
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Fig. 6. Constitutive behavior of the bundle (a) for m = 1 (exponential distribution) varying the

value of the maximum number of allowed failures kmax, while (b) demonstrates σ(ε) for kmax = 3

varying the value of m. For the exponential distribution σ(ε) is monotonically increasing for all

kmax. However, varying the value of m in the range 1 < m at a fixed 1 < kmax the constitutive

curve changes from strictly monotonous to a shape where local maxima and minima appear.

The transition between the two regimes appears at mc
3 ≈ 1.918.

of a single fiber. The external load σ is kept constant during the slip, hence, the
load dropped by the slipping fiber must be overtaken by the other ones which can
give rise to further slip events. This way a single slip induced externally can trigger
an entire avalanche of slips, which increases the macroscopic strain ε of the sys-
tem by the amount δε. This jerky microscopic dynamics has the consequence that
the deformation of the bundle has a step-wise increase under a quasi-statically in-
creasing external load σ similarly to the jerky extension of the growing crack under
three-point bending. The size of slip avalanches Δ is defined as the number of fibers
slipping in the avalanche and the microscopic response of the bundle is characterized
by the probability distribution of burst sizes P (Δ).

For simple fiber bundles where fibers break irreversibly when the local load
surpasses their threshold value, it has recently been shown9),10) for the case of equal
load sharing that the size distribution of avalanches P (Δ) can be obtained in a closed
analytical form as

P (Δ) ≈ eΔ

√
2πΔ3/2

∫ εc

0
p(ε)

1 − a(ε)
a(ε)

eΔ[a(ε)−ln a(ε)]dε. (3.2)

In the above expression, a(ε) denotes the average number of fibers which break as a
consequence of a single fiber failure induced by the external load increment at the
deformation ε. The integration over ε is carried out up to the critical point εc of
the system where catastrophic collapse occurs. The dominating contribution to the
integral is provided by the vicinity of the maximum of the exponent of the integrand
ψ(ε) = a(ε) − ln a(ε), which is obtained at a = 1. It can be shown analytically that
the distribution has a power law decay P (Δ) ∼ Δ−τ . The exponent τ = 5/2 proved
to be universal for a broad class of disorder distributions where the macroscopic
constitutive curve σ(ε) of the system has a single quadratic maximum.9)–11)
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In order to understand the dynamics of slip avalanches first the sequence of
slipping events has to be analyzed. We can determine the probability density pk+1

k (ε)
of events that a fiber which has suffered k slips until the deformation ε was reached,
will slip again due to the strain increment dε

pk+1
k (ε) =

1
k + 1

p

(
ε

k + 1

)
, 0 ≤ k < kmax, (3.3)

where p is the original probability density of the slip thresholds. Keeping the load σ
fixed during the slip, the arising strain increment reads as δεk = εi

th/N = ε/(kN). It
follows that the average number of fibers a(ε) which slip as a consequence of a single
slip can be determined as a(ε) = N

∑kmax−1
k=0 δεkp

k+1
k (ε) which leads to the form

a(ε) = ε
kmax∑
k=1

1
k2
p

(
Eε

k

)
. (3.4)

For the analysis of the burst size distributions it is useful to express the derivative
of the constitutive equation σ(ε) of Eq. (3.1) in terms of a(ε)

dσ

dε
= E

[
1 −

kmax∑
k=1

ε

k2
p

(
Eε

k

)]
= E [1 − a(ε)] , (3.5)

which show that the constitutive curve σ(ε) has extrema at locations εc where the av-
erage number of induced slips becomes unity a(εc) = 1, furthermore, at the extremal
points of a(ε) the constitutive curve σ(ε) has an inflexion point d2σ/dε2 = 0.

3.3. Disorder induced phase transition

In the following we analyze the statistics of slip avalanches varying the amount
of disorder m and the maximum number of allowed slips kmax. Using Eqs. (3.1),
(3.4) and (3.5) we can determine analytically the phase diagram of the system on
the m− kmax plane which classifies all possible functional forms of the constitutive
curves σ(ε) and of avalanche size distributions P (Δ). For this purpose we write the
average number of induced slips a(ε) in the form a(ε) =

