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Decoding the Chaos of Breakup
A new principle underlying the physics of fragmentation explains why
fragment sizes follow a specific, universal distribution.

By Ferenc Kun

W hen a solid object shatters or a liquid drop
disintegrates, predicting the outcome seems at first
hopelessly difficult. In solids, cracks branch, merge,

and arrest in unforeseeable ways; in liquids, jets and films
stretch and rupture through complex instabilities. Yet, despite
this apparent chaos, a surprisingly simple rule applies to the
produced fragments, whether they are grains of rock, droplets
from a bursting bubble, or splinters of glass (Fig. 1). Namely,
their size distribution follows a power law. The recurrence of
this form across vastly different materials and energy scales
hints at an underlying organizing principle. Now Emmanuel
Villermaux at Aix-Marseille University in France and the
University Institute of France has proposed such a principle [1].
It shows that the statistical regularities of fragmentation can
emerge from a combination of maximum randomness and
kinematic constraints, without reference to any specific
microscopic mechanism. The principle could help scientists
determine how different physical processes influence
fragment-size distributions in industrial, geophysical, and
astrophysical settings.

Figure 1: The shattering of glass is an archetypal fragmentation
process.
Credit: Ламина Акулова/stock.adobe.com

Fragmentation processes have long fascinated physicists
because they combine elements of geometry, dynamics, and
disorder [2–4]. Numerous physical models have been proposed
to explain the observed power-law size distributions. Many rely
onmicroscopic mechanisms, such as the formation and
propagation of cracks in heterogeneous materials, the
branching andmerging of these cracks, and the coalescence of
damage zones [3]. Others invoke periodic stress patterns or
hierarchical breaking, which under controlled conditions can
lead to predictable fragment sizes [4]. In a different spirit,
statistical models have treated fragmentation as a kind of phase
transition, in which the system evolves from a connected state
to a dispersed state when the imparted energy exceeds a critical
threshold. That approach captures certain scaling features but
still depends on system-specific interactions and parameters
[5, 6]. Collectively, these physical models have successfully
described heterogeneous brittle materials, but they are not
general and depend on the details of crack dynamics.

Villermaux took a very different path. Rather than asking how
fragments form, he asked which outcomes are statistically most
probable, givenminimal physical constraints. He assumed that
the breakup proceeds under maximal randomness, analogous
to the so-called molecular-chaos hypothesis in Boltzmann’s
kinetic theory of gases. Among all possible ways of breaking an
object into pieces, the realized one is the most probable—that
is, the one that maximizes entropy. However, this randomness
is not unconstrained: The process must obey a global
conservation law identified in fragmentation studies over the
past decade [7]. According to that law, the average of the
logarithm of fragment sizes is conserved during breakup.

Given this recipe of maximum entropy subject to conservation,
Villermaux found that the familiar power-law size distribution
naturally emerges. Moreover, the exponent of the power law is
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determined by the dimensionality of the breaking object—a 1D
rod, a 2D plate, or a 3D solid or droplet. Villermaux’s predicted
exponents of 1.3, 2.4, and 3.5 for 1D, 2D, and 3D systems,
respectively, match a remarkable range of experimental and
numerical results [2–4, 8]. These results span from shattering
glass rods and exploding ceramic tubes to bubbles and droplets
in turbulent flows.

The simplicity and success of this approach are striking. The
findings suggest that the statistical features of fragmentation
might be dictated not by the microscopic details of cracks or
instabilities but by how randomness is constrained by global
kinematics. Such a perspective is reminiscent of the historical
development of statistical mechanics, in which macroscopic
regularities arise from probabilistic laws rather than detailed
dynamics.

Villermaux went further by testing the limits of his framework.
He examined cases in which the assumptions of brittleness or
randomness break down. In ductile or viscoelastic materials, for
example, cracks might heal before fully separating, suppressing
the formation of small fragments. Accounting for this effect
modified the power law into a slower decay, consistent with
experiments on ductile plastic materials [9]. Similarly, when
finite impact energy limited the total surface area that could be
created, the size distribution developed an exponential cutoff at
small scales—again, a feature widely observed in data. These
refinements strengthen the case that the new framework not
only captures the essential statistical structure of fragmentation
but also accommodates deviations introduced bymaterial- and
system-specific mechanisms.

This work provides a unifying statistical foundation for a
research area long dominated by case-specific models. It shows
that the interplay of randomness and kinematic constraints can
explain why fragment sizes follow power laws and why the
exponents cluster around characteristic values. The approach
also offers a way to incorporate more detailed physical effects
through additional constraints—such as finite energy, healing,
or interactions among fragments.

Looking ahead, one might wonder whether similar principles

could explain other geometrical aspects of fragmentation—not
only the statistics of fragment size but also of the shapes of the
pieces. In Villermaux’s formulation, fragments are treated as
ideal Euclidean objects whose internal geometry plays no
explicit role in the breakup. In reality, fragmentation produces
polyhedral pieces that statistically evolve toward an average
cubic shape, as demonstrated in previous work [10]. Developing
a corresponding principle for shape selection, and perhaps
linking it to the statistics of crack networks or to surface-area
minimization under random strains, could be the next step
toward a comprehensive statistical theory of fragmentation.

Ferenc Kun: Department of Theoretical Physics, University of
Debrecen, Debrecen, Hungary
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