Exact study of ferromagnetism in conducting polymers via positive semidefinite operator properties

Zsolt Gulacsi,
University of Debrecen, Department of Theoretical Physics, Debrecen, Hungary.

International Conference on Emerging Trends in Applied Science & Mathematics,
TECHSCIENTIA-15

— Nagpur, India, April. 22-23, 2015 —
THANK YOU VERY MUCH FOR YOUR KIND INVITATION!

From where I am coming:
University of Debrecen

Location of Debrecen

Main Building
Short Outline:

- Introduction (15 %)
- The method used (20 %)
- The steps of the method (30 %)
- The method applied to chain structures (30 %)
- Summary and conclusions (5 %)

Collected number of slide pages: 45
About Nanomaterials
Nanomaterials
Nanomaterials in nature

Natural organic
- Adenovirus
- Gecko’s foot
- Butterfly wing

Natural inorganic
- Brazilian Opal
- Vulcanic rock
- Bl. Silica
Human made Nanotechnology

Ancient times

Roman cups
Glass cups
Windows

Nowadays

Graphene flakes
C nanotubes
Nano dots
Nanomaterials: importance

Nanoproducts Market (US)

Nano-patents (US)
Nanomaterials: e.g. polymers

Use of Nanomater: Polymers

Connecting organic and biological: macromolecules e.g. polymers
Conducting polymers with pentagon cell

Nobel Prize in Chemistry 2000:
A.J. Heeger, H. Shirakawa, A. MacDiarmid

Several applications today:

Nano transistors Solar Cells Detectors
About the Technique Used
Motivations: Why exact?

- On-site Coulomb interaction is high (even 10 eV). Poor approximations are misleading.
- All systems around us are many-body systems steeped by quantum mechanics. 99% of these have a number of degrees of freedom ($N_A \sim 10^{26}$) much higher than their number of constants of motion ($N_{C.M.} \sim O(10)$), hence are non-integrable.
- 99% of the huge literature relating exact solutions is connected to integrable models which describe mostly 1D systems ("Bethe Anzats techniques"). These represent at most 1% of the systems in nature.
- In order to try to understand the nature, we must develop procedures leading to exact results outside of integrability and dimensionality.
Main collaborations on the subject

International collaborations:
- A. Kampf
- D. Vollhardt
- M. Gulacsi

Local people:
- Gy. Kovács
- E. Kovács
- P. Gurin
THE METHOD USED, AND STEPS OF THE METHOD
Positive semidefinite operators (\hat{O})

One considers $\langle \Phi | \Phi \rangle = 1$, the Hilbert space is \mathcal{H}.

By Definition: $\langle \Phi | \hat{O} | \Phi \rangle \geq 0, \quad \forall |\Phi\rangle \in \mathcal{H}$

If $|\Phi\rangle$ is an eigenstate of \hat{O}, e.g. $\hat{O}|\Phi\rangle = p|\Phi\rangle$, it results

$\langle \Phi | \hat{O} | \Phi \rangle = p\langle \Phi | \Phi \rangle = p \geq 0$

Consequently:

The minimum possible eigenvalue of \hat{O} is zero!
\(\hat{H} \) as positive semidefinite operator

\(\hat{H} \) for a physical system has always a lower bound \(E_g \) of the spectrum

\[\hat{H}|\psi\rangle = E|\psi\rangle, \quad \forall E, \quad E \geq E_g, \]

where \(\hat{H}|\psi_g\rangle = E_g|\psi_g\rangle \) defines \(|\psi_g\rangle, E_g \)

Consequently:

\[\forall \hat{H}, \hat{H}' = \hat{H} - E_g = \hat{0} = \text{Positive Semidefinite Operator} \]

e.g. \(\forall \hat{H}, \quad \hat{H} = \hat{0} + C, \quad \text{where} \ C = E_g \)
Consequences of the $\hat{H} = \hat{O} + C$ relation

- Each \hat{H} can be decomposed in terms of positive semidefinite operators as $\hat{H} = \hat{O} + C$, (independent on dimensionality or integrability)

- Because C changes, a such decomposition can be done in several different ways, each introducing the problem in different regions of the parameter space.

