
PHYSICAL REVIEW E 92, 062402 (2015)

Fractal frontiers of bursts and cracks in a fiber bundle model of creep rupture
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and Departamento de Fisica, Universidade Federal do Ceara, 60451-970 Fortaleza, Ceara, Brazil
(Received 8 October 2015; published 2 December 2015)

We investigate the geometrical structure of breaking bursts generated during the creep rupture of heterogeneous
materials. Using a fiber bundle model with localized load sharing we show that bursts are compact geometrical
objects; however, their external frontiers have a fractal structure which reflects their growth dynamics. The
perimeter fractal dimension of bursts proved to have the universal value 1.25 independent of the external load
and of the amount of disorder in the system. We conjecture that according to their geometrical features, breaking
bursts fall in the universality class of loop-erased self-avoiding random walks with perimeter fractal dimension
5/4 similar to the avalanches of Abelian sand pile models. The fractal dimension of the growing crack front along
which bursts occur proved to increase from 1 to 1.25 as bursts gradually cover the entire front.
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I. INTRODUCTION

The fracture of heterogeneous materials proceeds in bursts
generated by newly nucleating cracks or by intermittent
propagation steps of crack fronts [1–4]. Measuring acoustic
emissions of bursts the fracture process can be decomposed
into a time series of crackling events [5]. The analysis of
the statistics of crackling noise provides valuable insight into
the dynamics of fracture making it also possible to design
methods to forecast the imminent catastrophic failure [6].
Recent investigations have revealed that beyond the time
evolution of crackling time series, the temporal dynamics
of single bursts encodes also interesting information about
the presence and nature of correlations in the underlying
stochastic process [7,8]. Less is known, however, about the
spatial evolution of bursts and their geometrical structure.

Individual bursts of breaking have been observed exper-
imentally during the propagation of a planar crack. In the
experiments of Refs. [2,9] a weak interface between two
sintered plastic plates was created introducing also disorder
in a controlled way by sand blasting the surface of the
plates. The loading and boundary conditions ensured that
a single crack emerged constrained to a plane. Bursts were
identified as sudden local jumps of the front whose spatial and
temporal dynamics could be studied by means of high-speed
imaging. Detailed analysis revealed that bursts are composed
of extended clusters which are nearly compact objects with an
anisotropic shape, i.e., they are elongated along the front. The
scaling exponent of the two side lengths of the bounding box
of clusters was found to be related to the roughness exponent
of the crack front [9].

The experimental findings on the statistical and geometrical
features of bursts could be explained by the crack line model
where the long-range elastic interaction proved to be essential
[10,11]. Another interesting approach to the problem was
presented in Refs. [12–14], where the interface between a
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stiff and a soft solid block was discretized in terms of fibers
on a square lattice. While slowly increasing the external
load, a single growing crack with a straight average profile
was obtained by introducing a gradient for the strength of
fibers. It was shown that when crack propagation is controlled
by gradient percolation the crack frontier is fractal with a
perimeter dimension consistent with the hull exponent 7/4 of
percolation clusters.

Here we present a theoretical investigation of the geomet-
rical structure of breaking bursts driven by the short-range
redistribution of stress. We consider a fiber bundle model
(FBM) of creep rupture where the localized load sharing (LLS)
following the breaking of fibers leads to the emergence of a
single propagating crack. In the model the system evolves
under a constant external load, where sudden bursts are
triggered along a propagating front by slow damaging. The
model is well suited to study single bursts because creep
does not affect the dynamics of breaking avalanches; however,
it allows significantly larger avalanche sizes compared to
fracture processes occurring under a quasistatically increasing
external load in FBMs. We show by means of computer
simulations that due to the short-range interaction, bursts
are fully connected compact geometrical objects with nearly
isotropic shapes. However, the external frontier of a burst
proved to be fractal with a dimension independent of the
load and of the degree of disorder. We argue that avalanches
driven by the strongly localized redistribution of load fall in the
universality class of loop erased self-avoiding random walks
with the perimeter dimension 5/4.

