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Scaling laws for impact fragmentation of spherical solids
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We investigate the impact fragmentation of spherical solid bodies made of heterogeneous brittle materials by
means of a discrete element model. Computer simulations are carried out for four different system sizes varying
the impact velocity in a broad range. We perform a finite size scaling analysis to determine the critical exponents
of the damage-fragmentation phase transition and deduce scaling relations in terms of radius R and impact
velocity vg. The scaling analysis demonstrates that the exponent of the power law distributed fragment mass
does not depend on the impact velocity; the apparent change of the exponent predicted by recent simulations
can be attributed to the shifting cutoff and to the existence of unbreakable discrete units. Our calculations reveal
that the characteristic time scale of the breakup process has a power law dependence on the impact speed and
on the distance from the critical speed in the damaged and fragmented states, respectively. The total amount of
damage is found to have a similar behavior, which is substantially different from the logarithmic dependence on

the impact velocity observed in two dimensions.
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I. INTRODUCTION

Fragmentation (i.e., the sudden disintegration of solids into
smaller pieces) is a ubiquitous process that underlies many
natural phenomena and industrial processes [1]. Energetic
loading giving rise to the breakup of solids is typically exerted
by projectile shooting, explosion, or impact with a hard wall.
Recently, the impact fragmentation of materials has attracted
intensive research since it forms the basis of comminution,
crushing, milling, and grain liberation in industrial processes.
Driven by the scientific importance and industrial needs, the
intensive research of the last two decades revealed that the mass
distribution of fragments showed a power law behavior with
universal exponents. The value of the exponent was mainly
determined by the effective dimensionality of the system [2—5]
and by material behavior such as brittleness and plasticity [6].

Due to the complexity of the breakup process, theoretical
studies were usually based on computer simulations of discrete
element models (DEM) of disordered materials [7,8]. In
the framework of DEM, the sample was represented as an
assembly of cohesive elements making possible a realistic
treatment of materials’ microstructure and of the loading
conditions. Computer simulations of such models proved
to reproduce the experimental findings and revealed the
underlying mechanism of the emergence of universal power
laws: increasing the imparted energy a phase transition took
place from the damaged to the fragmented state, which proved
to be of the second order [9].

In spite of the large amount of experimental and theoret-
ical efforts of the last decades, several questions remained
open on fragmentation phenomena. Although the damage-
fragmentation transition has been confirmed experimentally
[10-12], very little is known about the critical exponents and
about the effect of dimensionality on the phase transition.
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Recent computer simulations of a generic model of impact
fragmentation of solids led to the surprising result that the
exponent of the mass distribution is not universal. It was shown
that a power law distribution appeared at the transition point,
however, the exponent increased with increasing impact ve-
locity in the fragmented regime [13,14]. The result questioned
the universality and the validity of the phase transition nature
of fragmentation phenomena.

To settle these problems, in the present paper, we investigate
the fragmentation of spherical bodies due to impact with a
hard wall focusing on the transition from the damaged to the
fragmented state. We carry out computer simulations at four
different system sizes varying the impact velocity within a
broad range. Based on finite size scaling analysis of the mass
of the largest fragment and of the average fragment mass, we
determine the critical exponents of the damage-fragmentation
transition with good accuracy. Our calculations reveal that the
exponent of mass distribution does not depend on the impact
velocity (i.e., the apparent increase of the exponent can be
removed by taking into account that the cutoff mass diverges
when approaching the critical point from above). Starting from
the scaling analysis of the rate of damaging we derive the
dependence of the total damage on the impact velocity: In spite
of the logarithmic dependence predicted by DEM simulations
in two dimensions, very interestingly we find a power law
behavior in three dimensions. The characteristic time scale of
the breakup process is found to decrease as a power law of
the impact velocity similarly to the behavior of the duration
of Hertz-type contacts. However, in the fragmented regime a
power law is obtained as a function of the distance from the
critical point. Besides their theoretical importance, the scaling
relations can also be exploited in engineering design.

