Publication List 

Ágnes Vibók 

1.      P. R. Surján, Á. Vibók, H. Kuzmany and K. Iwahana:
Electronic Structure of Polyenes Contaning Chain Defects. in: Electronic Properties of Polymers and Related Compounds, Springer Series in Solid State Sciences 63, Ed. H.Kuzmany, M.Mehring and S.Roth, Springer, Berlin, (133-136) 1985. 

2.      I. Mayer, Á. Vibók:
SCF Theory of Intermolecular Interactions without Basis Set Superposition Error. Chem. Phys. Lett. 136, 115, 1987. 

3.      I. Mayer, Á. Vibók:
Intermolecular SCF method without BSSE: the closed--shell case. Chem. Phys. Lett. 140, 558, 1987. 

4.      I. Mayer, Á. Vibók:
SCF equations in the “chemical Hamiltonian approach”. Chem. Phys. Lett. 148, 68, 1988. 

5.      Á. Vibók, I. Mayer: Intermolecular SCF theory without BSSE:
the equations and some applications for small systems. J. Mol. Struc. (Theochem), 170, 9, 1988. 

6.      I. Mayer, P.R. Surján, Á. Vibók:
BSSE--free SCF methods for intermolecular interactions. Int. J. Quantum Chem., 23, 281, 1989. 

7.      Á. Vibók, I. Mayer:
Towards a third order perturbation theory of intermolecular interactions without BSSE. Acta Phys. Hung., 68 (3--4), 241, 1990. 

8.      I. Mayer, Á. Vibók:
A BSSE--free SCF algorithm for intermolecular interactions. Int. J. Quantum Chem., 40, 139, 1991. 

9.      I. Mayer, Á. Vibók:
A comparison of a priori and a posteriori BSSE correction schemes for rase gas--proton potential curves. Acta Phys. Hung., 70, 403, 1991. 

10.    J. Noga, Á. Vibók:
Second--order BSSE--free perturbation theory: intermolecular interactions within supermolecular approach. Chem. Phys. Lett., 180, 114, 1991. 

11.    Á. Vibók, I. Mayer:
A BSSE--free SCF algorithm for Intermolecular Interactions. II. Sample Calculations on Hydrogen--Bonded Complexes. Int J. Quantum Chem., 43, 801, 1992. 

12.    Á. Vibók, G.G. Balint--Kurti:
Reflection and Transmission of Waves by a Complex Potential — A Semiclassical JWKB treatment. J. Chem. Phys., 96 (10), 7615, 1992. 

13.    Á. Vibók, G.G. Balint--Kurti:
Parametrization of Complex Absorbing Potentials for Time Dependent Quantum Dynamics. J. Phys. Chem., 96, 8712, 1992. 

14.    P. Valiron, Á. Vibók, I. Mayer:
A comparison of a posteriori and a priori BSSE correction schemes for SCF intermolecular energies. J. Comp. Chem., 14, (4), (401--409), 1993. 

15.    I. Lovas, Zs. Schram and Á. Vibók:
Comparison of Atom--Atom, Nucleus--Nucleus and Nucleon--Nucleon Interactions. European Phys. Lett., 21, (4), (433--437), 1993. 

16.    G.G. Balint--Kurti, Á. Vibók:
Complex Absorbing Potentials in Time Dependent Quantum Dynamics. Grid Methods and Their Application to Shrödinger’s Equation, ed. C. Cerjan, NATO ASI series, Series C: Mathematical and Physical Sciences, Vol. 412, pages 195-205, Kluwer Academic Publishers, 1993. 

17.    Á. Vibók, Á. Nagy:
BSSE--Free SCF Method with Local Density Functional Correlation Correction. Application to (H2)2 Dimer, Acta Chim. Debr., XXVIII, 7, 1993. 

18.    I. Mayer, Á. Vibók, P. Valiron:
A full--CI investigation into the BSSE problem. Chem. Phys. Lett., 224, (166-174), 1994. 

19.    I. Mayer, Á. Vibók, G. Halász, P. Valiron:
A BSSE--Free SCF Algorithm for Intermolecular Interactions. III. Generalization for Three--Body Systems and for Using Bond Functions. Int. J. Quantum Chem., 57, 6, (1049-1055), 1996. 

20.    G. Halász, Á. Vibók, P. Valiron and I. Mayer:
BSSE-Free SCF Algorithm for Treating Several Weakly Intracting Systems, J. Phys. Chem. 100 (1996) 6332. 

21.    I. Mayer, Á. Vibók:
BSSE-Free Second Order Intermolecular Perturbation Theory, Molecular Physics., 92, 3, (503-510), 1997. 