II. BURSTS IN A FIBER BUNDLE MODEL
OF CREEP RUPTURE

To investigate the geometry of bursts we use a fiber bundle
model which has been introduced recently for the creep rupture
of heterogeneous materials [15–17]. The sample is represented
by a parallel set of fibers which are organized on a square lattice
of side length L. The fibers have linearly elastic behavior with a
constant Young modulus E. Subjecting the bundle to a constant
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load σ0 below the fracture strength σc of the system, the fibers
break due to two physical mechanisms: immediate breaking
occurs when the local load σi on fibers exceeds their fracture
strength σ i

th, i = 1, . . . ,N , where N = L2 is the number
of fibers. Under a subcritical load σ0 < σc this breaking
mechanism would lead to a partially failed configuration with
an infinite lifetime. Time dependence arises such that those
fibers, which remained intact under a given load, undergo an
aging process accumulating damage c(t). We assume that the
damage accumulation �ci per time step �t has a power-law
dependence on the local load

�ci = aσ
γ

i �t, (1)

where a is a constant and the exponent γ controls the
characteristic time scale of the aging process with 0 � γ <

+∞. The total amount of damage ci(t) accumulated up to time
t can be obtained by integrating over the entire loading history
of fibers ci(t) = a

∫ t

0 σi(t ′)γ dt ′. Fibers can sustain only a finite
amount of damage so that when ci(t) exceeds the local damage
threshold ci

th the fiber breaks. After each breaking event the
load of the failed fiber gets redistributed over the remaining
intact ones. We assume localized load sharing, i.e., after failure
events the load of broken fibers is equally redistributed over
their intact nearest neighbors on the lattice. When a fiber
without intact nearest neighbors breaks, the extension of the
neighborhood is gradually increased in steps of one lattice site,
until the neighborhood contains at least one intact fiber. Here
such situation mainly occurs inside the last, catastrophic burst
which does not affect the statistics of the data.

Due to the wide separation of the characteristic time scales
between the slow damage process and immediate breaking
a highly complex time evolution emerges: damage breaking
events gradually increase the load on the intact fibers in their
vicinity which in turn can trigger sudden bursts of immediate
breaking [16,18]. Eventually, the time evolution of creep
rupture sets in as a series of sudden bursts separated by quiet
periods of slow damaging.

Heterogeneity has two sources in the model, i.e., structural
disorder of materials is represented by the randomness of
breaking thresholds σ th

i ,cth
i , i = 1, . . . ,N of the two break-

ing modes, while additional disorder is induced by the
heterogeneous stress field generated by the short-ranged
load redistribution around failed regions. For both threshold
values we assume uniform distributions over an interval
[1 − δx,1 + δx], where x stands for cth and σth. Tuning the
width of the distributions δx one can control the amount
of threshold disorder in the system. To promote the effect
of stress concentration on the overall evolution of cracks a
small amount of disorder is considered for damage δcth = 0.2
with the exponent γ = 5. Simulations were carried out on
a square lattice of linear size L = 401 varying the amount
of threshold disorder δσth of immediate breaking in the range
0.2 � δσth � 0.5. The model has been successfully applied to
describe the time evolution of damage-induced creep rupture
[15,18,19], the statistics of crackling bursts [16,17,20], and
even the average temporal profile of bursts [8]. In the present
study we focus on the geometrical features of bursts and of the
crack front.

FIG. 1. (Color online) Evolution of a single crack until macro-
scopic failure of the system at the external load σ0/σc = 0.01. The
crack starts at the top left corner with a large amount of damage
breaking (green area). Damage sequences trigger bursts (spots with
randomly assigned colors) which occur at the propagating crack front.
The bold black lines highlight the position of the crack front at several
times during the growth process. A magnified view of a small portion
of the crack in the black square is presented where the burst of light
blue color (with a cross in the middle) was initiated by the damage
breaking in the white square.