- Since $\hat{H} - C = \hat{O}$, the ground state is obtained from the most general solution of the equation

$$\hat{O}\ket{\psi_g} = 0 \quad (1)$$

- If (1) allows the solution $\ket{\psi_g}$, it results $E_g = C$
The steps of the method

Step 1: Decomposition in positive semidefinite operators

Meaning: Rewrite the starting \hat{H} as $\hat{H} \equiv \hat{O} + C$, \hspace{1cm} (2)

This job is done by:

- Introduction at each lattice site of block operators $\hat{A}_{i,\sigma}$ as linear or non-linear combination of fermionic operators acting on the sites of a given finite block, than creating positive semidefinite forms as for example $\hat{A}_{i,\sigma}^{\dagger} \hat{A}_{i,\sigma}$.

- Introduction of other possible positive semidefinite operators as $\hat{P}_i = \hat{n}_{i,\sigma} \hat{n}_{i,-\sigma} - (\hat{n}_{i,\sigma} + \hat{n}_{i,-\sigma}) + 1$,

- Matching the value of \hat{H} parameters and positive semidefinite operator coefficients such to obtain Eq.(2). This leads to the **Matching Equations**.
The steps of the method

Step 1: Exemplification:

The 2D Hubbard case:

Bravais vectors: $x, y,$

Repulsive interaction $U > 0,$

$$\hat{H}_0 = \sum_{i, \sigma} (t_x \hat{c}_{i+x, \sigma}^\dagger \hat{c}_{i, \sigma} + t_y \hat{c}_{i+y, \sigma}^\dagger \hat{c}_{i, \sigma} + \sum_{\alpha = \pm 1} t_{y+\alpha x} \hat{c}_{i+y+\alpha x, \sigma}^\dagger \hat{c}_{i, \sigma} + H.c),$$

$$\hat{H}_U = U \sum_{i} \hat{n}_{i, \sigma} \hat{n}_{i, -\sigma}, \quad \hat{H} = \hat{H}_0 + \hat{H}_U,$$
For transformation define the block operator

\[\hat{A}_{i,\sigma} = a_1 \hat{c}_{i+x,\sigma} + a_2 \hat{c}_{i+x,\sigma} + a_3 \hat{c}_{i+x+y,\sigma} + a_4 \hat{c}_{i+y,\sigma}, \]

With periodic boundary conditions one has

\[\sum_{i,\sigma} \hat{A}^\dagger_{i,\sigma} \hat{A}_{i,\sigma} = \sum_{i,\sigma} (t_x \hat{c}^\dagger_{i+x,\sigma} \hat{c}_{i,\sigma} + t_y \hat{c}^\dagger_{i+y,\sigma} \hat{c}_{i,\sigma} + \sum_{\alpha = \pm 1} q \hat{n}_{i,\sigma} = \hat{H} - \hat{H}_U + q \hat{N}, \]

\[t_x = a_2^* a_1 + a_3^* a_4, \quad t_y = a_4^* a_1 + a_3^* a_2, \quad t_{y-x} = a_4^* a_2, \quad t_{y+x} = a_3^* a_1, \]

\[q = |a_1|^2 + |a_2|^2 + |a_3|^2 + |a_4|^2, \]
One obtains as result:

\[\hat{H} \equiv \left[\sum_{i,\sigma} \hat{A}_{i,\sigma}^{\dagger} \hat{A}_{i,\sigma} + U \sum_{i} \hat{n}_{i,\sigma} \hat{n}_{i,-\sigma} \right] + \left[-q \hat{N} \right] = \hat{O} + C, \]

where one has \[C = -qN \quad \hat{O} = \hat{P}_1 + \hat{P}_2, \]

\[\hat{P}_1 = \sum_{i,\sigma} \hat{A}_{i,\sigma}^{\dagger} \hat{A}_{i,\sigma}, \quad \langle \Phi | \hat{A}_{i,\sigma}^{\dagger} \hat{A}_{i,\sigma} | \Phi \rangle = \langle \psi | \psi \rangle \geq 0, \]

\[\hat{P}_2 = U \sum_{i} \hat{n}_{i,\sigma} \hat{n}_{i,-\sigma}, \quad \langle \Phi | \hat{n}_{i,\sigma} \hat{n}_{i,-\sigma} | \Phi \rangle = \langle \psi' | \psi' \rangle \geq 0. \]

and the following ,,Matching conditions” are satisfied:

\[t_x = a_2^* a_1 + a_3^* a_4, \quad t_y = a_4^* a_1 + a_3^* a_2, \quad t_{y+x} = a_3^* a_1, \quad t_{y-x} = a_4^* a_2, \]

\[q = |a_1|^2 + |a_2|^2 + |a_3|^2 + |a_4|^2, \]
Observations:

1) The procedure do not depends on dimensionality, or integrability.

