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Abstract. We present a theoretical study of the creep rupture of heterogeneous materials based on a 
fiber bundle model which provides a direct connection between the microscopic fracture 
mechanisms and the macroscopic time evolution. In the model, material elements fail either due to 
immediate breaking or undergo a damage accumulating ageing process. We found that on the 
micro-level the competition of the two failure modes gives rise to bursts of breakings with power 
law distributed size and waiting time between events. We demonstrate that approaching 
macroscopic failure the system accelerates which can be fully described as a non-homogeneous 
Poissonian process for long range load sharing, however, when localization occurs breaking events 
get clustered. Bursts are composed of sub-avalanches which lead to a non-trivial temporal shape 
comparable to measurements. The pulse shape proved to be sensitive to the range of load sharing.  

Introduction 

Sub-critical fracture occurring under constant or periodic external loads represents an interesting 
scientific problem with a broad spectrum of technological applications. Creep rupture processes are 
often responsible for the failure of engineering constructions and they are at the core of natural 
catastrophes such as snow and stone avalanches, landslides, and earthquakes. To prevent 
catastrophic failure, monitoring techniques based on the acoustic emissions of nucleating and 
propagating cracks are essential. Recently, laboratory experiments and field measurements on 
engineering constructions have revealed that crackling events are characterized by power law 
distributions of burst sizes (energies) and of the waiting times between consecutive events [1]. The 
accelerating dynamics of rupture was found to give rise to time-to-failure power laws of the 
cumulative dissipated energy and of the rates of acoustic events. Here we use a fiber bundle model 
to investigate the statistics and time evolution of the stochastic bursting activity accompanying the 
process of creep rupture of heterogeneous materials. We also analyze how single acoustic bursts 
evolve and determine features which may be exploited for materials testing methods. 

Fiber bundle Model of Damage Enhanced Creep Rupture 

Our study is based on a fiber bundle model (FBM) of damage enhanced creep which was introduced 
recently [2,3]. A parallel bundle of fibers is considered which is organized on a square lattice. The 
fibers exhibit a linearly elastic behavior with the same Young modulus E and fail abruptly when the 
load on them σ exceeds a critical value thσ . The Young modulus of fibers is fixed 1E = , while the 

failure threshold thσ  is a random variable with a probability density function )(g thσ . In order to 

capture the aging of material elements subject to long time loading, we assume that intact fibers 
accumulate damage in the form of micro-cracks. The rate of damage accumulation c∆ of a fiber is 
assumed as dt)t(a)t(c γσ=∆ , where the exponent γ controls the time scale of damage accumulation, 
while a is a scale parameter [2]. The fibers can only tolerate a limited amount of damage and break 
when their total damage )t(c exceeds a threshold value thc , which is again a random variable with a 

probability density function )c(f th . Damage accumulation is the mechanism which introduces time 
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in the model and leads to macroscopic failure of the bundle at any finite loads. Under a constant 
external load 0σ , after each failure event the load of the broken fiber has to be overtaken by the 

remaining intact ones. In the present study we considered both equal and localized load sharing. 
Under equal load sharing (ELS) all intact fibers get the same amount of load from the broken fiber 
irrespective of their distance. Hence, in this case the stress field remains homogeneous during the 
entire breaking process. Localized load sharing (LLS) realizes the opposite limit, i.e. we assume 
that the excess load is equally redistributed over the intact nearest neighbors of the failed fiber, 
which leads to high stress concentrations around failed regions. Our model hast two sources of 
disorder: the structural disorder of the material which is represented by the randomness of breaking 
thresholds )N,,1i(c, i

th
i
th …=σ , and the heterogeneous stress field arising due to the short ranged 

load redistribution. Both uniform and Weibull distributions have been considered for the thresholds 
of immediate breaking and for ageing. 

Acceleration towards failure 

The separation of time scales of the slow damage process and of immediate breaking leads to a 
highly complex time evolution in agreement with experiments [2,3]: damaging fibers break slowly 
one-by-one gradually increasing the load on the remaining intact fibers. After a certain number of 
damage breakings the load increment becomes sufficient to induce the immediate breaking of a 
fiber which in turn triggers an entire burst of breakings. As a consequence, the time evolution of 
creep rupture occurs as a series of bursts corresponding to the nucleation and propagation of cracks, 
separated by silent periods of slow damaging. Figure 1(a) presents the time series of breaking 
bursts, i.e. the burst size ∆  as a function of time t is plotted. Strong fluctuations of the burst size ∆  
can be observed, however, its average increases towards failure. The waiting times T between 
bursts show a similar fluctuating behavior in Fig. 1(b) with a general decreasing tendency towards 
macroscopic failure implying the acceleration of the rupture process. Macroscopic failure occurs at 
time tf, which defines the lifetime of the system. 
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Figure 1: (a) Time series of bursts in a bundle of N=100.000 fibers, i.e. the burst size ∆ is plotted as 
a function of time. (b) The waiting time T elapsed between consecutive events of (a). Both 
quantities have strong fluctuations. 
 
In our model bursts of immediate breaking are analogous to acoustic outbreaks of experiments 
which can be recorded by the acoustic emission techniques. The main goal of our study is to 
analyze the statistics of bursts and the time evolution of the burst time series as the system 
approaches macroscopic failure.  
 