III. STRUCTURE OF SINGLE BURSTS

The low damage disorder and localized load sharing ensure
that at any subcritical external load a single growing crack
emerges which gradually evolves through bursts leading to
global failure of the system in a finite time. Figure 1 presents
a representative example of a growing crack where individual
avalanches of immediate breakings can also be distinguished.
It can be seen that early stages of the crack growth are
dominated by damage-induced breaking of fibers indicated
by the large green area. However, as the crack reaches larger
sizes the high load accumulated along the front leads to
triggering larger and larger bursts (spots of randomly assigned
color). Bursts are characterized by their size � which is the
number of fibers failing in the cascade of immediate breakings.
Bursts are always induced by damage sequences; however, in
later stages of the evolution a few or even a single damage
breaking can be sufficient to trigger large bursts. The green dots
scattered along the perimeter of extended spots of other colors
correspond to these damage sequences in the figure. Note that
the crack propagation does not have a preferred direction,
since no gradient is imposed on stress, strain, or strength of
fibers. Hence, the average front position does not follow a
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FIG. 2. (Color online) (a) Definition of the bounding box of a
burst. The burst perimeter, highlighted by a bold black line, is formed
by those sites of the broken cluster which have less then four broken
neighbors. (b) Longer side of the bounding box a as a function of the
shorter one b in a log-log plot.

straight line, instead it gets curved as the crack reaches larger
sizes.

It can be observed in Fig. 1 that from a geometrical point of
view single bursts are compact objects, i.e., the localized load
sharing ensures that they are dense and they practically do not
contain islands of intact fibers. However, due to the interplay of
the disordered strength and of the heterogeneous stress field,
bursts have a complex external frontier. To characterize the
overall geometry of bursts we determined the eigenvectors �e1,
�e2 of the tensor of inertia of single bursts. Then we constructed
the bounding box of bursts as the rectangle along the vectors
�e1, �e2 fully surrounding the cluster as it is illustrated in Fig. 2(a)
where the longer and shorter edges are denoted by a and b,
respectively. For the quantitative characterization of the shape
of bursts we evaluated the average length of the longer edge 〈a〉
as a function of the shorter one b which is presented in Fig. 2(b)
for three different load values σ0/σc. A power-law relation of
slope very close to unity is obtained showing that the side
lengths are simply proportional to each other and the aspect
ratio a/b does not depend on the burst size �. When long-range
elastic interaction is taken into account bursts get elongated
along the front resulting in anisotropic shapes [11,13,14].

Based on the nearly isotropic shape, we determined the
radius of gyration Rg of bursts

R2
g = 1

N

�∑

i=1

(�ri − �rc)2, (2)

where �ri (i = 1, . . . ,N) denotes the position of broken fibers
of the burst and �rc is the center of mass of the cluster. The value
of Rg was averaged over bursts of equal size � accumulating
all events up to failure. In Fig. 3(a) the burst size �, i.e., the
area of the cluster of broken fibers, is plotted as a function of
Rg where a power-law functional form is obtained

� ∼ RD
g . (3)

The value of the exponent is D ≈ 2 which shows the high
degree of compactness of bursts. Note that the statistics of the
data is mainly determined by the size distribution of bursts.
Recently, we have shown that the size of bursts � is power-
law distributed with an exponential cutoff controlled by the
external load [8,16]. Fluctuations are kept low in the figures by
simulating an ensemble of 10 000 samples for each parameter
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FIG. 3. (Color online) (a) Burst size � as a function of the radius
of gyration Rg for three values of the external load. (b) Perimeter of
bursts as a function of their area �.

set. The �(Rg) curves obtained at different loads σ0 fall on top
of each other, practically the only effect of σ0 is that it controls
the upper cutoff of � since at lower loads smaller bursts are
triggered [8,17].

The most remarkable feature of avalanches is that they have
a tortuous frontiers composed of a large number of valleys
and hills (see Fig. 1 and Fig. 2). The structure of the burst
perimeter is determined by the interplay of the disorder of
the failure thresholds σth and of the stress field during the
growth of the avalanche. The avalanche usually starts from a
single breaking fiber. As the load gets redistributed some of
the surrounding intact fibers may exceed their failure threshold
and break, leading to an expansion of the burst. Bursts proceed
through such subsequent breaking and load redistribution steps
until all intact fibers along the burst frontier can sustain the
elevated load. For a quantitative assessment we determined
the number of perimeter sites Lp of each burst as a function of
the burst size �. On the square lattice those broken fibers are
identified as perimeter sites which have less than four broken
neighbors in the same cluster. Inside of the bursts a very small
amount of intact fibers may remain isolated, they are removed
before perimeter identification. In Fig. 2(a) the perimeter is
highlighted by a bold black line while the bulk of the cluster
is red.