2) The decomposition (in principle) can be always done without introducing ,,supplementary” terms in \hat{H}.

3) The expression of the transformed \hat{H} is valid only in a restricted region specified by the matching conditions.

4) Different parameter space regions are described by different solutions of the matching conditions, or by different transformations of \hat{H}.

5) The scalar ,,C” has usually a complicated structure which depends on \hat{H} parameters.
Other possible transformed forms:

a) \(\hat{H} \to \sum_{i,\sigma} \hat{A}_{i,\sigma} \hat{A}_{i,\sigma}^{\dagger} \quad \hat{A}_{i,\sigma} = \sum_{n \in \mathcal{D}} a_n \hat{c}_{i+r_n,\sigma} \)

b) \(\hat{H} \to \sum_{i} \hat{A}_{i}^{\dagger} \hat{A}_{i} \), or \(\sum_{i} \hat{A}_{i} \hat{A}_{i}^{\dagger} \), \(\hat{A}_{i} = \sum_{\sigma} \sum_{n \in \mathcal{D}} a_{n,\sigma} \hat{c}_{i+r_n,\sigma} \)

c) \(\hat{H}_U \to \sum_{i} U_i \hat{P}_i \), \(\hat{P}_i = \hat{n}_{i,\sigma} \hat{n}_{i,-\sigma} - (\hat{n}_{i,\sigma} + \hat{n}_{i,-\sigma}) + 1 \),

d) \(\hat{H} \to \sum_{i} \hat{A}_{i}^{\dagger} \hat{A}_{i} \), \(\hat{A}_{i} = \sum_{\sigma} \sum_{n \in \mathcal{D}} a_{r_n,\sigma}^{r_n'} \hat{c}_{i+r_n,\sigma}^{\dagger} \hat{c}_{i+r_n',-\sigma}^{\dagger} \)

\(\hat{H} \to \sum_{i,\sigma} \hat{A}_{i,\sigma}^{\dagger} \hat{A}_{i,\sigma} \), \(\hat{A}_{i,\sigma} = \sum_{n \in \mathcal{D}} (a_n \hat{c}_{i+r_n,\sigma} + b_n \hat{c}_{i+r_n,\sigma} \hat{n}_{i+r_n,-\sigma}) \)

f) ..

The steps of the method

Step 2: Construction of the ground states

Meaning: Construct the most general $|\Psi_g\rangle$ such to have $\hat{O}|\Psi_g\rangle = 0$. The corresponding $E_g = C$.

Precondition: The Matching Equations must be solved first

Matching Conditions: Nonlinear complex algebraic system of coupled equations (2D often $\sim 40 - 50$).

- One obtains explicitly: \hat{A}_i from transformed \hat{H}, $\hat{H(D)}$.
- Only after this step the $|\Psi_g\rangle$ construction can begin.
Deducing $|\psi_g\rangle$, case $\hat{O} = \sum_{n,i,\sigma} \hat{A}^\dagger_{n,i,\sigma} \hat{A}_{n,i,\sigma} + \hat{O}_2$.

One looks for operators $\hat{B}^\dagger_{m,j,\sigma} = \sum_{p \in \mathcal{R}_m} b_{p,m} \hat{c}_{j+r_p,\sigma}^\dagger$

such to have $\{\hat{A}_{n,i,\alpha}, \hat{B}^\dagger_{m,j,\beta}\} = 0$, $\forall n, m, i, j, \alpha, \beta$,

since in this case: $|\chi\rangle = [\prod_{m,j,\sigma} \hat{B}^\dagger_{m,j,\beta}]|0\rangle$

$[\sum_{n,i,\sigma} \hat{A}^\dagger_{n,i,\sigma} \hat{A}_{n,i,\sigma}]|\chi\rangle = [\sum_{n,i,\sigma} \hat{A}^\dagger_{n,i,\sigma} \hat{A}_{n,i,\sigma}] [\prod_{m,j,\sigma} \hat{B}^\dagger_{m,j,\beta}]|0\rangle = 0$.