22.    Á. Vibók, G. Halász, I. Mayer:
BSSE-Free Second Order Intermolecular Perturbation Theory, II. Sample Calculations on Hydrogen-Bonded Complexes. Molecular Physics., 93, 6, (873-877), 1998. 

23.    G. Halász, Á. Vibók, S. Suhai:
A BSSE-free SCF algorithm for intermolecular interactions IV. Generalization for open-shell systems. Int. J. Quant. Chem., 68, (151-158), 1998. 

24.    G. J. Halász, Á. Vibók, I. Mayer:
Comparison of BSSE-Corrected Perturbation Theories for Calculating Intermolecular Interaction Energies. J. Computational Chemistry., 20, 6, (274-283), 1999. 

25.    Á. Vibók, G. J. Halász:
Generalization of the Fourth-Order Hylleraas Functional for the Case of a Non-Hermitian Unperturbed Hamiltonian. J. Math. Chem., 25, (191-195), 1999. 

26.    A. Hamza, Á. Vibók, G. J. Halász and I. Mayer:
BSSE-Free SCF Theories: a Comment. J. Mol. Stuct., 501-502, (427-434), 2000. 

27.    G. J. Halász, Á. Vibók:
Using a multi-step potential as an exact solution of the absorbing potential problem on the grid. Chem. Phys. Lett., 323, (287-292), 2000. 

28.    Á. Vibók:
Generalization of the Hylleraas functional for calculating BSSE-free intermolecular interactions: further considerations. J. Math. Chem., 28, (207-212), 2000. 

29.    Á. Vibók and G. J. Halász:
Parametrization of complex absorbing potentials for time-dependent quantum dinamics using multi-step potentials. J. Phys. Chem. Chem. Phys., 3, (3048-3051), 2001. 

30.    A. Bende, Á. Vibók, G. J. Halász, and S. Suhai:
BSSE-free description of the formamid dimers. Int. J. Quant. Chem., 84, (617-622), 2001. 

31.    A. Hamza, Á. Vibók, G. J. Halász and I. Mayer:
BSSE-Free Second Order Intermolecular Perturbation Theory III. Second Order Energy Decomposition. Theor. Chem. Acc., 107, (38-47), 2001. 

32.    A. M. Mebel, G. J. Halász, Á. Vibók and M. Baer:
Quantization of the 3X3 Non-Adiabatic Coupling Matrix for three coupled states of the C2H Molecule. J. Chem. Phys., 117, (991-1000), 2002. 

33.    G. J. Halász, Á. Vibók, A. M. Mebel and M. Baer:
Ab-Initio Nonadiabatic Coupling Elements: The Conical Intersection between the 2(2)A’ and the 3(2)A’ of the H2+H System. Chem. Phys. Lett., 358, (163-169), 2002. 

34.    Á. Vibók, G. J. Halász and I. Mayer:
BSSE-Corrected perturbation theories of intermolecular interactions. In press, Proceedings of the Second International Workshop on Electron Correlation and Materials Properties. Kluwer Academic/Plenum Publishers. (263-283) 2003. 

35.    G. J. Halász, Á. Vibók, S. Suhai and I. Mayer:
Towards a BSSE-free Description of Strongly Interacting Systems. Int. J. Quant. Chem., 89, (190-197), 2002. 

36.    G. J. Halász, Á. Vibók:
Comparison of imaginary and complex absorbing potentials using multi-step potential method. Int. J. Quant. Chem., 92, (168-173), 2003. 

37.    Shaowen Hu, G. J. Halász, Á. Vibók, A. M. Mebel and M. Baer:
The Curl-Divergence Equations for the Electronic Non-Adiabatic Coupling Terms: Study of the C2H Molecule and the H2+H System. Chem. Phys. Lett., 367, (177-185), 2003. 

38.    G. J. Halász, Á. Vibók, A. M. Mebel, and M. Baer:
A survey of ab initio conical intersections for the H2+H system. J. Chem. Phys., 118, (3052-3064) 2003. 

39.    Á. Vibók, G. J. Halász, T. Vértesi, S. Suhai, M. Baer and J.P. Toennies:
Ab initio conical intersections for the Na+H2system: A four-state study. J. Chem. Phys., 119, (6588-6596) 2003. 

40.    40M. Baer, Á. Vibók, G.J. Halász, and D.J Kouri:
The electronic non-adiabatic coupling terms: On the connection between molecular Physics and Field Theory. Advances in Quantum Chemistry, Vol. 44. (103-118) 2003. 

41.    T. Vértesi, Á. Vibók, G.J. Halász, A. Yahalom, R. Engelman, and M. Baer:
The electronic non-adiabatic coupling matrix: A numerical study of the curl condition and the quantization condition employing the Mathieu Equation. J. Phys. Chem., 107 (7189-7196) 2003. 