∑kmax
k=1 ak(ε), where each

term ak(ε) = (ε/k2)p(Eε/k) has a single maximum at the strain εc
k. It can be shown

analytically that if a1 has a maximum at εc
1 with the value ac

1, then the maxima of
the other terms ak(ε) are placed equidistantly as εc

k = kεc
1 with decreasing values

ac
k = ac

1/k. Since the functions ak(ε) overlap each other, the consecutive maxima
of a(ε) do not coincide with that of ak(ε), however, the equidistant spacing and
the decreasing sequence remains valid. Substituting the Weibull distribution the
above analysis results in εc

k = kλ and ac
k = m/(ke), where e is the base of natural

logarithm. It can be seen that for kmax = 1, when only a single slip is allowed, at the
critical Weibull exponent mc

1 = e the constitutive curve σ(ε) has an inflexion point
at the position εc

1 where a(ε) has a maximum with the value a(εc
1) = 1. It can be

shown similarly that for any kmax ≥ 1 one can find an mc
kmax

value of the Weibull
exponent, where the constitutive curve has an inflexion point with the properties
dσ/dε|εc

kmax
= 0 and d2σ/dε2|εc

kmax
= 0, where at the same time a(εc

kmax
) = 1 and

da/dε|εc
kmax

= 0 hold.
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Fig. 7. Phase diagram of the system. The decreasing line indicates the mc
kmax

curve which separates

the POP and SNAP regimes. Above the m = e line the constitutive curve has a maximum

already at kmax = 1.

Figure 7 presents the phase diagram of the system where the decreasing line
represents the mc

kmax
curve which was determined numerically. For kmax = 1 the

critical Weibull exponent is mc
1 = e and mc

kmax
→ 1 holds for kmax → +∞. In order

to obtain the asymptotics of the size distribution of slip avalanches P (Δ) analytically
from Eq. (3.2) for parameters along themc

kmax
curve, the Taylor expansion of a(ε) and

ψ(ε) about εc
kmax

has to be continued up to the first non-vanishing terms, which result
in a power law asymptotics P (Δ) ∼ Δ−τ with the exponent τ = 9/4. The parameter
regime of m and kmax below the mc

kmax
curve of Fig. 7 defines the high disorder phase

of the model, where σ(ε) is monotonically increasing dσ/dε > 0 and the maximum of
a(ε) is always smaller than 1. Figures 6(a) and (b) illustrate the constitutive behavior
σ(ε) of the model varying kmax and m. Note that for kmax = 3 the critical disorder
parameter is mc

3 ≈ 1.918. Since the minimum value of the derivative dσ/dε Eq. (3.5)
is positive in the high disorder phase, the avalanche size distribution P (Δ) behaves
as in simple fiber bundles when the loading process was stopped at a deformation εm
before the critical point of macroscopic failure.9) It follows that for m < mc

kmax
the

size distribution of bursts takes the form P (Δ) ∼ Δ−τe−[a(εm)−1−ln a(εm)]Δ, i.e. the
power law regime of exponent τ = 9/4 is followed by an exponential cutoff, where in
our case εm is the position of the inflexion point of the constitutive curve. Since in
the high disorder phase of the model only relatively small avalanches pop up away
from the phase boundary, this phase is called POP phase.3)

Figure 8(a) presents the size distribution of slip avalanches P (Δ) obtained by
computer simulations for kmax = 7 at different m values in the range m ≤ mc

7. A
high quality power law behavior is obtained with a diverging cutoff as approaching
the critical point m → mc

7 in agreement with the above derivation. It follows from
the above equations that the cutoff avalanche size Δ0 of P (Δ) has a power law
divergence as a function of the distance from the corresponding critical point mc

kmax
,

i.e. Δ0 ∼ (mc
kmax

−m)−ν is obtained with the exponent ν = 1/2.
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Fig. 8. (a) Size distribution of slip avalanches in the POP phase of the model for several values of

m at the fixed kmax = 7. As m approaches mc
7 ≈ 1.5712 the cutoff avalanche size diverges. (b)

Comparison of avalanche size distributions in the POP and SNAP phases. Excellent agreement

is obtained with the analytic predictions.