II. DISCRETE ELEMENT MODEL OF IMPACT

We carry out molecular dynamics simulations of the impact
of a spherical solid body with a hard wall using a DEM of
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heterogeneous brittle materials in three dimensions. The model
was introduced by the authors of Ref. [15] as an extension of
two-dimensional DEMs using beam elements. In the model,
the spherical sample is represented as a random packing of
spheres with a bimodal distribution. The particles interact via
the Hertz contact law when they are pressed against each other.
Cohesive interaction is provided by beams which connect
the particles along the edges of a Delaunay triangulation of
the initial particle positions. In three dimensions the total
deformation of a beam is calculated by the superposition
of elongation, torsion, as well as bending and shearing in
two different planes [15]. The effect of the hard wall during
the impact process is captured in such a way that for those
particles which overlap with the wall a restoring force is
introduced proportional to the overlap distance. The time
evolution of the system is determined by molecular dynamics
simulations solving the equation of motion of the spherical
particles [15—-17]. During the simulations, the beams break
when they get overstressed according to a physical breaking
criterion [7,8,15]

2
(i) " max(|6;|,|6;]) > 0
Eth Orn

where ¢ denotes the longitudinal strain, furthermore, ®; and
©; are the generalized bending angles at the two beam ends.
The two terms of Eq. (1) characterize the contribution of
the stretching and bending failure modes of a beam: The
increase of a threshold value decreases the importance of the
corresponding breaking mode. The parameters of the model
were set in Ref. [15] after carefully testing the cracking
mechanisms of spherical solid bodies. In our simulations both
breaking thresholds were set to constant values e, = 0.03 and
Oy = 3 degrees which implies that only structural disorder is
present in the sample.

We carried out computer simulations of the impact pro-
cess varying the initial velocity vy in a broad range for
four different system sizes R. To keep the problem nu-
merically tractable, we considered samples of fixed radius
R =3.5,5.63,7.03,8.12 mm where the average radius of
single particles is 7 = 0.5 mm. The particle number fluc-
tuates in the samples around the average values (N) =
1763,7337,14 285,22 013. In the simulations the time evo-
lution of the system is stopped when there is no beam
breaking during 1000 time steps. Fragments are identified in
the final state as sets of particles connected by the surviving
beams. Further details of the model construction together with
the parameter settings and test simulations can be found in
Ref. [15].

For impact fragmentation of spheres it has been shown
in Ref. [15] that our DEM reproduces the experimentally
observed dynamics of crack formation and breakup scenarios
to a good accuracy. In the present paper we focus on the
transition from the damaged to the fragmented state in impact-
induced breakup as the impact velocity is gradually increased.
In the limit of very low impact velocities no beam breaking
occurs (i.e., the sample gets deformed and rebounds from the
wall without any damage). Simulations have shown that in
this case the impact process can be described by the Hertz
theory [18,19]. The main characteristic quantities of the Hertz

PHYSICAL REVIEW E 86, 016113 (2012)

<1‘/j max / *‘7\'[2‘01‘> RJ/ v

FIG. 1. (Color online) Inset: Mass of the largest fragment nor-
malized by the total mass of the sample (M.« / M) as a function of
the impact velocity v, for different system sizes. Main panel: Scaling
collapse obtained by rescaling the two axes according to Eq. (4).

impact obey simple power law scaling with the impact velocity.

The behavior of the maximum deformation 4 ~ vg/ 5

the duration of contact T ~ v, 13 is reproduced by our DEM
simulations with a good precision.