42.    A. Bende, Á. Vibók, G. J. Halász, and S. Suhai: Ab initio study of the Ammonia-Water Dimer:
BSSE-free Structures and Intermolecular Harmonic Vibrational Frequencies. Acta Chim. Debr., XXXVI, 7, (7-23) 2003. 

43.    G. J. Halász, Á. Vibók, A. M. Mebel, and M. Baer: On the quantization of the electronic non-adiabatic coupling terms:
the H+H2system as a case study. Theory of Chem. React. Dyn. Kluwer Academic Publishers. (67-87) 2004. 

44.    A. Bende, Á. Vibók, G. J. Halász, and S. Suhai:
Ab initio study of the Ammonia-Ammonia Dimer: BSSE-free Structures and Intermolecular Harmonic Vibrational Frequencies. Int. J. Quant. Chem., Vol. 99 (585-593) 2004. 

45.    45Á. Vibók, G. J. Halász, A. M. Mebel, S. Hu and M. Baer:
An Analytic-Numeric Approach to Calculate Electronic Non-adiabatic Coupling Terms: Study of the C2H Molecule and the H2+H System. Int. J. Quant. Chem., Vol. 99 (594-604) 2004. 

46.    T. Vértesi, Á. Vibók, G.J. Halász, and M. Baer:
On the peculiarities of the diabatic framework: New Insight. J. Chem. Phys., 120 (2565-2574) 2004. 

47.    M. Baer, T. Vértesi, G.J. Halász and Á. Vibók:
Electronic Diabatic Framework: Restrictions due to Quantization of the Non-adiabatic Coupling Matrix. J. Phys. Chem., 108 (9134-9142) 2004. 

48.    M. Baer, T. Vértesi, G.J. Halász, Á. Vibók, and S. Suhai:
On diabatization and the topological D-matrix: Theory and numerical studies of the H2+H system and the C2H2molecule. Faraday Discuss., 127 (1-17) 2004. 

49.    T. Vértesi, Á. Vibók, G.J. Halász, and M. Baer:
The Berry phase revisited: application to Born-Oppenheimer molecular systems. J. Phys. B: At. Mol. Opt. Phys. Vol. 37 (4603-4620) 2004. 

50.    50T. Vértesi, Á. Vibók, G.J. Halász, and M. Baer:
Derivation of the Electronic Non-Adiabatic Coupling Field in Molecular Systems: An Algebraic-Vectorial Approach: J. Chem. Phys., Vol. 120 (8420-8424) 2004. 

51.    Á. Vibók, T. Vértesi, E. Bene, G. J. Halász, and M. Baer:
An Algebraic-Vectorial Approach to obtain Molecular Fields from Conical Intersections: Numerical Applications to H2+H and Na+H2. J. Phys. Chem. A. Vol. 108 (8590-8598) 2004. 

52.    T. Vértesi, Á. Vibók, G.J. Halász, and M. Baer:
A Field Approach to Calculate Electronic Born-Oppenheimer Coupling Terms. J. Chem. Phys., Vol. 121 (4000-4013) 2004. 

53.    A. Bende, Á. Vibók, G. J. Halász, and S. Suhai:
Theoretical study of hydrogen bonds between acetylene and selected proton donor systems. Int. J. Quant. Chem., Vol. 101 (186-200) 2005. 

54.    Á. Vibók, G. J. Halász, and M. Baer:
Ab-initio Non-adiabatic Coupling Elements: The Conical Intersection between the Three Lower States of the H2O System. Chem. Phys. Lett.,Vol. 399 (7-14) 2004. 

55.    55Á. Vibók, G. J. Halász, S. Suhai and M. Baer:
Assigning Signs to the Electronic Non-adiabatic Coupling Terms: The H2O System as a Case Study. J. Chem. Phys., 122, (134109), 2005. 

56.    T. Vértesi, E. Bene, Á. Vibók, G. J. Halász, and M. Baer:
The N-State Adiabatic-to-Diabatic Transformation Angle: Theory and Application. J. Phys. Chem., 109, (3476-3484) 2005. 

57.    G. J. Halász, Á. Vibók and M. Baer:
Ab-initio Non-adiabatic Coupling Elements: Conical Intersections of the C2H2Molecule. Chem. Phys. Lett., 413, (226-230) 2005. 

58.    Á. Vibók, G. J. Halász, S. Suhai, D. K. Hoffman, D. J. Kouri and M. Baer:
Two-State vs Three-State Quantization: An ab-initio Study of the Three Lower States of the {N,H_{2}|A’} System. J. Chem. Phys., 124, 024312 2006. 