Now $(m, j, \beta) \in \mathcal{I}$ such to have $\hat{O}_2 [\prod_{(m,j,\beta) \in \mathcal{I}} \hat{B}^\dagger_{m,j,\beta}]|0\rangle = 0$.

Hence: $|\psi_g\rangle = [\prod_{(m,j,\beta) \in \mathcal{I}} \hat{B}^\dagger_{m,j,\beta}]|0\rangle$, $E_g = C$.
Deducing $|\psi_g\rangle$, case $\hat{O} = \sum_{n,i,\sigma} \hat{A}_{n,i,\sigma} \hat{A}_{n,i,\sigma}^\dagger + \hat{O}_2$.

One observes that $\hat{A}_{i,\sigma}^\dagger \hat{A}_{i,\sigma} = 0, \forall i, \sigma$.

In this case $[\sum_{i,\sigma} \hat{A}_{i,\sigma} \hat{A}_{i,\sigma}^\dagger] [\prod_{j,\sigma} \hat{A}_{j,\sigma}^\dagger] |0\rangle = 0$.

Consequently $|\chi\rangle = [\prod_{j,\sigma} \hat{A}_{j,\sigma}^\dagger] |0\rangle$, $[\sum_{n,i,\sigma} \hat{A}_{n,i,\sigma} \hat{A}_{n,i,\sigma}^\dagger] |\chi\rangle = 0$.

Now find \hat{F}^\dagger such to have $\hat{O}_2 [\prod_{j,\sigma} \hat{A}_{j,\sigma}^\dagger] \hat{F}^\dagger |0\rangle = 0$.

Hence: $|\psi_g\rangle = [\prod_{j,\sigma} \hat{A}_{j,\sigma}^\dagger] \hat{F}^\dagger |0\rangle$, $E_g = C$.
The steps of the method

Step 3: The proof of the uniqueness

Meaning: To prove that the deduced $|\Psi_g\rangle$ is unique.

The procedure is based on the study of the kernel:
Let $\hat{O} = \hat{H} - E_g$. Then, $\ker(\hat{O}) := \{ |\phi\rangle, \hat{O}|\phi\rangle = 0 \}$. One must prove that $|\Psi_g\rangle$ spans $\ker(\hat{O})$.

The technique has two steps:

a) One proves that $|\Psi_g\rangle \in \ker(\hat{O})$

b) One proves that all $|\Phi\rangle \in \ker(\hat{O})$ can be written in terms of $|\Psi_g\rangle$

c) When degeneracy is present $|\Psi_g\rangle \rightarrow |\Psi_g(m)\rangle, \forall m$
The steps of the method

Step 4: The study of physical properties

Meaning: The deduced \(|\Psi_g\rangle \), has usually a quite complicated structure, and the physical properties, a priori, are not visible. They must be deduced!

This is done by calculating different expectation values.

Remarc: If \((|\Psi_g(N)\rangle, E_g(N)) \) is deduced, also the low lying spectrum can be tested. E.g., the charge gap (\(\Delta \)):

\[
\delta \mu = \mu_+ - \mu_- = [(E_g(N + 1) - E_g(N)) - (E_g(N) - E_g(N - 1))],
\]

Where: \(\delta \mu = 0, (\delta \mu \neq 0) \), means \(\Delta = 0, (\Delta \neq 0) \).
The steps of the method

References:

Reporting papers:

Reviews:

COLLECTED OWN RESULTS RELATING CONDUCTING POLYMERS
APPLICATIONS TO CHAIN STRUCTURES
Pentagon Chains

Polymer case: The Hamiltonian

\[
\hat{H}_0 = \sum_{\sigma,i} \sum_{n,n',(n>n')} (t_{n,n'} \hat{c}_{i+r_n,\sigma}^\dagger \hat{c}_{i+r_{n'},\sigma} + H.c.) + \sum_{n=1}^{m} \epsilon_n \hat{n}_{i+r_n,\sigma},
\]

\[
\hat{H}_U = \sum_i \sum_{n=1}^{m} U_n \hat{n}_{i+r_n,\sigma} \hat{n}_{i+r_n,-\sigma}, \quad \hat{H} = \hat{H}_0 + \hat{H}_U, \quad m = 6,
\]

\[
U_1 = U_4 \neq U_2 = U_3, \quad \epsilon_1 = \epsilon_4, \quad \epsilon_2 = \epsilon_3, \quad (n,n') : nearest\ neighbor.
\]
Low concentration limit:
Pentagon Chains: Low concentration limit