and of

III. DAMAGE-FRAGMENTATION TRANSITION

Increasing the impact velocity the sample gets damaged
and gradually breaks into pieces. The degree of breakup can be
quantitatively characterized by the mass of the largest fragment
Max compared to the total mass of the body My [9,20].
Simulations reveal that, depending on the impact velocity,
the final outcomes of the breakup process of the spherical
sample fall into two substantially different classes: At low
impact velocities some cracks appear, however, the sample
retains its integrity. Broken bonds form cracks which initiate
from the contact surface with the hard wall, however, they get
arrested without creating fragments or only some very small
pieces are chopped out of the sample. Cracks are concentrated
inside a conical volume (Hertz cone [18,19]), whose base is
the contact circle with the hard wall. Consequently, in the
final state of the process only small fragments comprising
only a few spheres can be observed [15]. This low velocity
regime is the damage phase of the system, where the mass
of the largest fragment is practically equal to the total mass
of the sample Mp,x/ Mo =~ 1. To achieve complete breakup
the impact velocity has to exceed a threshold value v, above
which even the largest fragment becomes significantly smaller
than the original body M./ M, < 1. This first happens
when meridional cracks starting from the Hertz cone reach
the surface of the sample opposite to the impact site [15].
Further increasing vy, segmentation cracks are formed between
meridional cracks further reducing the size of fragments [15].
The inset of Fig. 1 presents the sample average of the fraction
of the largest fragment (M.« / M) as a function of the impact
velocity for the four different system sizes R considered. [The
scaling exponents used in the main panel of the figure are those
extracted later in Egs. (3) and (4).] It can be observed that the
curves are monotonically decreasing and exhibit a curvature
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FIG. 2. (Color online) Inset: Average fragment mass as a function
of the impact velocity for different system sizes. Main panel:
Rescaling m,, and the impact velocity vy by an appropriate power of
R, the curves corresponding to different system sizes collapse on a
master curve.

change at v.(R), which can be identified as the transition point
from the damaged to the fragmented regime [9,20]. Note that
with increasing system size R the transition gets sharper and
the transition point shifts to lower values as typically observed
for continuous phase transitions. It has been shown by the
authors of Ref. [9] that the strength of the largest fragment
(Mimax/Myo) can be considered to be the order parameter of
the transition.

The damage-fragmentation transition becomes more trans-
parent by investigating the average fragment mass m,y. It is
defined as the sample average (denoted by (-)) of the ratio of
the second M, and first M; moments of fragment masses

May = <M2/M1> 2)

Here the kth moment M, of the fragment mass distribution is
defined in a single fragmentation event of n fragments with
masses m; (i =1,...,n) as My =Y /_ mk— MK . Note
that the contribution of the largest fragment of mass M,
is subtracted from M. Finally, m,, is obtained by averaging
the ratio M, /M, over a large number of simulations [9,21,22].
It can be observed in the inset of Fig. 2 that m,, has a peak
which gets sharper with increasing R. [The scaling exponents
used in the main panel of the figure are those extracted later
in Egs. (3) and (5).] We determined the finite size dependent
effective critical point v.(R) of the system as the position of the
maximum of m,, which coincides with the point of curvature
change of (Mp./My) with a reasonable precision. The
critical velocities are v.(R;) = 146 m/s, v.(Ry) = 131 m/s,
v.(R3) = 126 m/s, and v.(R4) = 123.5 m/s. Assuming the
scaling form for the critical velocity

Ve(R) = vo(00) + AR, 3)

in terms of the system size [21,22] we determined the critical
velocity of the infinite system v.(oc0) and the correlation length
exponent v of the transition. In Fig. 3 a power law is obtained
with an excellent quality by setting v.(co) = 107 m/s in
Eq. (3).
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FIG. 3. (Color online) Difference between the critical value of
the impact velocity of finite and infinite systems v.(R) — v.(00) as
a function of the system size R. The value of v.(co) was tuned to
obtain the best quality power law according to Eq. (3).

The value of the exponent v was obtained by fitting v =
1.00 £ 0.05. The result implies that in the limit of very large
system sizes the critical velocity of the damage-fragmentation
transition converges to v.(oco). Starting from the finite size
scaling of the critical velocity Eq. (3) we can analyze the
size dependence of the normalized mass of the largest
fragment. Since (Mp.x/Mio) 1s the order parameter of the
damage-fragmentation transition, it is reasonable to assume the
scaling

< Mmax
M tot

>(vo,R) = R PP FO{vg — v (c0)]RY"), (4

where f is the order parameter critical exponent and F
denotes the scaling function. It can be observed in Fig. 1 that
rescaling the impact velocity vy and (Myax/Mior) according
to Eq. (4) the curves obtained at different system sizes can be
collapsed with reasonable accuracy. In Fig. 1 only the value
of B is tuned providing 8 = 0.25 £ 0.03, while for v and
v.(00) the above values were inserted. It can also be seen in
the figure that the data collapse has the best quality in the
vicinity of the transition point as it is expected.