59.    G. J. Halász, Á. Vibók, R. Baer and M. Baer:
Renner-Teller Nonadiabatic Coupling Terms: An ab-initio Study of the HNH Molecule. J. Chem. Phys.,124, 081106 2006. 

60.    60G. J. Halász, Á. Vibók, R. Baer and M. Baer:
D matrix analysis of the Renner-Teller effect: An accurate three-state diabatization for NH2. J. Chem. Phys.,125, 094102 2006. 

61.    G. J. Halász, Á. Vibók, D. K. Hoffman, D. J. Kouri and M. Baer:
Renner-Teller/Jahn-Teller intersections along the collinear axes of polyatomic molecules: C2H2+ as a case study. J. Chem. Phys.,126, 154309 2007. 

62.    G. J. Halász, Á. Vibók, R. Baer and M. Baer:
Conical intersections induced by the Renner effect in polyatomic molecules. J. Phys. A-Math and Theoretical 40 (15): (267-272) 2007. 

63.    G. J. Halász, Á. Vibók and M. Baer:
Topological Effects for Non-Symmetrical (Cs) Configurations: The C2H2+ as a case study. J. Chem. Phys., 127 (14): Art. No. 144108 OCT 14 2007 . 

64.    G. J. Halász, Á. Vibók, S. Suhai and M. Baer:
The electronic nonadiabatic coupling term: Can it be ignored in dynamic calculations? J. Chem. Phys.,127, 244101 2007. 

65.    65E. Bene, Á. Vibók, G. J. Halász, and M. C. Bacchus-Montabonel:
Ab-initio molrcular treatment of charge transfer process induced by collision of C2+ ion with OH radical: linear approach. Chem. Phys. Lett., 455, (159-163), 2008. 

66.    C. Levy, G. J. Halász, Á. Vibók, I. Bar, Y. Zeiri, R. Kosloff, and M. Baer:
An intraline of conical intersections for a methylamine. J. Chem. Phys., 128, 244302, 2008. 

67.    E. Bene, E. Rozsályi, Á. Vibók, G. J. Halász, and M. C. Bacchus-Montabonel:
Theoretical treatment of direct and indirect processes in ion-biomolecule collisions. Proc. 5th Int. Conf. of AIP (RADAM 2008) 59-70 (2008). 

68.    C. Levy, G. J. Halász, Á. Vibók, I. Bar, Y. Zeiri, R. Kosloff, and M. Baer:
A Novel intraline of conical intersections for a methylamine: A theoretical study. Int. J Quant. Chem., 109, 2482 (2009). 

69.    S.Adhikari, A. K. Paul, D.Mukhopadhya, G.J. Halász, Á. Vibók, R. Baer, and M. Baer:
Molecular systems in intense short-pulsed external fields: Application of space-time contours for H+2. J. Phys. Chem., A, 113, 7331 (2009). 

70.    70C. Levy, G. J. Halász, Á. Vibók, I. Bar, Y. Zeiri, R. Kosloff, and M. Baer:
Intra-lines of quasi conical intersections on torsion planes: The methylamine as a case study. J. Phys. Chem. A, 113, 6756 (2009). 

71.    E. Bene, P. Martínez, G. J. Halász, Á. Vibók and M.C. Bacchus-Montabonel:
Charge transfer in collision,s of C2+ carbon ions with CO and OH targets. Phys. Rev. A. 80, 012711 (2009). 

72.    G. J. Halász, A. L. Sobolewski and Á. Vibók:
Radiationless decay of excited states of tetrahydrocannabinol through the S1- S0(conical) intersection. Theor. Chem. Acc. 125, 3-6, 503 (2010). 

73.    C. Woywod, A. Papp, G. J. Halász and Á. Vibók:
Theoretical investigation of the electronic spectrum of pyrazine. Theor. Chem. Acc. 125, 3-6, 521 (2010). 

74.    G. J. Halász, and Á. Vibók:
Numerical evidence of two aligned conical intersections induced by the Renner effect in bent C2H2+ cation. Int. J. Quant. Chem. 111, 342 (2011). 

75.    75E. Bene, G. J. Halász, Á. Vibók, L. F. Errea, L. Méndez, I, Rabadán and M. C. Bacchus-Montabonel:
Ab initio treatment of charge exchange in H+ +CH collisions. Int. J. Quant. Chem. 111, 487 (2011). 

76.    E. Rozsályi, E. Bene, G. J. Halász, Á. Vibók and M. C. Bacchus-Montabonel:
Theoretical treatment of charge transfer in collisions of C2+ions with HF. Anisotropic and vibrational effect. Phys. Rev. A. 81, 062711, (2010). 