To characterize the accelerating evolution of the rupture process we determined the rate of bursts 
n(t) as a function of the time to failure tf-t. The equal load sharing has the consequence that the 
breaking of each fiber contributes to the global acceleration of the system, hence, the rate of 
breaking bursts increases and saturates in the vicinity of global failure. 
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Figure 2: (a) Rate of events as a function of time to failure. The symbols are simulation results, 
while the continuous lines represent fits with Eq. (1). (b) Corresponding waiting time distributions 
(symbols). The continuous lines represent P(T) obtained from the analytic expression of non-
homogeneous Poissonian processes. 

 
It can be observed in Fig. 2(a) that the accelerating rate of events can be described by the Omori 
law well known for earthquakes [4] 

[ ]p
f c/)tt(1

A
)t(n

−+
= ,                                                                                                                  (1) 

where A denotes the saturation rate close to failure, c is the characteristic time scale where 
saturation is reached, and p is the exponent of the power law regime of n(t) in Fig. 2. It is important 
to note that for earthquakes the Omori law Eq. 1 describes the relaxation process following major 
events, however, for creep rupture the accelerating crackling activity towards final failure has a 
similar functional form. The value of the exponent is 1=p  for uniformly distributed breaking 
thresholds, while for the Weibull distribution it proved to depend on the Weibull exponent. The 
temporal occurrence of bursts is controlled by the disorder of breaking thresholds in a gradually 
increasing stress field. It follows that the time series of events can be described as a non-
homogeneous Poissonian process (NHPP) where the average of the Poissonian process is increasing 
according to Eq. 1 [4]. It can be observed in Fig. 2(b) that the probability distribution of waiting 
times P(T) obtained numerically can be fully described analytically by assuming NHPPs. Note that 
in the intermediate regime the waiting time distribution has a power law behavior zT)T(P −∝  with 
the exponent 1z = . When the load sharing is localized around broken fibers we found a qualitatively 
similar behavior, however the value of the Omori exponent p proved to depend on the external load. 

Time evolution of single bursts 

High precision acoustic emission measurements can capture even the evolution of single crackling 
events which can be inferred from the pulse shape of the signal providing valuable information also 
for the assessment of the damage state of construction components. Our model makes it possible to 
analyze the dynamics of single bursts: an avalanche typically starts with the breaking of a single 
fiber. As the load gets redistributed some fibers break again, creating a sub-avalanche. The 
avalanche evolves through sub-avalanches and stops when the remaining fibers can sustain the 
elevated local load. The temporal profile of bursts can be characterized by the size of sub-bursts ∆s 
as a function of the internal time u with the limits Wu0 ≤≤ where the duration W of bursts is 
defined as the number of sub-bursts. Figure 3(a) presents the temporal profile of avalanches of the 
same duration W where a complex stochastic evolution is evidenced. These temporal profiles ∆s (u) 
of the bursts of our model are analogous to the pulse shape of measured acoustic signals. For a 
quantitative characterization we calculated the average profile for fixed durations )W,u(s∆ . In 
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Fig. 3(b) for localized load sharing the average pulses have a parabolic shape but with a right 
handed asymmetry. Increasing the pulse duration W the height of the curves increases but the 
functional form remains the same. Figure 3(c) demonstrates that rescaling )W,u(s∆  with an 

appropriate power α of the pulse duration W the average profiles can be collapsed on a master curve 
as a function of u/W. The good quality collapse implies the scaling form )W/u(fW)W,u(s

α∝∆ , 

where the scaling function reads as β−= )x1(Bx)x(f . The right handed asymmetry has the 
consequence that breaking bursts start slowly, then accelerate and stop suddenly when the crack 
gets pinned by some stronger material regions. When the stress field is homogeneous the pulse 
shape proved to be a symmetric parabola due to the dominance of structural disorder of the material 
during the creep process. Our results demonstrate that the temporal profile of single acoustic 
outbreaks depends on the range of load redistribution. 
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Figure 3: (a) Temporal profile of single bursts of the same duration W=200 as a function of the 
scaled time u/W. (b) Average pulse shape of bursts of different durations W. (c) Scaling collapse of 
average pulse shapes obtained with the exponent 7.0=α . Fit parameters of the scaling function f(x) 
are B=4.6 and 7.0=β . 

Summary 

In this paper we used a fiber bundle model of damage enhanced creep of heterogeneous materials to 
investigate the statistics and evolution of breaking bursts during the process of creep rupture. 
Computer simulations revealed that the accelerating breaking activity can be described by the 
Omori law similar to aftershock sequences following major earthquakes and the evolution of creep 
can be described as a non-homogeneous Poissonian process. The model makes possible to study the 
dynamics of single bursts, as well. We showed that the temporal profile of bursts is analogous to the 
pulse shape of acoustic signals. For localized load sharing a right handed asymmetry of pulse 
shapes was evidenced which shows that bursts start slowly, accelerate and stop suddenly as the 
crack gets pinned. For homogeneous stress fields a symmetric parabolic pulse shape emerges due to 
the dominance of structural disorder. 
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