The transformed \hat{H}:

\[
U_n = U, \ t_{6,5} = 0 : \\
\hat{H} = \hat{H}_A + \hat{H}_U, \quad \hat{H}_A = \sum_{\sigma} \sum_{i=1}^{N_c} \sum_{\alpha=1}^{4} \hat{A}_{\alpha,i,\sigma}^\dagger \hat{A}_{\alpha,i,\sigma},
\]

\[
\hat{A}_{1,i,\sigma} = a_{1,2} \hat{c}_i + r_{2,\sigma} + a_{1,3} \hat{c}_i + r_{3,\sigma} + a_{1,4} \hat{c}_i + r_{4,\sigma}, \\
\hat{A}_{2,i,\sigma} = a_{2,2} \hat{c}_i + r_{2,\sigma} + a_{2,4} \hat{c}_i + r_{4,\sigma} + a_{2,5} \hat{c}_i + r_{5,\sigma}, \\
\hat{A}_{3,i,\sigma} = a_{3,2} \hat{c}_i + r_{2,\sigma} + a_{3,5} \hat{c}_i + r_{5,\sigma} + a_{3,6} \hat{c}_i + r_{6,\sigma}, \\
\hat{A}_{4,i,\sigma} = a_{4,6} \hat{c}_i + r_{6,\sigma} + a_{4,1} \hat{c}_i + a,\sigma,
\]
Pentagon Chains: Low concentration limit

The matching equations:

\[t_n = a^*_2 a^*_4 a^*_2, \quad t_c = a^*_4 a^*_6 a^*_4, \quad t = a^*_1 a^*_2 a^*_1, \quad a^*_3 a^*_2 = a^*_1 a^*_3 a^*_1 = a^*_3 a^*_5 a^*_3, \]

\[t_1 = a^*_2 a^*_2 a^*_5 + a^*_3 a^*_3 a^*_5 = a^*_2 a^*_2 a^*_4 + a^*_1 a^*_1 a^*_4, \quad \epsilon_0 = \sum_{n=1}^{3} |a_{n,2}|^2, \]

\[\epsilon_1 = |a_{1,4}|^2 + |a_{2,4}|^2 = |a_{2,5}|^2 + |a_{3,5}|^2, \]

\[\epsilon_2 = |a_{1,3}|^2 + |a_{4,1}|^2 = |a_{3,6}|^2 + |a_{4,6}|^2. \]

Solutions of matching equations:

\[a_{1,2} = a_{1,4} = a_{3,2} = a_{3,5} = \text{sign}(t) \sqrt{\epsilon_1 - t_n e^{i\phi_1}}, \quad a_{1,3} = \frac{|t|}{\sqrt{\epsilon_1 - t_n}} e^{i\phi_1}, \]

\[a_{2,4} = a_{2,5} = \sqrt{t_n} e^{i\phi_2}, \quad a_{2,2} = \frac{t_1 - \epsilon_1 + t_n}{\sqrt{t_n}} e^{i\phi_2}, \quad a_{3,6} = a_{1,3}, \]

\[a_{4,1} = \sqrt{\frac{\epsilon_2(\epsilon_1 - t_n) - t^2}{\epsilon_1 - t_n}} e^{i\phi_3}, \quad a_{4,6} = t_c \sqrt{\frac{\epsilon_1 - t_n}{\epsilon_2(\epsilon_1 - t_n) - t^2}} e^{i\phi_3}, \]
Pentagon Chains: Low concentration limit

The ground state:
Is a ferromagnetic state

\[|\Psi_g(N_c + 1)\rangle = \hat{B}_{1,\sigma}^\dagger \prod_{i=1}^{N_c} \hat{B}_{i,\sigma}^\dagger |0\rangle, \]

Diagram:

\[\hat{B}_{1,\sigma}^\dagger : \]

\[\hat{B}_{1,\sigma} : \]
Pentagon Chains: Low concentration limit

The conditions for the solution to appear

\[t_{1,5} = t, \ t_{2,3} = t_n, \ t_{4,7} = t_c, \ t_{2,5} = t_1, \ t_1 = \epsilon_1 + |t_n|, \]
\[\epsilon_0 = 2(\epsilon_1 - t_n) + 4t_n, \quad \epsilon_2 = \frac{t^2}{\epsilon_1 - t_n} + |t_c|. \]