77.    G. J. Halász, and Á. Vibók:
Migration of conical intersections induced by the Renner effect in bent C2H2+ cation. Chem. Phys. Lett. 494, 150, (2010). 

78.    E. Rozsályi, E. Bene, G. J. Halász, Á. Vibók and M. C. Bacchus-Montabonel:
Analysis of the charge transfer mechanism in ion-molecule collisions. ADVANCES IN THE THEORY OF QUANTUM SYSTEMS IN CHEMISTRY AND PHYSICS;Progress in Theoretical Chemistry and Physics; 22, (355-368), 2012, ISBN 978-94-007-2075-6, Springer. 

79.    J. Halász, Attila Papp, Etienne Gindensperger, Horst Köppel, and Ágnes Vibók:
Short-time dynamics through conical intersections in macrosystems: Quadratic coupling extensions. ADVANCES IN THE THEORY OF QUANTUM SYSTEMS IN CHEMISTRY AND PHYSICS; Progress in Theoretical Chemistry and Physics; 22, (285-298), 2012, ISBN 978-94-007-2075-6, Springer. 

80.    80A. Papp, G. J. Halász, M. C. Bacchus-Montabonel, and Á. Vibók:
Conical intersections induced by the Renner effect: Selected systems. Chem. Phys. Lett. 504, 211, (2011). 

81.    G. J. Halász, Á. Vibók, M. Šindelka, N. Moiseyev and L. S. Cederbaum:
Conical intersections induced by light: Berry phase and wave packet dynamics. J. Phys. B. 44, 175102, (2011). 

82.    E. Rozsályi, E. Bene, G. J. Halász, Á. Vibók and M. C. Bacchus-Montabonel:
Ab initio study of charge transfer dynamics in collisions of C2+ ions with hydrogen chloride. Phys. Rev. A. 83, 052713, (2011). 

83.    G. J. Halász, Á. Vibók, M. Šindelka, L. S. Cederbaum and N. Moiseyev:
The effect of light-induced conical intersections on the alignment of diatomic molecules. Chem. Phys. 399, 146, (2012). 

84.    Ágnes Vibók, András Csehi, Etienne Gindensperger, Horst Köppel, and Gábor J. Halász:
Quantum dynamics through conical intersections: Combining effective modes and quadratic couplings. J. Phys. Chem. A. 116, 2629, (2012). 

85.    85G. J. Halász, M. Šindelka, N. Moiseyev, L. S. Cederbaum and Á. Vibók:
Light induced conical intersections: topological phase, wave packet dynamics and molecular alignment. J. Phys. Chem. A. 116, 2636, (2012). 

86.    G. J. Halász, Á. Vibók, N. Moiseyev and L. S. Cederbaum:
Light-induced conical intersections for short and long laser pulses: Floquet and rotating wave approximations versus numerical exact results. J. Phys. B. 45, 135101, (2012). 

87.    A. Papp, G. J. Halász, M. C. Bacchus-Montabonel, and Á. Vibók:
Erratum to: Conical intersections induced by the Renner effect: Selected systems [Chem. Phys. Lett. 504 (2011) 20–23]. Chem. Phys. Lett. 534, 83, (2012). 

88.    A. Csehi, G. J. Halász and Á. Vibók:
Conical intersections in the H2CN molecule induced by the distortion from its Renner-Teller arrangement. Chem. Phys. Lett. 533, 10, (2012). 

89.    G. J. Halász, A. Perveaux, B. Lasorne, M. A. Robb, F. Gatti and Á. Vibók:
Simulation of laser-induced quantum dynamics of the electronic and nuclear motion in the ozone molecule on the attosecond time scale. Phys. Rev. A. 86, 043426, (2012). 

90.    90A. Csehi, A. Bende, G. J. Halász, Á. Vibók, A. Das, D. Mukhopadhyay and M. Baer:
A tri-atomic Renner-Teller system entangled with Jahn-Teller conical intersections. J. Chem. Phys. 138, 024113 (2013). 

91.    A. Csehi, A. Bende, G. J. Halász, Á. Vibók, A. Das, D. Mukhopadhyay, S. Mukherjee , S. Adhikari and B. Michael:
Dressed Adiabatic and Diabatic Potentials for the Renner-Teller/ Jahn-Teller F+H2 System. J. Phys. Chem. A 117, 8497 (2013). 

92.    G. J. Halász, Á. Vibók, H.-D. Meyer and L. S. Cederbaum:
The effect of light-induced conical intersection on the photodissociation dynamics of the D+2 molecule. J. Phys. Chem. A. 117, 8528 (2013). 

93.    A. Csehi, C. Woywod, G. J. Halász, Á. Vibók:
Ab initio studies of two pyrimidine derivatives as possible photo-switch systems. Cent. Eur. J. Phys. DOI: 10.2478/s11534-013-0174-8, (2013). 