The average fragment mass with the above definition
characterizes the fluctuations of fragment masses [9,21],
hence, the finite size scaling analysis of m,, reveals the y
exponent of the damage-fragmentation transition. Assum-
ing that the system has a continuous phase transition, the
scaling

May = R FP{[vg — v(c0)]R"}, (5)

should hold [21,22], where F® denotes the scaling function.
Figure 2 illustrates the good quality data collapse of the m,y
curves, which was obtained by inserting the above value
of v and v.(0co0) varying y as the only free parameter of
the functional form Eq. (5). The best collapse was obtained
with the exponent y = 0.10 = 0.02. For consistency, we also
checked for the largest system size the validity of the behavior
Mgy ~ |vg — v(R)| ™7, which was fulfilled with the same y
within the error bars. It has to be emphasized that, strictly
speaking, the finite size scaling laws hold in the limit of large
system sizes. In Figs. 1 and 2 we intensionally keep the curves
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of the smallest system R = 3.5 to show that with increasing
system size R the quality of collapse rapidly improves.

IV. FRAGMENT MASS DISTRIBUTION

The most important characteristic quantity of the fragment-
ing system is the mass distribution of fragments p(m). It has
been shown in experiments that p(m) exhibits a power law
behavior

p(m) ~m™* (6)

for small masses m << My at and above the critical point v,
[5,10,23-26]. The most striking observation on fragmentation
phenomena is the universality of the exponent t of the mass
distribution: Fragmentation experiments on a large variety of
heterogeneous materials have shown that the value of T does
not depend on materials’ microstructure, on the way the energy
is imparted, and on the relevant length scale [10,27-30]. It is
mainly determined by the dimensionality of the system [2.4,
9] and by the mechanical response (brittle or ductile) of the
sample [6]. DEM simulations of fragmentation processes have
been able to reproduce the power law functional form [2-6,
15] with various types of cohesive interactions from Lennard-
Jones solids [14,31-33] through spring lattices [30,33] to beam
networks [4,8,15]. The concept of universality motivated the
development of stochastic models of fragmentation [34,35],
among which the crack branching-merging scenario proved
to be very successful [36,37]. Recent DEM simulations of a
generic model of brittle solids have reported a surprising result:
The fragment mass exponent 7 of a two-dimensional disk
impacted against a hard wall was found to slowly increase with
the imparted energy Ey. Based on the numerical analysis of
the simulation data a logarithmic functional form was deduced
T ~ In E, above the critical point [13,14].

The universality of the mass distribution exponent t is a
crucial problem not solely from the theoretical point of view,
butitis also of practical importance in engineering design (e.g.,
when estimating the energy consumption or loading conditions
in ore processing to achieve a desired size reduction). To settle
the problem, we performed a large number of simulations for
impact velocities above v, and carried out a scaling analysis of
the mass distributions p(m) for our largest system. In Ref. [15]
it has been shown that for impact velocities slightly above
v, the fragment mass distribution of impacting spheres is
composed of two parts: For small fragment masses a power
law distribution is obtained with an exponential cutoff

pm) ~m~Te "™, (7)

while for the large ones p(m) has a maximum which can be
fitted with a Weibull or log-normal form. Here m denotes the
characteristic fragment mass. These outcomes are in agree-
ment with the generic functional form proposed by the authors
of Ref. [4] based on the stochastic nucleation of the first major
cracks and the branching-merging scenario of the smaller ones.
We selected impact velocities above v, where the disturbing
effect of the surviving large pieces can be avoided. The inset
of Fig. 4 presents mass distributions at three different impact
velocities. It can be observed that they can qualitatively be
described by the functional form of Eq. (7). Note that as the im-
pact velocity vy approaches v, from above the cutoff of the dis-
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FIG. 4. (Color online) Inset: Mass distribution of fragments at

different impact velocities for the largest system considered. Main

panel: Rescaling the two axes with appropriate powers of the average
fragment mass a high quality data collapse is obtained.