The dispersive band placed above the flat band gives a touching point with the flat band enforcing the connectivity conditions.
High concentration limit:

E

0

ka
Pentagon Chains: high concentration limit

Polymer case: The transformed \hat{H}

The starting \hat{H}

$$\hat{H} = \hat{H}_0 + \hat{H}_U,$$

$$\hat{H}_0 = \hat{H}_0(t_{n,n'}, \epsilon_n),$$

$$\hat{H}_U = \sum_i \sum_{n=1}^m U_n \hat{n}_{i+r_n, \uparrow} \hat{n}_{i+r_n, \downarrow},$$

Flat bands in \hat{H}_0 are excluded.

Transformation of \hat{H} in positive semidefinite form

$$\hat{H} - C_{g,1} = \hat{H}_G + \hat{H}_P,$$

$$\hat{H}_G = \hat{H}_{kin} + C_{g,2}$$

$$\epsilon^R_n = \epsilon_n + U_n - q(\{U_n\}), \quad q(\{U_n\}) \text{ is a nonlinear function.}$$
Pentagon Chains: high concentration limit

The used operators, and the ground state:

One has \(m = 6 \) (six sites per cell), \(z_{\alpha} = \{ \hat{G}_{\alpha,i,\sigma}, \hat{G}_{\alpha,i,\sigma}^\dagger \} \), and

\[
\hat{H}_G = \sum_{i,\sigma} \sum_{\alpha=1}^{m-1} \hat{G}_{\alpha,i,\sigma} \hat{G}_{\alpha,i,\sigma}^\dagger,
\]

\[
\hat{H}_P = \sum_i \sum_{n=1}^m U_n \hat{P}_{i+r_n},
\]

\[
\hat{P}_j = \hat{n}_{j,\uparrow} \hat{n}_{j,\downarrow} - (\hat{n}_{j,\uparrow} + \hat{n}_{j,\downarrow}) + 1,
\]

\[
C_{g,1} = N_q(\{U_n\}) - N_c \sum_{n=1}^m U_n - C_{g,2},
\]

\[
\hat{H}_{kin} = -\sum_{i,\sigma} \sum_{\alpha=1}^{m-1} \hat{G}_{\alpha,i,\sigma}^\dagger \hat{G}_{\alpha,i,\sigma},
\]

\[
C_{g,2} = 2N_c \sum_{\alpha=1}^{m-1} z_{\alpha},
\]

\[
|\psi_g\rangle = [\prod_i (\prod_{n=1}^m \hat{c}_{i+r_n,\sigma}^\dagger) (\prod_{\alpha=1}^{m-1} \hat{G}_{\alpha,i,-\sigma}^\dagger)]|0\rangle,
\]

\(N = 11N_c. \)
Pentagon Chains: high concentration limit

Comparison of the $U = 0$ and $U > 0$ cases

The exact behavior inside the shaded region is exactly not known.

$|\psi_g\rangle$: At $N = 11N_c$ is a nonsaturated ferromagnet localized in the thermodynamic limit. At $11N_c < N < 12N_c$, remaining ferromagnetic, becomes delocalized ($N_c = \text{number of cells}$).
Summary and Conclusions

• Method based on positive semidefinite operators for deducing exact N dependent ground states.

• The steps of the method have been presented in details: i) transcription of \hat{H} in positive semidefinite form, ii) deduction of the ground states, iii) proof of uniqueness, iv) deduction of physical properties.

• The technique not depends on dimensionality or integrability hence has a large potential applicability.

• Example solutions relating physical systems: ferromagnetism in conducting polymers.

• The conection of conducting polymers to nanophysics has been emphasize.
I kindly acknowledge the financial support of:

- OTKA-K-100288 (Hungarian Research Funds for Basic Research),
- TAMOP-4.2.2/A-11/1/KONV-2012-0036 (Hungarian Development Funds for Research Universities cofinanced by EU),
- Alexander von Humboldt Foundation.
University of Debrecen:

Main Building: Inner yard

Main University Library

THANKS FOR YOUR KIND ATTENTION!