94.    M.C. Bacchus-Montabonel, E. Rozsályi, E. Bene, G. J. Halász, Á. Vibók:
Non-adiabatic interactions in charge transfer collisions. Cent. Eur. J. Phys. DOI: 10.2478/s11534-013-0245-x, (2013). 

95.    95G. J. Halász, A. Perveaux, B. Lasorne, M. A. Robb, F. Gatti and Á. Vibók:
Coherence revival during the attosecond electronic and nuclear quantum photodynamics of the ozone molecule. Phys. Rev. A. 88, 023425, (2013). 

96.    A. Csehi, L. Illés, G. J. Halász, and Á. Vibók:
The effect of chemical substituents on the functionality of a molecular switch system: a theoretical study of several quinoline compounds. Phys. Chem. Chem. Phys 15, 18048 (2013). 

97.    G. J. Halász, Á. Vibók, N. Moiseyev and L. S. Cederbaum:
Nuclear wave packet quantum interference in the intense laser dissociation of the D+2 molecule. Phys. Rev. A. 88, 043413 (2013). 

98.    G. J. Halász, A. Perveaux, B. Lasorne, M. A. Robb, F. Gatti and Á. Vibók:
Attosecond electronic and nuclear quantum photodynamics of the ozone molecule. AIP Conference Proceedings 1565, 19 (2013). 

99.    Clemens Woywod, András Csehi, Gábor J. Halász, Kenneth Ruud, and Ágnes Vibók:
Theoretical investigation of two model systems for molecular photoswitch functionality. I. 2-(4-nitropyrimidin-2-yl)ethenol. Mol. Phys. DOI: 10.1080/00268976.2013.869362, (2013). 

100. 100A. Csehi, A. Bende, G. J. Halász, Á. Vibók, A. Das, D. Mukhopadhyay, S. Mukherjee , S. Adhikari and M. Baer:
Dressed adiabatic and diabatic potentials to study topological effects for F+H2. J. Phys. Chem. A. 118, 6361 (2014). 

101. A. Perveaux, D. Lauvergnat, B. Lasorne, F. Gatti, M. A. Robb, G. J. Halász, and Á. Vibók:
Attosecond electronic and nuclear quantum photodynamics of ozone: time-dependent Dyson orbitals and dipole. J. Phys. B. 47, 124010 (2014). 

102. A. Csehi, G. J. Halász, and Á. Vibók:
Molecular switch properties of 7-hydroxiquinoline compounds. Int. J. Quant. Chem. 114, 1135 (2014). 

103. M. Oppermann, S. Weber, F. Morales, M. Richter, S. Patchkovskii, A. Csehi, Á. Vibók, M. Ivanov, O. Smirnova, J. Marangos:
Strong field control and identification of dissociative channels in CO+2 via molecular alignment. J. Phys. B. 47, 124025 (2014). 

104. A. Perveaux, D. Lauvergnat, F. Gatti, G. J. Halász, Á. Vibók and B. Lasorne:
Monitoring the birth of an electronic wavepacket in a molecule with attosecond time-resolved photoelectron spectroscopy. J. Phys. Chem. A. 118, 8773 (2014). 

105. G. J. Halász, A. Csehi, Á. Vibók and L. S. Cederbaum:
The Influence of Light-Induced Conical Intersection on the Photodissociation Dynamics of D+2 from Single Vibrational Levels. J. Phys. Chem. A. 118, 11908 (2014). 

106. G. J. Halász, Á. Vibók and L. S. Cederbaum:
Direct signature of light-induced conical intersections in diatomics. J. Phys. Chem. Lett., 6, 348 (2015). 

107. A. Csehi, G. J. Halász, L. S. Cederbaum and Á. Vibók:
Photodissociation of D+2 induced by linearly chirped pulses. J. Chem. Phys. 143, 0143305 (2015). 

108. G. J. Halász, A. Csehi and Á. Vibók:
Photodissociation dynamics of the D+2 ion initiated by several different laser pulses. Theor. Chem. Acc. 134, 128 (2015). 

109. Á. Vibók and G. J. Halász:
Direct Signature of Light-Induced Conical Intersections. J. Phys., Conference Series 635, 112051 (2015). 

110. A. Tóth, S. Borbély, G. J. Halász and Á. Vibók:
Towards a complete dynamical description of D +2 in strong laser fields. J. Phys., Conference Series 635, 112138 (2015). 

111. A. Csehi, G. J. Halász, L. S. Cederbaum and Á. Vibók:
Tracking the photodissociation probability of D + 2 induced by linearly chirped laser pulses. J. Chem. Phys. 144, 8 (2016). 