tributions moves towards larger values. To check whether the
exponent 7 of the distribution depends on vy, we calculated the
average fragment mass Eq. (2) and rescaled p(m) with some
powers of m,, along both axes. Figure 4 demonstrates that
a high quality data collapse can be obtained with the scaling
exponentsk = 1.15 £ 0.02and § = 2.15 % 0.02. The collapse
implies that p(m,vo)mgV is only the function of m/my,, con-
sequently the fragment mass distributions p(m,vy) obtained at
different impact velocities vy must follow the scaling law

p(m,vy) = m;f@(m/mgv). )

Here the dependence on the impact velocity vy is contained
in m,y. Since k & 1, the scaling function ® in Eq. (8) is
consistent with Eq. (7), widely used in the literature. In Fig. 4
the bold black line is fitted to the scaling function using Eq. (7)
from which the value of t can be determined accurately as
T = 1.8 £ 0.05. Deviations from the scaling function occur
solely in the regime of small fragment masses due to the
existence of unbreakable units (discrete elements) of DEM. It
follows from the condition of normalization of the distributions
that the three exponents 7, §, and « must fulfill the relation

§ = tk. (€))

Substituting the numerical values, it can be seen that relation
Eq. (9) holds with a good precision. We note that the scaling
law Eq. (8) in terms of the average fragment mass is expected
to hold not only in the vicinity of the critical point, but
also inside the fragmented regime since it only assumes the
homogeneity of the mass distribution function [21].

It has to be emphasized that looking at the unscaled
distributions in the main panel of Fig. 4 one may guess a
spurious increase of the exponent of the power law regime.
Our results demonstrate that this occurs due to the decrease of
the cutoff of the distributions with increasing impact velocity,
which can be removed by appropriate rescaling. Power law
exponents should be numerically extracted by fitting the
scaling function together with the cutoff. The importance of
this careful evaluation of data has been demonstrated in other
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FIG. 5. (Color online) Time evolution of the breaking rate d D /dt
for different values of the impact velocity below v.. Rescaling the two
axes with appropriate powers of vy excellent data collapse is obtained.
The inset presents the original curves before rescaling.

fields of physics as well, both for experiments [38,39] and for
computer simulations [40].

V. TIME EVOLUTION OF DAMAGE

The above analysis of the phase transition of fragmentation
required the investigation of the final state of the breakup
process. On the microlevel, cracks are generated by breaking
beams such that fragments form when cracks either completely
surround a set of particles connected by surviving beams, or
cracks span from surface to surface of the body. The total
amount of broken beams and their spatial arrangement (i.e.,
crack structure) strongly depend on the impact velocity. The
cracking mechanism leading to the formation of meridional
and segmentation cracks of spherical bodies has been analyzed
in detail in Ref. [15]. Now we focus on the time evolution of
damage which is quantified by the fraction of beams D(¢) =
Ny(t)/ N thathave been broken up to time ¢. Here N, (7) denotes
the number of broken beams at time 7 and N is the total number
of beams in the sample. Of course, D(¢) is a monotonically
increasing function [0 < D(¢) < 1] whose derivative d D /dt
provides the rate of beam breaking characterizing the breaking
activity during the fragmentation process.

Breaking rate functions d D /dt are presented in the inset
of Fig. 5 for the largest system size R4 = 8.12 mm at four
different impact velocities v in the damage phase vy < v,. It
can be observed in the figure that the increase of the impact
velocity vy has a dramatic effect on the damage rate: d D /dt
has a maximum which becomes sharper and its position #,,
shifts towards lower times with increasing vo. Simulations
showed that at the peak time #,, the deformation of the contact
zone of the sphere with the hard wall reaches its maximum.
It is important to emphasize that the breaking rate obtained at
different impact velocities can be collapsed on a master curve
by rescaling the two axes with some powers of vy. In Fig. 5
a high quality data collapse is obtained with the exponents
&, =4.7+£0.2 and n; = 0.25 & 0.05. The result implies that
dD/dt follows the scaling law

Dt
—{#@2=@woﬁy (10)

where W denotes the scaling function.