The parameter regime above the mc
kmax

curve of Fig. 7 defines the low disorder
phase of the model where the constitutive curve can have local maxima along the
plateau regime (see also Fig. 6(b)). At a given value of kmax the number of maxima
of σ(ε) is one if the value of m falls in the interval mc

kmax
< m < e. Under stress

controlled loading a macroscopic avalanche appears resulting in a horizontal jump
when the maximum of σ(ε) is reached. Consequently, this phase of the model is
called SNAP phase.3) Starting from Eq. (3.5) it can be shown that at very low
disorder m > e, i.e. when the probability density p of slip thresholds is very narrow,
the constitutive curve has a local maximum already at kmax = 1 and further maxima
occur with decreasing height accompanied by a similar oscillating behavior of a(ε)
as kmax increases. In the SNAP phase the distribution of avalanche sizes P (Δ) is
determined by the first maximum of σ(ε) which has a quadratic shape. Consequently,
similarly to the case of simple fiber bundles, P (Δ) has a power law functional form
P (Δ) ∼ Δ−τ without cutoff regime but with an exponent τ = 5/2 higher than
in the POP phase.9)–11) Burst size distributions of the POP and SNAP phases
are compared in Fig. 8(b), where nice agreement can be observed with the analytic
predictions.

Our analytical calculations and computer simulations showed that disorder plays
a very important role in the avalanches of restructuring events. Varying the amount
of disorder and the number of allowed slips the mean field system undergoes a phase
transition from the phase where only small avalanches pop up to another one where
macroscopic avalanches snap the entire system.

§4. Discussion

Disorder has a strong effect on the fracture process of heterogeneous materials
both on the macro and micro scales. Under a slowly increasing external load, due
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to the quenched structural disorder of materials, a stochastic sequence of crack nu-
cleation, growth, and arrest arises which results in the emergence of crackling noise.
In spite of the smooth macroscopic constitutive behavior, on the microscale frac-
ture proceeds in a discrete sequence of events, i.e. bursts which emit acoustic noise.
The investigation of crackling noise can provide very valuable information on the
microscopic dynamics of fracture (non-destructive testing) and it can also be used
to forecast the imminent macroscopic failure of the system.

In the present paper we investigated the effect of the amount of disorder on the
properties of crackling noise emerging in heterogeneous materials under a slow exter-
nal driving. In order to gain information about the relevance of spatial correlations
in the emergence of crackling, we compared two different types of fracture problems:
first we considered the propagation of a single crack in a specimen which is subject
to a three-point bending load, then we studied the noisy rearrangements of a bundle
of fibers under a slowly increasing uniaxial load.

Computer simulations showed that the crack emerging under three-point bend-
ing conditions proceeds in correlated jumps with widely different sizes. When the
crack penetrates a weak region it proceeds faster, however, reaching a stiffer zone it
gets pinned. As the crack advances larger and larger stress concentration arises at
the crack tip which drives the crack advancement. Our calculations revealed that
decreasing the amount of disorder the crack tip makes larger jumps so that the av-
erage burst/jump size increases. The distribution of burst sizes exhibits a power law
decay for small bursts while it has a rapidly decreasing exponential shape for the
large ones. The value of the exponent of the power law regime is in a reasonable
agreement with the experimental findings of Ref. 19). The most important outcome
of our work is that varying the amount of disorder the functional form of the jump
distribution remains the same and we proposed a scaling form of the size distribution
using the average burst size as a scale variable.

As a second step we analyzed avalanches of restructuring events in a bundle
of fibers which respond to an increasing load by stick-slip mechanism. The main
difference of the two systems investigated is that in the first case bursts are composed
of spatially correlated breaking sequences which localize at the crack tip, while in the
second one the system is of mean field type and spatial correlations do not occur. Our
analytical calculations and computer simulations showed that varying the amount
of disorder and the total number of allowed slips the system undergoes a phase
transition: at high disorder only small avalanches pop up in the system while at low
disorder avalanches comparable to the system size may occur. When approaching
the phase boundary from the high disorder phase the characteristic avalanche size
exhibits a power law divergence resembling to second order phase transitions.

In heterogeneous materials subject to external load local breakings occur as the
result of the competition of two mechanisms: breaking due to local weaknesses of
the material (quenched disorder) and breaking due to local overloads (stress concen-
tration) in the vicinity of failed regions. Our study revealed that when the stress
concentration dominates the process, the amount of disorder only changes the scale of
crackling noise but the characteristic probability distributions retain their functional
form. In the mean field model of stick-slip avalanches where disorder dominates the
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stick-slip sequences, a phase transition is obtained when changing the amount of dis-
order. Recently, we have carried out a mean field study of cracking under three-point
bending conditions, where the interface between two rigid blocks was discretized in
terms fibers.22) Analytic calculations and computer simulations revealed a power
law distribution of burst sizes with a crossover in the burst exponent with decreas-
ing disorder, which is consistent with the above arguments.
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