112. A. Csehi, G. J. Halász, L. S. Cederbaum and Á. Vibók:
Towards controlling the dissociation probability by light-induced conical intersections. Faraday Discuss., DOI: 10.1039/C6FD00139D, (2016). 

113. P. Badankó, G. J. Halász and Á. Vibók:
Molecular vibrational trapping revisited: a case study with D2+. Scientific Reports,| 6:31871 | DOI: 10.1038/srep31871, (2016). 

114. A. Csehi, G. J. Halász and Á. Vibók:
The role of quadratic frequency chirps in the photodissociation dynamics of D2+. Chemical Physics,dx.doi.org/10.1016/j.chemphys.2016.09.035, (2016). 

115. P. Decleva, N. Quadri, A. Perveaux, D. Lauvergnat, F. Gatti, B. Lasorne, G. J. Halász and Á. Vibók:
Attosecond electronic and nuclear quantum photodynamics of ozone monitored with time and angle resolved photoelectron spectra. Scientific Reports,| 6:36613 | DOI: 10.1038/srep36613, (2016). 

116. A. Tóth, S. Borbély, G. Z. Kiss, G. J. Halász and Á. Vibók:
Towards the full quantum dynamical description of photon induced processes in D2+. J. Phys. Chem. A., DOI: 10.1021/acs.jpca.6b09623, (2016). 

117. A. Tóth, S. Borbély, Halász and Á. Vibók:
Strong field dissociative ionization of the D2+: Nuclear wave packet analysis. Chem. Phys. Lett., DOI: 10.1016/j.cplett.2017.01.067, (2017). 

118. A. Csehi, G. J. Halász, L. S. Cederbaum and Á. Vibók:
Competition between Light-Induced and Intrinsic Nonadiabatic Phenomena in Diatomics. J. Phys. Chem. Lett., 8, 1624 (2017). 

119. A. Csehi, G. J. Halász, L. S. Cederbaum and Á. Vibók:
Intrinsic and light-induced nonadiabatic phenomena in the NaI molecule. Phys. Chem. Chem. Phys., doi/pdf/10.1039/C7CP02164J, (2017). 

120. S. Borbély, A. Tóth, G. J. Halász and Á. Vibók:
Strong Field dissociative ionization of the D2+. J. Phys., Conference Series 875, 032028 (2017). 

121. A. Csehi, G. J. Halász and Á. Vibók:
Collective effect of light-induced and natural nonadiabatic phenomena in the dissociation dynamics of the NaI molecule. Chem.Phys. doi.org/10.1016/j.chemphys.2017.12.017, (2018). 

122. G. J. Halász, P. Badankó and Á. Vibók:
Geometric phase of light-induced conical intersections: adiabatic time-dependent approach (invited article). Mol. Phys. doi.org/10.1080/00268976.2018.1431410, (2018). 

123. A. Csehi, G. J. Halász, L. S. Cederbaum and Á. Vibók:
Light-induced conical intersections. in Attoseond Molecular Dynamics, (Eds.: M. J. J. Vrakking, F. Lépine) Theoretical and Computational Chemistry Series, Royal Society of Chemistry (2018). 

124. A. Tóth, P. Badankó, G. J. Halász, Á. Vibók and A. Csehi:
Importance of the lowest-lying Π electronic state in the photodissociation dynamics of LiF. Chem.Phys. doi.org/10.1016/j.chemphys.2018.05.002, (2018). 

125. T. Szidarovszky, G. J. Halász, A. G. Császár, L. S. Cederbaum and Á. Vibók:
Direct Signatures of Light-Induced Conical Intersections on the Field-Dressed Spectrum of Na2. J. Phys. Chem. Lett., 9, 2239 (2018). 

126. T. Szidarovszky, G. J. Halász, A. G. Császár, L. S. Cederbaum and Á. Vibók:
Conical Intersections Induced by Quantum Light: Field-Dressed Spectra from the Weak to the Ultrastrong Coupling Regimes. J. Phys. Chem. Lett., 9, 6215 (2018). 

127. P. Badankó, G. J. Halász, L. S. Cederbaum, Á. Vibók and A. Csehi:
Communication: Substantial impact of the orientation of transition dipole moments on the dynamics of diatomics in laser fields. J. Chem. Phys. 149, 181101 (2018). 

128. A. Tóth, A. Csehi, G. J. Halász and Á. Vibók:
Photodissociation Dynamics of the LiF Molecule: Two and three States Descriptions. Phys. Rev. A 99, 043424 (2019). 

129. T. Latka, V. Shirvanyan et al., ... Á. Vibók and R. Kienberger:
Femtosecond wave-packet revivals in ozone. Phys. Rev. A 99, 063405 (2019). 