PHYSICAL REVIEW E 86, 016113 (2012)

0.004
0.001 +2 0.003
s 30.002
T 3 0.001
IS 0. 15003000 ©
= 0.0005 t 1
~ —o— o =110
%;‘5 G- vy = 120
—a- gy = 130
- vy = 140

5000 4000 6000
t(vg — ve)

FIG. 6. (Color online) Time evolution of the breaking rate d D /dt
for different impact velocities above v.. High quality data collapse
can be obtained by rescaling the two axes with powers of vy — v... The
peak A and the inflexion point B of d D /dt mark the configurations
where unloading sets in, and the sample rebounds from the wall,
respectively. The inset presents the original curves before rescaling.

Above the critical point vy > v, in the fragmented phase,
the damage rate reaches much higher values (i.e., it can be
observed in the inset of Fig. 6 that the functional form of
dD/dt is qualitatively the same as in the damage phase,
however, with an order of magnitude larger values than in
Fig. 5). Simulations revealed that the peak time 7,, is the point
at which the compressive regime of the collision ends and
unloading of the contact sets in. Along the decreasing branch
of dD/dt an inflexion point emerges at the time when all
fragments rebound from the hard wall (see Fig. 6). It is shown
in Fig. 6 that the breaking rate functions obtained at different
impact velocities can be again collapsed on a master curve by
arescaling transformation. A careful analysis of the simulated
data shows that the scaling structure of dD/dt is the same
Eq. (10) as in the damage phase, however, when replacing
the impact velocity vy by the distance from the critical point
vo — V.. The scaling exponents providing the best collapse in
Fig. 6 were determined numerically as & = 0.33 £ 0.05 and
ng=0.114+0.02.

A very important outcome of our scaling analysis is that
the fragmentation process gets faster with increasing vy, that
is, the characteristic time scale 7. of the process follows

te~ v, ™, forvy <, (11)

te ~ (o —v.) ", forvy > v (12)
It is interesting to note that the functional form of Eqs. (11)
and (12) is similar to the behavior of the contact time of the
elastic collision of spherical bodies with a hard plate [18,19].
In the damage phase n, falls close to the exponent of Hertz
contacts ny =~ n, = 0.2, however, in the fragmented regime
the strong energy dissipation gives rise to a slower decrease of
t. characterized by a lower exponent ny < n;,.

The total amount of damage Dy accumulated until the end
of the fragmentation process can be obtained by integrating
the damage rate d D /dt(t,vp) over time from O to infinity

Dior( )<—L/aaffza )di (13)
tot V0) = 0 dt Vo .

016113-5



TIMAR, KUN, CARMONA, AND HERRMANN

vo

FIG. 7. (Color online) The total amount of damage Dy, as a
function of the impact velocity. The red (continuous) and blue
(dotted-dashed) lines correspond to the scaling laws Eqs. (11) and (12)
of the damage and fragmented states, respectively. The vertical arrow
indicates the critical impact velocity v.. Inset: Dy as a function of
vy — v, Where v, = 98 was used. A good quality power law behavior
is obtained. The slope of the straight line is n, = 0.29.

Substituting the scaling form Eq. (10) it follows

Do (vo) = vg/ W (vgt)dt, (14)
0

where the integral can be performed by substituting ¢ by x =
vgt. The calculations yield that the total amount of damage
Dy, has a power law dependence on vy in the damage phase

Dy ~ vS‘ s (15)
while in the fragmentation phase a critical behavior is obtained
Dtol ~ (UO - Uc)a- (16)

The critical exponent « of the total damage is determined by
the two scaling exponents of the damage rate

a=£&-n, (17)

which have different values g = &; — ng =4.45 and oy =
&y —ny = 0.22 in the damage and fragmented states, respec-
tively. The behavior of Dy is illustrated in Fig. 7, where we
also fitted the functions according to Egs. (15) and (16) in the
damage and fragmented regimes, respectively. The best fits
were obtained with the exponents 4.5 and 0.29, which agree
very well with the above predictions. The high quality of the
results presented in Fig. 7 demonstrates the consistency of our
scaling analysis.