The perimeter length Lp averaged over all bursts of a fixed
size � is presented in Fig. 3(b) as a function of �. In the
regime of large burst sizes a power law is evidenced

Lp ∼ �ξ, (4)

where the value of the exponent ξ was obtained as ξ =
0.625 ± 0.015. This feature implies that the avalanche frontier
is a fractal with fractal dimension Df = ξD = 1.25 ± 0.03,
where D = 2 was substituted. It is important to emphasize that
the fractal dimension Df proved to be universal, i.e., it depends
on neither the external load σ0 nor any details of damage
accumulation such as γ , as long as single crack propagation
is ensured in a heterogeneous environment. The only role of
the damage mechanism is that fibers breaking due to damage
initiate the bursts. Once the burst has started it is driven by the
gradual redistribution of load. Figure 4 presents the perimeter
length of avalanches as a function of the radius of gyration
for several different values of the width δσth of the threshold
distribution of immediate breaking. It can be observed that the
curves fall on top of each other, which indicates that the amount
of disorder does not have a noticeable effect until its value is
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FIG. 4. (Color online) Perimeter length Lp of bursts as a function
of the radius of gyration Rg for four different amounts of threshold
disorder δσth . All the curves fall on top of each other.

sufficiently high. The structure of the external frontier of bursts
emerges as an outcome of the interplay of the short-range stress
redistribution and of the strength disorder of fibers.

It is interesting to note that avalanches of other types of
systems with short-range interaction show a striking similarity
to the bursts of our LLS FBM. The Abelian sandpile model
(ASM) is a paradigmatic model of self-organized criticality
[21,22] where topling (overstressed) lattice sites relax by
redistributing sand grains over their local neighborhood.
Majumdar showed that the frontiers of avalanches driven by
short-range redistribution in ASM can exactly be mapped
to loop erased random walks (LERW) in two dimensions,
and determined their fractal dimension exactly Df = 5/4
[21]. Based on the growth dynamics, geometrical features,
and robustness of the fractal dimension of burst perimeters
we conjecture that breaking avalanches of FBMs fall in the
universality class of LERWs similar to avalanches of granular
piles [21].

IV. STRUCTURE OF THE PROPAGATING FRONT

Burst are always initiated along the propagating crack front
where the load redistribution after damage breaking can give
rise to immediate breaking of fibers. It can be observed in
Fig. 1 that the early stage of crack growth is dominated by the
damage mechanism: the crack size has to reach a threshold
size to achieve a sufficiently high stress concentration at the
crack frontier to trigger bursts. As the crack grows all the load
kept by the fibers inside the crack area accumulates at the
crack front which gives rise to larger and larger bursts. The
localized load sharing ensures that the crack is a dense set of
broken fibers and there are no broken clusters ahead of the front
(no process zone can form). It can be observed in Fig. 1 that
when damage breaking dominates at the early stage of crack
growth a smooth front is formed, while it gets tortuous as burst
gradually overtake the control of propagation. It follows that
the key feature which determines the degree of smoothness
of the front is the ratio between the damage and immediate
breakings along the perimeter.

FIG. 5. (Color online) Clusters of bursts inside the growing crack
of Fig. 1. The same color coding is used as in Fig. 1, i.e., the damage
breakings which trigger bursts are in green, while the bursts have
randomly assigned colors different from green. The clusters denoted
by a, . . . ,j are generated at different stages of crack growth, where
a indicates the initial damage cluster without any burst. The other
clusters correspond to different ratios Ld

p/Lp of the perimeter length
Lp and of the number of damage breakings in the perimeter Ld

p:
(b) 0.8 − 0.9, (c) 0.5 − 0.6, (d) 0.4 − 0.5, (e) 0.2 − 0.3, (f ) 0.2 −
0.3, (g) 0.1 − 0.2, (h), (i), (j ) 0 − 0.1.