130. A. Csehi, M. Kowalewski, G. J. Halász and Á. Vibók:
Ultrafast dynamics in the vicinity of quantum light-induced conical intersections. New. J. Phys. 21, 093040 (2019). 

131. T. Szidarovszky, A. G. Császár, G. J. Halász and Á. Vibók:
Rovibronic spectra of molecules dressed by light fields. Phys. Rev. A 100, 033414 (2019). 

132. A. Csehi, Á. Vibók, G. J. Halász and M. Kowalewski:
Quantum control with quantum light of molecular nonadiabaticity. Phys. Rev. A 100, 053421 (2019). 

133. M. Pawlak, T. Szidarovszky, G. J. Halász and Á. Vibók:
Robust field-dressed spectra of diatomics in an optical lattice. Phys. Chem. Chem. Phys. 22, 3715 (2020) . 

134. A. Tóth, A. Csehi, G. J. Halász and Á. Vibók:
Control of photodissociation with the dynamic Stark effect induced by THz pulses. Phys. Rev. Res 2, 013338 (2020). 

135. T. Szidarovszky, G. J. Halász and Á. Vibók:
Three-player polaritons: nonadiabatic fingerprints in an entangled atom-molecule-photon system. New. J. Phys. 22, 053001 (2020). 

136. C. Fábri, B. Lasorne, G. J. Halász, L. S. Cederbaum and Á. Vibók:
Striking Generic Impact of Light-Induced Non-Adiabaticity in Polyatomic Molecules. J. Phys. Chem. Lett. 11, 5324 (2020). 

137. T. Szidarovszky, G. J. Halász, A. G. Császár and Á. Vibók:
Light-Dressed Spectroscopy of Molecules. in Progress in Ultrafast Intense Laser Science volume XV, chapter 4. 

138. A. Csehi, P. Badankó, G. J. Halász, Á. Vibók and B. Lasorne:
On the preservation of coherence in the electronic wavepacket of a neutral and rigid polyatomic molecule. J. Phys. B. 53, 184005 (2020). 

139. C. Fábri, B. Lasorne, G. J. Halász, L. S. Cederbaum and Á. Vibók:
Quantum light-induced nonadiabatic phenomena in the absorption spectrum of formaldehyde: Full-and reduced-dimensionality studies. J. Chem. Phys. 153, 234302 (2020). 

140. C. Fábri, G. J. Halász, L. S. Cederbaum and Á. Vibók:
Born–Oppenheimer approximation in optical cavities: from success to breakdown. Chem. Sci. 12, 1251 (2021). 

141. T. Szidarovszky, P. Badankó, G. J. Halász, and Á. Vibók:
Nonadiabatic phenomena in molecular vibrational polaritons. J. Chem. Phys. 154, 064305 (2021). 

142. C. Fábri, G. J. Halász, L. S. Cederbaum and Á. Vibók:
Signatures of light-induced nonadiabaticity in the field-dressed vibronic spectrum of formaldehyde. J. Chem. Phys. 154, 124308 (2021). 

143. P. Badankó, O. Umarov, C. Fábri, G. J. Halász and Á. Vibók :
Topological aspects of cavity-induced degeneracies in polyatomic molecules. Int. J. Quant. Chem. doi.org/10.1002/qua.26750 (2021). 

144. G. J. Halász, T. Szidarovszky and Á. Vibók :
On the line shape of the total rovibronic absorption in laser-dressed diatomic molecules. Int. J. Quant. Chem. doi.org/10.1002/qua.26868 (2021). 

145. C. Fábri, G. J. Halász and Á. Vibók:
Probing Light-Induced Conical Intersections by Monitoring Multidimensional Polaritonic Surfaces. J. Phys. Chem. Lett. doi.org/10.1021/acs.jpclett.1c03465 (2022). 

146. A. Csehi, O. Vendrell, G. J. Halász and Á. Vibók:
Competition between collective and individual conical intersection dynamics in an optical cavity. New. J. Phys. 24, 073022 (2022). 

147. C. Fábri, G. J. Halász, L. S. Cederbaum and Á. Vibók:
Radiative emission of polaritons controlled by light-induced geometric phase. Chemical Communications doi.org/10.1039/D2CC04222C (2022).        

148. O. Umarov, A. Csehi, P. Badankó, G. J. Halász  and Á. Vibók:
Light-induced photodissociation on the lowest three electronic states of NaH molecule. Phys.Chem.Chem.Phys., doi.org/10.1039/D3CP05402K (2024).

 

Document generated by eLyXer 1.2.3 (2011-08-31) on 2015-01-09T21:53:07.601854