V1. DISCUSSION

We investigated the fragmentation of spherical solid bodies
due to impact with a hard wall using a discrete element
model of heterogeneous brittle materials in three dimensions.
Depending on the impact velocity, the final outcome of
the breakup process is classified as damage when most
particles remain in one piece. Fragmentation occurs when a
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considerable size reduction is achieved (i.e., when the largest
fragment becomes significantly smaller than the original
size of the body). We focused on the damage-fragmentation
transition which emerges at a well defined critical impact
velocity.

Simulations were performed at four different system sizes
varying the impact velocity within a broad range. To determine
the critical exponents of the transition, we carried out a finite
size scaling analysis of the simulated data. The critical point
of the transition from the damage to the fragmentation phase
of finite size systems was identified at the impact velocity
where the average fragment mass takes a maximum value.
Assuming the scaling structure characteristic for continuous
phase transitions near a critical point, high quality data collapse
was obtained for the mass of the largest fragment normalized
by the total mass and for the average fragment mass. The
scaling analysis proved the validity of the phase transition
picture of impact fragmentation phenomena and yielded the
critical exponents of the damage-fragmentation transition with
a good accuracy.

The universality of the exponent of the fragment mass distri-
bution is a crucial feature of fragmentation phenomena [2-6,9].
For impact-induced breakup a large amount of experiments on
heterogeneous brittle materials confirmed that the exponent is
independent of the imparted energy in the fragmented phase,
however, it can vary according to the geometry (aspect ratio)
of the sample since it affects the crack structure. Recent
simulations of a generic model of fragmentation questioned the
universality, predicting a logarithmic increase of the exponent
with the imparted energy [13,14]. To resolve this problem,
we carefully analyzed the scaling behavior of fragment mass
distributions obtained at different impact velocities. Although
single distributions might suggest a spurious increase of the
exponent, the high quality data collapse obtained by rescaling
the distributions with the average fragment mass reveals
universality, at least in the range of impact velocities where the
mass distribution is unimodal, comprising a power law with an
exponential cutoff. Our analysis showed that, although DEM
simulations can be very realistic, their serious limitation is the
relatively small system size and the existence of unbreakable
elementary units. It has the consequence that power laws
span only over a limited range so that the apparent change
of the mass distribution exponent may even be caused by
the shifting cutoff of the distribution and by the unrealistic
increase of the fraction of powder accumulating in the form of
unbreakable single particles. For the accurate determination of
the exponents of power law distributed fragment masses it is
recommended first to scale the data and then to fit the scaling
function together with its cutoff.

To characterize the time evolution of the breakup process,
we analyzed the scaling behavior of damage rate functions
dD/dt obtained at different impact velocities. Based on the
scaling structure of dD/dt, we showed that the total amount
of damage increases as a power law of the impact velocity in
the damage phase, however, in the fragmented regime a power
law is obtained as a function of the distance from the critical
point. It is important to emphasize that this functional behavior
is the consequence of the dimensionality of the system: In
two dimensions DEM simulations provided a logarithmic
dependence of the total damage with the impact velocity
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[13,14,20]. Our analysis revealed that in three dimensions the
evolution of damage is characterized by power laws due to the
Hertz type contact of the spherical body with the hard plate.

In the damaged and fragmented regimes the characteristic
time scale of the breakup process was found to decrease
as a power law of the impact velocity and of the distance
from the critical point, respectively. When the sample retains
its integrity (damage) the scaling exponent falls close to
the exponent characterizing the velocity dependence of the
duration of Hertz contacts. However, when fragmentation is
achieved the exponent becomes significantly smaller (i.e., its
value is nearly half of the Hertz exponent [18,19]).
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