To quantify the change of structure of the crack front, inside
the crack we identified clusters of broken fibers formed by the
burst and by the damage breakings which occurred within
certain time intervals. Such clusters are highlighted in Fig. 5
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FIG. 6. (Color online) Perimeter length of clusters of bursts
inside the crack for several values of the ratio Ld

p/Lp of the number
of damage breakings Ld

p along the cluster perimeter and of the
perimeter length Lp . For completeness, the initial cluster of damage
breakings (first dam. clust.) and the last burst of the crack are also
included. Damage breaking favors a smooth cluster boundary which
implies effectively Df = 1. As the fraction Ld

p/Lp decreases, bursts
determine the cluster perimeter so that a gradual crossover occurs to
Df = 1.25.
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inside the crack of Fig. 1. We determined the total perimeter
length Lp of the clusters and the number of damage breakings
Ld

p contained in Lp. Then we grouped the clusters according
to the value of the ratio Ld

p/Lp � 1 using 0.01 for the bin
size. Figure 6 presents the perimeter Lp of clusters for a
few selected bins of Ld

p/Lp as a function of the radius of
gyration Rg . It can be observed in the figure that when damage
breaking dominates Ld

p/Lp ≈ 1 along the external frontier of
clusters, the perimeter fractal dimension takes the effective
value Df = 1.0, as it is expected for smooth lines. However, as
the fraction Ld

p/Lp decreases, immediate breakings of bursts
control more the geometry of the perimeter so that a gradual
crossover is obtained to the higher value Df = 1.25 of the
fractal dimension of burst perimeters. It follows that in our
localized load sharing fiber bundle model of creep rupture the
fractal dimension of the propagating crack front depends on
the stage of propagation at which it is measured.

V. DISCUSSION

We investigated the geometrical structure of breaking bursts
and of the crack front in the framework of a fiber bundle model
with localized load sharing. The model has been developed for
the creep rupture of heterogeneous materials under constant
subcritical external loads. In the model, fibers break due to two
reasons: When the local load surpasses the strength of a fiber
immediate breaking occurs. Time dependence is introduced by
the second breaking mechanism, i.e., loaded fibers accumulate
damage and break when the amount of damage exceeds
a respective threshold. Damaging fibers trigger bursts of
immediate breakings which occur along the front of a growing
crack as sudden local advancements of the front. The bursting
dynamics is mainly controlled by the localized redistribution
of load after fiber failures (short-range interaction) and by the
strength disorder.

We showed that due to localized load sharing, single bursts
form compact geometrical objects of a nearly isotropic shape.
However, the external frontier of bursts has a fractal structure
characterized by the perimeter fractal dimension Df = 1.25.
Computer simulations revealed that the value of the fractal
dimension is universal, i.e., it does not depend on either the
external load or the amount of disorder in the range considered.
The main role of the external load is that it controls the
characteristic time scale of the failure process and the number
and cutoff size of bursts that occur up to macroscopic failure,
while the precise amount of disorder does not have a crucial

effect until it is sufficiently high to prevent sudden early
collapse (brittle failure) of the system.

Based on the value of the perimeter fractal dimension
and on its striking universality, we conjecture that crackling
bursts controlled by the localized redistribution of load fall
in the universality class of loop erased self-avoiding random
walks similarly to the avalanches of Abelian sand pile
models [21,22]. When long-range elastic interaction along the
front dominates the crack propagation, different geometrical
features are found [9].

Our simulations showed that the geometrical structure of the
crack front changes as the system evolves: damage breakings
favor a smooth front while the bursts tend to make it more
tortuous. The key parameter to control the front geometry
proved to be the fraction of damage breakings along the front.
For high values of the damage fraction, corresponding to the
early stage of crack growth, the fractal dimension tends to 1,
while for low fractions, obtained at larger crack sizes, a gradual
crossover occurs to the burst perimeter dimension 1.25.

Compared to simple fiber bundle models of fracture with
quasistatic loading, the creep dynamics has the advantage that
a single growing crack emerges under a constant external load
and large bursts develop along the crack front. However, since
no gradient is imposed on stress, strain, or strength of fibers
the crack front is curved. This implies that no average front
position can be defined so that we cannot study the roughness
of the front.

In our analysis the parameters of the damage mechanism,
i.e., the γ exponent and the amount of disorder of the
damage thresholds δcth were set to ensure the dominance of
stress concentration in the failure process which leads to
the emergence of a single growing crack. However, for low
exponent γ → 0 and high disorder δcth → 1 the breaking
process gets disorder dominated where a large number of
cracks grow simultaneously [17]. We note that the geometrical
structure of bursts does not depend on the precise value of
the damage parameters; however, from a numerical point of
view it is advantageous to perform the analysis in the phase of
single crack growth because here bursts and cracks reach larger
sizes.
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